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Abstract: Energy efficiency of Heating Ventilating and A Conditioning (HVAC) systems plays an important
role in reducing the world’s energy needs. Optimization of HVAC system is cne of the promising ways to
mprove energy efficiency and to help in slowing down the depletion of our energy resources. This study
proposed an improved version of multi-objective optimization algorithm which integrates the simple yet
powerful differential evolution approach to the popular non-dominated sorting Genetic algorithm-II i solving
for optimization of a HVAC system. Energy consumption and thermal comfort are the two conflicting objectives
to be optimized with hourly cooling temperature set points of the thermal zone serve as the design variables
of the optimization. Optimization 18 performed through simulation of a case study using MATLAB coupled with
EnergyPlus Software. Cardinality, space and hyper volume metrics are used to measure and compare the quality
of the Pareto fronts obtained by the proposed algorithm, NSDE with the base algorithms, Differential Evolution
(DE) and Non-nominated Sorting Genetic Algorithm-IT (NSGA-TT). Decision making is also performed to evaluate
the energy performance of the proposed algorithm. Simulation results demonstrated that the NSDE produces
better quality Pareto optimal solutions compared to DE and NSGA-II as well as better energy saving capability
of the algorithm.
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INTRODUCTION

Located near the equator, Malaysia’s climate is
regarded as hot and humid throughout the year. Heating
Ventilating and Air Conditioning (HVAC) systems have
become a necessity in providing comfortable thermal
condition in building indoor spaces. As a consequence,
energy consumption of air conditioners has increased to
more than 60% of total building energy in Malaysia
according to an audit carried out by Malaysia green
technology corporation. With mushrooming of new
properties and building usage in urban area, the energy
demand for air-conditioning is expected to raise even
higher in the near future. Therefore, reducing energy
consumption of HVAC systems is very crucial for
conservation and sustainability of energy. Research and
studies by scientists and scholars reveal that optimization
of HVAC systems is one of the most effective ways to
conserve energy. Optimized HVAC system is shown to
benefit in energy reduction of 7-30% by Nassif et al.
(2004), Fong et al. (2006), Mossolly et al. (2009) and
Hussain et al. (2014).

In mathematical aspect, optimization is the selection
of a best element from some set of available alternatives
with regard to certain objective or objectives
(Chiandussi et al, 2012). Since HVAC system is an
integration of many complicated parts such as heat
exchanger, blower, condenser coil, evaporator coil,
thermostat, etc., HVAC optimization thus involves
searching of the best possible operating points of these
parts under several dynamic conditions such as outdoor
weather and indoor loads with the objectives of
maximizing the occupants thermal comfort level and
minimizing the energy costs of the system. This searching
process, once was thought to be time and memory space
consuming has evolved to be one of the promising way to
solve complex engineering problem, thanks to the
advancement of computing technology. Researchers think
that most of the energy savings can be achieved
through optimum control of various components in HVAC
system.

Research on HVAC systems optimization can be seen
as early as by Zheng and Zaheer-Uddin (1996), Huang
and Lam (1997) using Sequential Quadratic Programming
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(SQP) and Genetic Algorithm (GA), respectively for HVAC
Proportional-Integral (PI) control, though occupant
thermal comfort was not the criteria in their optimization.
Since then, there have been increasing trend of studies
focusing on optimization of HVAC systems, most with the
aims of mamtaming the indoor thermal comfort of
occupants and mdoor air quality but with mimmum energy
spending possible. Since, HVAC is a complex and
nonlinear system that involves hundreds of variables,
meta-heuristic and stochastics based optimization seem to
be more preferred by most researchers i recent years.
These include evolutionary algorithms (such as Genetic
Algorithm (GA), Evolution Strategies (ES) and Evolution
Programming (EP)) and bio-mnspired optimizations (such
as Particle Swarm intelligence (PSO), Ant colony, Bat
Algorithm (BA)).

