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Design and Simulation of Zeta Converter with ZVZ(CS Switching Technique
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Abstract: This study deals with the design of Zeta converter with ZVZCS switching technique for better
efficiency, lower total harmomic distortion factor and power factor correction. It requires simpler control circuitry
with fewer external components added with SEPIC converter. The basic operation of Zeta converter 1s explamed
and PT filter is used to reduce the harmonics. Like SEPIC DC/DC converter topology, the Zeta converter
topology also provides a positive output voltage from an mput voltage for boost and buck purposes. Inverse
of Cuk converter. ZVZCS switching techmque 1s used to reduce the THD. The performance of Zeta converter
n open loop and closed loop 1s obtamed using MATLAB Simulink. Zeta converter in closed loop shows better
performance than open loop. The performance of Zeta converter is compared by comparing both open loop and
closed loop. Zeta converter in closed loop has low THD value and power factor near to unity.

Key words: Zeta converter, THD (Total Harmonics Distortion), PFC (Power Factor Correction), ZVZCS (Zero
Voltage Zero Current Switching), MATLAB Simulink, performance

INTRODUCTION

The traditional technicue for AC-DC change utilizing
an uncontrolled rectifier with one capacitor 1s not utilized
as a part of because of issues, harmonic jection mto AC
control supply, poor power factor, high peak current, line
voltage distortion, expanded EMT, additional burden and
losses on lines. The advancement of power electronics of
solid-state switch mode amendment converters has
achieved an unmistakable level for enhancing power
quality issues in the terms Power-Factor Correction (PFC)
and reduced Total Harmonic Distortion (THD). The
typical DC-DC converter topology utilizes
converter, buck- converter, buck-boost converter, SEPIC

boost

and Cuk converter have their extraordinary constraints
when they were utilized for a dynamic PFC alongside
voltage regulation 1ssues (Hu and Gong, 2015
Govindaraju et al., 2017, Koutroulis and Blaabjerg, 2012;
Tao et al, 2008; Erickson and Maksimovie, 2007
Amudha et al., 2017a, b, Ramkumar ef al., 2017a, b,
Ramkumar, 2017).

In the proposed Zeta converter moderately new class
of DC-DC converter is utilized for dynamic PFC and
voltage direction. The value of being a segregated circuit,
can work as both step up voltage and step down voltage
of converter and having single stage (Govindaraju ef al.,
2017).

MATERIALS AND METHODS

Zeta converter: Power handling for both voltage
regulation and power factor comrection. The Zeta
converter plays out an operation of non-modifying
buck-boost similar that of a DC-DC SEPIC converter. But
an application which requires more power, then the
operation of a SEPIC converter is irregular mode. It 1s not
alluring in light of the fact that it brings about high Root
Mean Square (RMS) estimations of the currents creating
elevated amounts of worry in the thyristor. In this
proposed concept, a dynamic PFC is performed by
utilizing a DC-DC Zeta converter working in Continuous
Conduction Mode (CCM) where the furthermore
included inductor current will take after the sinusoidal
voltage waveform (Subramamean ef al., 2017; Prabha ef af .,
2017; Yuvara et al, 2017, Ravichandran et al, 2017;
Latha et af., 2017 Sivalkkumar et al., 2017; Krishnan et ol ,
2017, Kumar et al., 2016; Krishnan and Ramkumar, 2016)
(Fig. 1).

Principle of operation: Examining on DC-DC converter
Zeta waveforms it demonstrates that at equilibrium
inductors L, normal current equivalents Ty, and inductor 1.,
normal current equivalents output current IOUT, since,
the 1 DC current through the flying capacitor CFLY 1s
additionally same. Likewise there Stage-1[M,,].

The switch’s M, 1s in the ON state, so that, the
voltages of V,, and V|, are equivalent to V. In this day
and age at interval Diode D, is in OFF state with a switch
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Fig. 2: Zeta converter during MOSFET ON time
voltage equivalent to (V,+V,) input voltage and
output voltage. Inductor L, and L, get supply from
the voltage and their separate
currents I, and I, are which 1s expanded straight upto
proportion V. /1., and V,/L., individually. Correspondingly,

source Inductive

the switch current T, = T4, is expanded step by
step by a proportion of V. /L. where, L = L, LAL+L,).
Amid this period, the releasing of capacitor Cy, and
charging of Capacitor C; happens. Stage-2 [M, OFF]
(Fig. 2).