Wang and Jin (2000), Xu and Wang (2009) used GA
to perform optimal control of Variable Air Volume (VAV)
air conditioming system by smnultaneously searching
for three HVAC parameters: supply air temperature,
chilled water temperature and outdoor ventilation rate.
Mossolly et al. (2009) used GA to search for the optimal
supply air temperature and supply air flow rate by
maintaining the Predicted Mean Vote (PMV) and Indoor
Adr Quality (TAQ) of multi-zone air conditioning system.
Hussan et al. (2014) incorporated GA in the Fuzzy Logic
Controller (FLC) dedicated to control of HVAC systems
that concerning energy efficiency and thermal comfort
requirement. GA is also extended to solve multi objective
problems. Wright et al. (2002) employed Multi-Objective
Genetic Algorithm (MOGA) to search for the optimum
sizing of HVAC system, simultaneously with the
optimization of its supervisory control strategy to solve
two conflicting objectives regarding system energy use
and occupant comfort. Nassif et al (2004) evaluated
both Non-dominated Sorting Genetic Algorithm (NSGA)
and NSGA-TT for two-objective optimization by tuning
four HVAC parameters concurrently. NSGA-II 15 very
well-known as a fast and elitist multi-objective GA. Other
variants of GA include Multi-Phase Genetic Algorithm
(MPGA) by Beghi et al. (2011) for optimization of multiple
chiller systems and Multi-Island Genetic Algorithm
(MIGA) by Seo ef al. (2014) for optimal operation of
HVAC system in an apartment house.

Some scholars Kusiak et af. (2010), Yang and Wang
(2012), He et al. (2014) used well-known bio-mnspired
swarm 1ntelligence algorithm such as Particle Swarm
intelligence (PSO) to find different optimal control set
points that applied on different parts of the HVAC
system. Beghi et @l (2012) employed PSO to mimmize
the overall energy comsumption of multiple chuller

systems by determining the load fraction that each chiller
has to satisty. Kusiak et al. (2011) applying Strength
Multi-Objective Particle Swarm Optimization (S-MOPSO)
to a scalarized three-objectives optimization of a
predictive Awr Handling Umt (AHU) system developed
using feedforward neural network. Zeng et al. (2015) used
Firefly Algorithm (FA) to search for the optimal supply
temperature set point and supply air static pressure set
point of a multi-zone HVAC system whereas (Coelho and
Mariani, 2013) used Improved Firefly Algorithm (IFA) to
minimize energy consumption of multi-chiller system by
determinming the part load ratio of each chiller. The same
researcher later mvestigated the same multiple chillers
optimization problem using Differential Bat Algorithm
(DBA) (Coelho and Askarzadeh, 2016). Other literature for
optimization of HVAC systems include Evolutionary
Programming (EP), Evolution Strategies (ES) and
Differential Evolution (DE) by Fong et al (2006,
2009), Kusiak et al. (2010) and Lee et al. (2011). All of
these approaches are showing promising and satisfactory
result in optimization of HVAC systems. From the above-
mentioned review, it can be concluded that multi-objective
optimization approach is a feasible method to search for
optimal control of HVAC systems for energy efficiency
improvement.

The current study proposed an improved version of
multi-objective optimization algorithm based on two
promising optimization approaches, Non-dominated
Sorting Genetic Algorithm-II (NSGA-IT) and Differential
Evolution (DE). The aims of the optimization is to minimize
the daily energy consumption of a HVAC system 1 a
single zone building and at the same time maximizing the
indoor thermal comfort of the space. The hourly cooling
temperature set poits of the HVAC system 1s optumized
and the performance of the proposed algorithm would be
compared with the orginal DE, NSGA-II and a baseline
scenario.

MATERIALS AND METHODS

Multi objective optimization: HVAC systems often deal
with two major opposing design objectives: maximize
the thermal comfort of the occupants at the same time
minimize the power consumption or energy cost. Thus,
Multi-Objective Optimization (MOOP) is usually being
applied m HVAC control systems than single objective
optimization. Tn MOOP, enhancement of one objective
always leads to degradation of another. In this scenario,
a trade-off must be created. Generally, a multi-objective
optimization problem can be represented by:
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s. t.xeX

where, M>1.X 1s the feasible set of decision vectors. The
feasible set 1s usually bound by some constramt
funetions. Multi-objective optimizations search for sets of
best trade-off solutions in the objective space which
is called Pareto optimal. Pareto optimal is the solutions
that cannot be improved n any of the objectives without
degrading at least one of the objectives {(Awad and
Khanna, 2015). A solution x,€X is said to dominate
another solution x,eX if:

f(x)<f(x,)forall indicesie {1,2, .., k}
f.{x) <f (x,) for at least oneindex je {1, 2, .., k}

1

(2

Many researchers performed scalarization to
multi-objective HVAC optimization (Huang and Lam, 1997,
Wang and Jin 2000, Mossolly et al, 2009) which
transform the multi-objective problem into single objective
problem by allocating different weight factors to the
objective functions:

Minimize Y. 7 wf (x) (3)
xe X

where, w, is the weight factors of the objective functions.
The weight factors can be set according to occupants’
preferences. This 13 particularly useful when the
preference factor of the objectives 13 known m advance.
Another approach used is the true multi objective
optimization where a set of Pareto optimal solutions are
produced. In this regards, some of the metaheuristic
single-objective optimization algorithms such as GA,
NSGA-IT, PSO and DE have their multi-objective version
developed Nassif et al. (2004) optimized two objective
functions simultaneously using NSGA-II to find the
optimal settings of supply air temperature, supply duct
static pressure, chilled water temperature and =zone
temperature to give the minimum energy usage and
maximmum PMV. Magnier and Haghighat (2010} too
optimized thermal comfort and energy consumption using
NSGA-IT by searching for optimal heating set points,
cooling set points, relative humidity set points, supply air
flow rates and thermostat delays. Wright et @l (2002)
optimized energy cost and occupant thermal discomfort
using MOGA by adjusting supply air temperature and
supply air flow rate. For this approach, many Pareto
optimal solutions are produced and all solutions are
considered equally good in satisfying the objective
functions. Tt then depends on the user’s preferences or

prioritization in choosing for the best solution from the
Pareto set and this system is called Multi-Criteria Decision
Makmg (MCDM).

Optimization algorithm

Non-dominated Sorting-based Differential Evolution
(NSDE): Non-dominated Sorting Genetic Algorithm IT
(NSGA-IT) is a multi-objective genetic algorithm originally
proposed by Deb et al. (2002). Tt is the improved version
of Non-dominated Sorting Genetic Algorithm (NSGA)
proposed earlier by Srinivas and Deb (1994). NSGA-II 1s
a very well-known population based multi-objective
optimization algorithm with two special
implemented in its searching operation, non-dominated
sorting and crowding distance. In non-dominated sorting,
the population 18 sorted based on non-demmation and
categorized into different ranking of fronts. Crowding
distance is then assigned to find the Euclidean distance
between each front population, so that, a better
diversity can be obtained. Selections are then performed
based on the non-dominated rank and crowding
distance.

On the other hand, Differential Evolution (DE) 1s a
population based evolutionary algormithm which 1s
onginally proposed by Stom and Price (1997). DE 1s very
simple, yet very powerful and useful in solving real
parameter optimization problems with very good
performance as reported by Lee ef af. (2011). This
algorithm uses simple mutation operator based on
difference of solution vectors to create new candidate
solutions. The new candidate solution is then competes
against its corresponding parent and replaces the parent
if the candidate solution has a higher fitness value.

Both NSGA-II and DE are population-based
metaheuristic evolutionary algorithm which contains the
four main operators: mitialization, mutation, crossover and
selection, except that the sequence of the operations are
different. Since, NSGA-II adopts the conventional binary
crossover and polynomial mutation, the crossover and

features

mutation procedure are complex, slower in speed and tend
to trap into local optima. On the other hand, DE uses a
greedy search and thus is less stochastic compared to
other optimization algorithms. Therefore, an improved
version of optimization is proposed.

In this proposed research, optimization of
HVAC system is implemented using Non-dominated
Sorting -based Differential Evolution (NSDE) which uses
NSGA-II as the main framework. Here, elitism of
non-dominated sorting and diversity of crowding distance
in NSGA-II are preserved with differential mutation and
crossover of DE replace the genetic operators in
conventional NSGA-II. DE controls the behaviour of
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Fig. 1: Main operation of Non-dominated Sorting-based Differential Evolution (NSDE)

mutation operator with a flexible distribution which made
it much simple and straight forward to implement. The
main operations of NSDE i1s shown m Fig. 1 and are
described as:

Initialization: Initial populations are generated randomly
based on problem range and constraints if any. Initial
populations act as the parent populations (x.) at the first
generation.

Non-dominated sort: Objective functions of each
initialized population is evaluated and the population is
sorted and ranked based on non-domination level with 1
the best level, 2 the second best level and so on.

Crowding distance: This operation aims to get an
estimation of the density of solutions surrounding a
particular solution. Here, the Euclidean distance between
each individual in the front population is determined. All
mndividuals in the front population is assigned with a
crowding distance value. The larger the value, the better
the diversity.

Selection: Selection is done by binary tournament.
Parents are selected from the population pool for
reproduction based on non-dominated rank and crowding
distance. An mdividual population 1s selected if the rank
is lesser than the other. If it has the same rank as other,
then individual with greater crowding distance value is
selected.

Genetic operator-mutation and crossover: Here, the
genetic operator of NSGA-TT is replaced by the simple yet
efficient differential evolution mutation and crossover
operator. Besides the typical parameters
evolutionary algorithms such as number of population,

used 1n

dimensions and mumber of generation, DE adopts two
other parameters, cross over probability, CR and scaling
factor, F. CR (value 1s between O and 1) controls the

influence of parent in generation of new candidate
solutions (offspring). Lower value indicates higher
influence of the parent m the features of its offspring.
F (value i3 between O and 1) scales the influence of
pairs of solutions selected to calculate the mutation
value mn mutation operation (Mezura-Montes ef af.,
2008).

Mutation: In mutation, new solutions (v;) are created by
adding the mutation differential of a pair of randomly
chosen sclutions (x, ¢ and x,, ;) with a doner solution
(X o). The difference of x, . and x; 5 1s scaled with
parameter F, after which it is added to the donor solution
(X, o) that is either chosen at random or selected from the
best solution in the population. In this proposed research,
the most popular DE variant (DE/rand/1/bin) is adopted
whereby random donor solution 1s selected for the
mutation operation. The new solutions are also called
mutation vector. The process can be expressed as:

Vg = X5 o R, 5% 6) (4

G 3, G

Crossover: To improve the diversity of population,
crogssover operation is performed. Here, the mutation
vector (vg) 1s crossovered with original parent (x;) with
either binomial or exponential method. In this proposed
research, binomial method 1s adopted. Crossover 1s
performed to produce offspring (u;) whenever a randomly
generated number between O and 1 is less than the
parameter CR. The operation can be outlined as:

_ |vs,if{rand[0,1]< CR) )

X, otherwise

Recombination: Objective functions of offspring
population (ug) are evaluated. The offspring population,
ug are then recombined with the current generation

population, x,, (parents in the first generation) to produce
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Fig. 2: a) Architecture schematic view of the single thermal zone and b) Top view of the single thermal zone

1., and hence, two tunes population size is produced. Here,
non-dominated sorting is performed on the combined
population and only the best are passed to the next
generation to ensure elitism. The process then repeats
until the termination criteria is reached. The termmation
criteria can be determined by number of maximum
iterations or by function tolerance. In other words,
iterations end when the pre-set maximum iterations value
15 reached or when the fitness function does not vary
more than the pre-set tolerance value over consecutive
iterations.

Simulation

Case study model: The proposed algorithm is evaluated
using a single zone m a building which 13 modelled using
EnergyPlus Software. The evaluated building is located in
capital city of Malaysia, Kuala Lumpur with latitude of
3.127, longitude of 101.55% and elevation of 22 meter above
sea level. The single thermal zone has a square geometry
of 108 m” with length, width and ceiling height of 6x6x3
meter, respectively. There is a window of 3x2 meter facing
the west. The thermal zone 1s sinulated with the north
wall, west window and roof exposed to the Sun and wind
while the east and south wall are internal walls adjacent to
other thermal zones in the same building. Figure 2 shows
the architecture schematic view of the single thermal zone.
The single zone 1s simulated with six persons occupy the
space from 7 am. to 5 p.m. in weekday with sedentary
activities such as reading, writing, typing and having
meeting (150 W/person). The occupants are assumed to
be in typical office clothing such as trousers and long
sleeved shirts (=0.6 clo). The air velocity of the zone 1s
assumed to be fix at 0.25 m/sec to comply with the
ASHRAE 55 standards for summer season
(ANSI/ASHRAE., 2013; Anonymous, 2013). The single
zone 1s equipped with a packaged terminal air
conditioner system that provides cooling mode only,

Packaged terminal air conditioner

Cooling Qutdoor air
coil mixer

1

Supply air fan —
air

F 3

' g
—- Relief
air

4
N S——

o
-
—_—

Zone air inlet Zone air exhaust
node Thermostat node

Single thermal zone

Fig. 3: Schematic of a packaged terminal air-conditioner
system

country with hot and

humid weather all year long. Simulation 1s run using the

since, Malaysia 15 a tropical
measured weather data for the month of May as this
is the hottest month in the year according to the weather
source by EnergyPlus. Figure 3 shows the schematic
diagram of a packaged terminal air-conditioner system
proposed
is controlled

modelled using EnergyPlus used for the
optimization. The =zone temperature
using the single thermostat in the air-conditioner

systermn.

Objective function and design variables: In this research,
Non-dominated Sorting Differential Evolution (NSDE)
15 used to optimize the HVAC system of a simgle
zone thermal building, taking mto consideration the
energy performance and also the thermal comfort of
the occupants. The optinization has two-objective
functions:
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¢ f (x): minimize the energy consumption
¢ f,(x): minimize the maximum Predicted Percentage of
Dissatisfied (PPD max)

For each day:
Minimize F(x} =[f, (x), f,(x) ] ©)

Subject to x; < x <x,

where, x; and x, are the lower bound and upper bound of
the design variables. The first objective function to be
mimmized 1s the total energy comsumption of the
air-conditioner system in 24 hours. In this research, even
though the zone 1s simulated with the presence of
lights and electric equipment, only electric power of the
air-conditioner is to be optimized.

Second objective function is regarding occupants’
thermal comfort. Predicted Mean Vote (PMV) index 1s
commonly used to measure the condition of mind that
expresses satisfaction with thermal environment. Tt is
calculated using Fanger’s equation (ASHRAE, 2009). It
depends on environmental parameters such as air
temperature, humidity, mean radiant temperature, air
velocity and personal variables such as metabolic rate and
clothing insulation. PMV is associated with thermal
sensation scale that runs from cold (-3) to hot (+3)
with O as the ideal value. The recommended acceptable
PMV range for thermal comfort from ASHRAE Standard
55 is between -0.5 to 0.5 for indoor spaces (ASHRAE,
2009).

Although predicting thermal sensation is an
important measure in determining a comfortable condition,
it 15 more meaningful and beneficial to consider the
thermal satisfaction of occupants. Predicted Percentage of
Dissatisfied (PPD) 1s another equation developed by
Fanger and it is a function of PMV as shown in Fig. 4.
PPD is an index to predict the percentage of occupants
that will be dissatisfied with the thermal conditions. As
PMV value moves away from zero or neutral, PPD
increases. As we can see from Fig. 4 a PMV range of £0.5
which is the recommended PMV by ASHARE
corresponds to a PPD of 10%. In this proposed research,
PPD (%) is used as the thermal comfort indicator instead
of PMV to better reflect the minimization of the objective
funetion mn this optimization. Besides that, maximum PPD
(PPD**) is optimized instead of average PPD (PPD™) to
ensure the evaluated PPD are kept at a low value all the
time throughout the examined day.

Next, the design variables to be optimized are the
hourly cooling temperature set points of the single zone
during working hours (from 7 am. to 5 p.m.) thus resulting
in ten design variables in a simulation day. The cocling
set point is fix at 26°C from time 0.00to 7:00 and from 17:00
to 24:00 as the occupancy 1s set to zero assuming no one

100 7
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Predicted Percent
Dissatisfied (PPD)
[*]
(=]

4 T
20 15

1 L] T
10 05 0 05 10 15 20
Predicied mean voie

Fig. 4: Predicted Percentage of Dissatisfied (PPD) as a
function of Predicted Mean Vote (PMV),
(ASHRAE, 2009)
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Fig. 5: Occupancy model of the simulated day

1s present in the zone at this period of time. Figure 5
shows the occupancy model of the simulated day. The
constramnts of the design variable 1s set to be
between 16 to 26°C. The cooling set pomts are to be
controlled using the thermostat in the single thermal
Zomne.

Coupling of MATLAB and EnergyPlus for HVAC
optimization: The proposed multi-objective optimization
of HVAC system using Non-dominated Sorting-based
Differential Evolution (NSDE) is implemented and
simulated using MATLAB, a powerful and flexible
optimization software. On the other hand, EnergyPlus a
comprehensive building simulation software is used to
create the building, HVAC system and occupancy model
of our simulation Besides that, EnergyPlus can be
used to accurately calculate the building electricity
consumption and thermal comfort of occupants in the
simulated zone. The optimization procedure and iterations
are programmed and run using MATLAB enviromment.
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Fig. 6: Coupling of MATLAB and EnergyPlus frameworlk

MATLAB code 1s written to invoke EnergyPlus which 1s
treated as an external software, each tine objective
function evaluation is performed. In other words,
EnergyPlus works as a black box function evaluator when
validated data such as weather file, HVAC and occupancy
profile are mput to the system. Figure 6 shows the
coupling of MATLAB and EnergyPlus frameworl in this
proposed research.

Some researchers perform coupling of MATLAB and
EnergyPlus with the aid of third party software such as
JTEPIus and MLEA+ (Xu ef al., 2013, Gamier et ai., 2015 and
Delgarm et al., 2016). The novelty of this research is for
MATLAB, the main optimization engine to control and
communicate with EnergyPlus without any unnecessary
thurd party mterface. This greatly reduce the complexity of
the whole simulation and optimization system.

RESULTS AND DISCUSSION

Parameter setting: Simulation is carried out for one
working day (24 hours) to determine the optimal solutions
of the HVAC system using our proposed Non-dominated
Sorting-based Differential Evolution (NSDE) as explamed
in previous section. For comparison  purposes,
optimization are also performed using Differential
Evolution (DE) and Non-dommated Sorting Genetic
Algorithm-II (NSGA-ID). Sunulation of various algorithms
are tun for multiple times using different control
parameters and they are found to vield the best results
with the parameter setting as shown in Table 1.

The selected simulation day 1s on 2 May as it falls on
the hottest month mn the year to better justify the
efficiency of different algorithms m the extreme weather of

a tropical country. Figure 7 shows the outdoor
temperature of the simulated day according to weather file
sourced by EnergyPlus. All algorithms are configured
with the same number of population size, N which 1s 40
and maximum iterations of 50 which also serves as the

stopping criteria for the optimization

Experimental results: Results of the simulation is
shown in Fig. 8. Here, the Pareto fronts or the best
optimal of the three multi-objective
optimization algorithms are presented. As would be
expected, decrease in thermal discomfort (PPD) requires
an increase m energy consumption. The trend lines

solutions

can be observed m all the multi-objective approaches
involved.

The performance and quality of the Pareto fronts
obtained are evaluated using some common performance
metrics. Suitable performance metrics should be chosen as
we are dealing with practical real-world application where
the true Pareto fronts are unknown. First, Riquelme e? al.
(2015) in measure for cardinality which refers to number of
non-dominated solutions obtained from an optimization
run, algorithm that produces larger number of solutions is
intuitively preferred (Riquelme ef al., 2015). In this case,
NSGA-TT has the highest score with 39 non-dominated
solutions found, followed by the proposed NSDE with 33
solutions and finally DE with only 5 optimal solutions.
Even though the proposed NSDE has lesser number of
non-dommatedsolutions compared to NSGA-IL, the
number of solutions 1s still notably high (Table 2).

Next, the Pareto solutions are assessed for its
diversity. Here, Spacing metric (S) is used to evaluate how
uniformly the solutions are distributed 1n the objective
space. [t measures the variance of the distance of each
solution to its nearest neighbour. An algorithm which
produces Pareto solutions that are evenly distributed has
smaller spacing value and is better (Tydrichova and
Kozlowska, 2017). Table 2 shows the spacing metric of the
algorithms examined. Clearly, the proposed NSDE gives
the best spacing measure among the three. NSGA-IT has
disconnected Pareto fronts thus, vields a poorer result.

Another inportant metric used to evaluate the
Pareto-optimal fronts 13 Hyper-Volume (HV) metric. HV
metric provides a qualitative measure of convergence as
well as divergence in a combined manner. Tt calculates the
volume 1n the objective space covered by a reference
pomt and the Pareto fronts obtamned. Theoretically, for
each Pareto solution, a hypercube is constructed using a
reference point and the corresponding Pareto point in
forming the diagonal corners of the hypercube. The
reference point can be obtained using a vector of worst
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Table 1: Parameter setting for different optimization algorithms

Varibles Crossover probability Scaling factor Distribution index for crossover  Distribution index for mutation Mutation probability
DE 0.1 0.5 - - -

NSGA-II - - 20 20 0.1

NSDE (proposed) 0.1 0.5 - - -

Table 2: Cardinality metric of all algorithm (Larger value is better)
(Riquelme et af., 2015)

Algorithms Number of non-dominated solutions
DE 5
NSGA-II 39
NSDE (proposed) 33

Table 3: Spacing metric (S) of all algorithms (Smaller value is better)
(Tydrichova and Kozlowska, 2017)

Algorithms Spacing metric (8)
DE 22.2686
NSGA-IT 11.5230
NSDE (proposed) 6.1775

Table 4: Hypervolume metric (FV) of all algorithm (Larger value is better)
(Riquelme et af., 2015)

Algorithms Hypervohime metric (HY)

DE 2.7618x1(¢

NSGA-II 2.9432x10¢

NSDE (proposed) 3.1723=10"
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Fig. 7: Outdoor temperature profile of the simulated day
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Fig. 8 Pareto fronts of DE, NSGA-IT and NSDE
optimization

objective function values (“Multi-objective performance
metrics”). An algorithm with larger hypervolume value are
better. HV metric 1s very much recommended as this
performance mdicator does not require knowledge of true
Pareto fronts. Table 4 shows the hypervolume value
calculated based on a common reference point m the
objective space for all three algorithms. The proposed
NSDE yields the best HV result which indicates that it has
a better explorative behaviour and offers more diversity of
solutions compared to DE and NSGA-IT (Table 3).

Decision making: After the complete set of Pareto
optimal solutions are found, Decision Making (DM) is
performed to select one of the preferred non-dominated
solutions for energy consumption calculation. Generally,
logical decision making depends on knowledge from
experts or specialists of related field that involves analysis
and diagnosis of the system. However, n most of the
situation, DM could be naturally intuitive and depends on
preferences, mterests and experiences of the users. In this
research, decision making is done based on different
preferences on objective function f, value which is the
maximum Predicted Percentage of Dissatisfied (PPD™).
Energy consumption that correspond to the selected PPD
is examined and compared among all the optimization
approaches. For every configuration, the results are
benchmarked with a baseline scenario where no
optimization is involved. For baseline scenario, the
cooling temperature set point is fix at 22°C from 7 a.m. to
5 pm. It 13 to be reminded that for all the optimization
algorithms m this simulation research, cooling temperature
set points are set to a constant value of 26°C from time
0.00to 7:00 and from 17:00 to 24:00 as the occupancy is
assumed to be zero at these hours.

In the first configuration, PPD™ of below 10% is
selected for energy performance evaluation. A PPD
of 10% correspond to PMV range of £0.5 which is
the PMV limits recommended by ASHARE standard
55 (ASHRAE, 2009). As such, Pareto pomt right below
PPD™ of 10% 1s chosen as our solution for decision
making, so that,
attamed while energy consumption can be minimized. The
selected solution for each algorithm 1s lughlighted m Fig.
9. With condition of PPD™ not exceeding 10%, energy
consumption of DE, NSGA-IT and NSDE are recorded to
be 3613, 36.01 and 35.64 kW, respectively. This
corresponds to energy reduction of 6.33, 6.64 and 7.60%,

an allowable thermal comfort is
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Table 5: Energy differences of all algorithms benchmark with baseline scenario in every configuration

PPD below 10%% Lowest PPD Highest PPD
Variables Energy (kW) Dift (%) Energy (kW) Diff. (%) Energy (KW) Diff. (%0)
Baseline 38.57 - 38.57 -38.57 -
DE 36.13 -6.33 36.19 -6.17 36.13 -6.33
NSGA-II 36.01 -6.64 36.62 -5.06 3545 -8.09
NSDE (proposed) 35.64 -7.60 35.93 -6.84 3541 -8.19
14 ré r T y r
14 1= Y T T T B ‘%" *DE
% « o NSGA-II
%Z N DE 13 ® a NSDE (Proposed
13 h = NSGA-II A °| % B LowestPPD (D
|| o I © Bis=siiayn

_LF @ PPD below 10% (DE) | s A Highest PPD (DE)
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Fig. 9: Selected Pareto fronts for decision making process
(PPD below 10%)

respectively, compared to the baseline scenario. Tt can be
observed that the proposed NSDE shows the highest
energy saving in this configuration (Table 5).

Tn the next configuration, the extreme points of Pareto
curve are examined. At one extreme point, thermal comfort
1s given the highest priority thus Pareto solution with the
lowest PPD™ 1s selected for energy performance
evaluation. The selected Pareto fronts are highlighted in
Fig. 10. The energy consumption of DE, NSGA-TT and
NSDE are found to be at 36.19, 36.62 and 35.93 kW,
respectively. Compared to the baseline scenario, this
shows an energy saving of 6.17, 5.06 and 6.84%,
respectively. As a result, the proposed NSDE still vields
the highest energy reduction among the 3 algorithms.

At another extreme point, thermal comfort 1s given the
lowest priority where Pareto solution with the highest
PPD®= is chosen for investigation. The energy
consumption of DE, NSGA-II and NSDE show readings of
36.13, 35.45 and 35.41 kW, respectively which correspond
to energy reduction of 6.33, 8.09 and 8.19% compared to
the baseline scenario with no optimization.

Table 5 the results of energy
consumption of various algorithms and the energy
differences compared to baseline As a
conclusion all three algorithms show energy saving

SUIMIMArises
scenario.
compared to baseline scenario case. However, the

proposed NSDE shows the highest energy saving
characteristic in all the three configurations examined.

Fig. 10: Selected Pareto fronts for decision making
process (Lowest PPD and highest PPD)

This proves that NSDE has the best optimality solutions
at every weights of preference assignment in decision
making and has the best energy saving performance of
all the algorithms investigated We can also observed that
if occupants prioritize energy saving than thermal
comfort, NSDE can achieve even more saving at 8.2%
with a little compromise to thermal comfort with PPD of
12.6% (Fig. 10).

CONCLUSION

This study proposed a multi-objective optimization
approach based on Non-dominated Sorting Genetic
Algorithm-IT (NSGA-IT) and Differential Evolution (DE)
algorithms. The proposed NSDE incorporates the efficient
searching ability of DE and fast Pareto optimal solutions
sorting of NSGA-II m solving for multi-objective
optimization of HVAC system. The optimization is
performed using MATLAB and EnergyPlus in searching
for the optimal cooling temperature set points so that the
best trade-off solutions between energy consumption and
thermal comfort can be obtained.

The results of the optimization are compared with the
base algorithms using some standard performance metrics
which quantify the cardinality, space and diversity of the
obtained Pareto fronts. The proposed NSDE shows a
better convergence, diversity and distribution of Pareto
fronts compared to NSGA-IT and DE through evaluation
of Spacing metric (3) and Hyper-Volume (HV) metrics. As
for cardinality measure, although, NSGA-IT produces
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higher number of non-dominated soclutions in the
optimization run, the number of solutions found by NSDE
is still considerably high.

Decision making is carried out to compare the energy
efficiency of various algorithms using a single solution in
the Pareto curve. All optimization results are benchmarked
with a baseline scenario where no optimization is
mvolved. Optimization results show that the proposed
NSDE yields the highest energy saving in comparison to
the baseline scenario among the three algorithms
examined. The energy reduction range from 6.8-8.2%
depends on different weightage of preference assignment.
This study investigates optimization using a single day of
the hottest month. The proposed algorithm is expected to
result in more energy saving if it is applied to the HVAC
systems throughout the year.

RECOMMEDATIONS

It can be concluded that the proposed NSDE shows
potential for the solution of multi-objective optimization
m HVAC systems. It would be interesting as a future
research to investigate the energy performance of the
algorithm throughout the vear to see a more significant
energy saving potential. Future research will also be
dedicated to benchmark the energy and thermal comfort
profile of the proposed algorithm against the popular
swarm intelligence algorithms such as PSO and Ant
colony.
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