In this stage, the switch M, tums OFF and
the D, Dicde 1s in forward biased which starts to
conducting. The voltage across the inductor 1., and L.,
becomes equal to -V, and inductor L, and L, transfer
power to the Capacitor Cy, and the load simultaneously.
The current of in the L, and L, decreases now
gradually by a ratio of -V /L., and V/L.,. The current in the
diode Ty, = T;,+]1;; also gets decreases by a linearly by
ratio of -VL. At this period, the Voltage (V) across
switch M, is V; = V,+V,. Figure 3 shows the inductor
current waveforms of the Zeta converter for an one
cycle of operation in the steady state continues
mode (Krishnan and Ramkumar, 2016; Sudhakar and
Ramkumar, 2016, Sownthara and Ramkumar, 2016,
Ramkumar and Krishnan, 2014; Krishnan et al, 2014
Sriragavi et al., 2017, Emayavaramban and Amudha,
2006a, b) (Fig. 4).
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Fig. 3: Zeta converter waveforms
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Fig. 4: Zeta converter during MOSFET off time

Design of components of Zeta converter: A Zeta
converter plays out a non-altering buck-boost work. For
a Zeta converter working m CCM, the duty cycle is
characterized as:

D= Yo (M
\[IN +VOUT
D _ Iw _ Vour 2)
1-D IOUT VIN

Dy 000U 8t Vi and D, ocours at IN®=9

By Hu and Gong (2015) one of the initial phases in
outlining any PWM switching controller 1s to choose how

2765



J. Eng. Applied Sci., 14 (9): 2764-2774, 2019

much inductor ripple current, Al; (PP), to permit. An
excessive amount of builds EMI while too little may
bring about unsteady PWM operation. A dependable
guideline 1s to relegate an incentive for K between
0.2 and 0.4 of the normal mfo current (Ramkumar ef ai.,
2014a, b, 2016, Kavitha and Vivekanandan, 2015,
Kavitha ef al., 2017, Mancharan and Amudha, 2015a, b,
Vijayalakshmi et «l., 2014a, b, 2015, Bhavithira and
Amudha, 2014; Amudha, 2014).

In a perfect, firmly coupled inductor with every
inductor having a similar number of windings on a single
core, the coupling force the ripple current to be part
similarly between the 2 coupled inductors. In a genuine
coupled mductor, the mductors don’t have meet same
inductance value and the ripple current won’t be precisely
equivalent. In any case for a desired ripple current value,
the mductance required in a coupled inductor 1s assessed
to be half of what might be required if there were 2
separate 1nductors as appeared in Eq. 3 (Erickson and
Maksimovic, 2007):

1o YwxD 3)
2 Al x £,

L(PF) SW (min)

Lla_, =Llb =

To represent load transient, the coupled mductor’s
ummersion current rating should be no <1.2 times the
steady-state peak current in the high-side mductor as
processed in Eq. 4 (Subrameamian et af., 2017):

D | AL (4)

I = X
Lla (PK) QuT 1D 7

where, I, b (PK) = I,,+AI/2 which 1s <I, ja (PK). Like a
buck converter, the output of a Zeta converter has very
low ripple. Equation 5 processes the part of the output
ripple voltage that 13 expected exclusively to the
capacitance value:

Al (PP [at V, (max)] (5)

8 Cour X Lo miny

A

VCOUT (PP)

where, fippgy 18 the minmum switching frequency.
Equation 6 computes the component of the output ripple
voltage that 15 due solely to the output capacitor’s ESR
(Koutroulis and Blaabjerg, 2012):

AV (6)

ESR_Cour(PF)

ALy oppy (B8 Vi gy IX ESR

These 2 ripple-voltage components are phase shifted
and do not directly add together. The output capacitor

must have a RMS rating more prominent than the
capacitor RMS current registered m Eq. 7 taking after:

AIle(PF) [at VIN(max)] (7)

Lo amy = N

The input capacitor and the coupling capacitor
source and sink the same current levels but on opposite
switching cycles. Similar to a buck converter, the nput
capacitor and the coupling capacitor need the RMS
current rating (Eq. 8) (Prabha et al.,, 2017):

VOUT (8 )
Y,

I (mnin)

Ic,N (RME) — IcC (RME) — Loyr

Equation ¢ and 10 compute the component of the
output ripple voltage that is due solely to the capacitance
value of the respective capacitors:

AV — Dm@x > IOUT (9)
Fan P CIN x fSW(mm)
D,..xI
AV pp) = T?UT) (10)
C SWimin,

Equation 11 and 12 compute the component of the
output ripple voltage that is due solely to the ESR value
of the respective capacitors:

AVESRfCIN (PP) — (IIN(max) JrIOUT)><
; an
ESRCIN = AT ¢ ESRC]N
AVESRfCC (PP) — (IIN(max) JrIOUT)><
(12)

I
ESR,, = WEXESR,

rax

Again, the 2 ripple-voltage components are
phase-shifted and do not directly add together and for
low-ESR capacitors, the ESR component can again be
1gnored. A typical ripple value is <0.05 times the nput
voltage for the input capacitor and <0.02 times the output
voltage for the coupling capacitor (Balachander and
Ponnusamy, 2012a, b, Balachander et al, 2012a, b;
Balachander, 2012; Kuppusamy and Balachander, 2012;
Ramkumar et af., 2018; Balachander and Amudha,
2017a, by, Sriragavi et al., 2017, Amudha et al., 2017a, b,
2012; Motapon et al., 201 4; Kochcha and Sujitjorn, 2010;
Singh and Chaturvedi, 2008).
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Fig. 5: Proposed Zeta converter

Converters operating principles of the proposed:
Figure 3 demonstrates the circuit design of the proposed
converter which comprises of two dynamic switch S,, one
coupled inductor, 3 Diodes D,~D, and 3 Capacitor C,~Cs.
The coupled inductor is displayed as a charging inductor
L esseniial spillage inducior Ly, secondary leakage
inductor Ly, (Fig. 5).

All parts are perfect. The On-state resistance RDS
{ON) of the dynamic switches, the forward voltage
drop of the diodes and the comparable arrangement
resistance (ESR) of the coupled-inductor and output
capacitors are overlooked the turns proportion n of
the coupled inductor T, winding is equivalent to N/N ,
Figure 4 demonstrates some run of the mill waveforms
amid one exchanging period in Constant Conduction
Mode (CCM) operation. The working standard and
the 5 working modes are portrayed as takes after
{(Vijayalakshmi ef af., 20144, b; Amudha and Rajan, 2012;
Amudha and Christopher, 2012; Chiistopher and
Christopher, 2012; Amudha and Rajan, 2013, 2014;
Balachander, 2017; Balachander and Amudha, 2017a, b;
Sangeetha and Balachander, 2016; Balachander and
Vijayakumar, 2013a-d).

CCM operation

Mode 1 [t, t;]: Inthis interval the Capacitor C, get vitality
energy from the secondary leakage inductor L,,. The
current way is appeared in Fig. 6a; Switch S, and Diodes
D, are leading. The source Voltage V,, is connected on
charging inductor L, and essential spillage inductor Ly,
the current i, is diminished in the meantime, Lm
additionally discharges its vitality to the optional twisting
and also charges the Capacitor C, alongside the lessening
in vitality equation:

im {ty= iDS(t) = iLkl {t)

di () _ V.
diyy, (B — V¥
dt L

kl

Iy ®) =1, (O, (B)

Mode 2 [t,, t,]: During this interval, source vitality vinis
associated in arrangement with C;, C,, optional winding N,
and L, to charge output capacitor C, and load R in the
meantime, polarizing inductor L, additionally gets vitality
from V. The way of current current is appeared in Fig. 6b
as outlined, Switch S, remains on and just Diode D,is in
conduction. The i, iy and iy; have been expanding in
light of the fact that the V, is intersection Ly, L, and
esgential winding N;; L, and L, are putting away
vitality from V;, and in addition, V, is additionally in
arrangement with N, of coupled inductor T, and
Capacitors C; and C, have been releasing their vitality to
Capacitor C;and load R that prompts to increments in i,
iy, lp; and ip,. This mode closes att =t, at which
turn S, ig off (Shaik and Babu, 2012; Martins et «f.,
1996; Tse, 2003; Singh et al., 2008; Marting and De Abreu,
1993; Garcia etr af, 2003; Lascu ef al, 2005;
Anonymous, 2007):

i (0 =iy, ©ni, (D)
dia® _ Vi

in

& o | (14)
1 (D) = ipg (1) = i, O+, (1)
dip,; (0 S diD3(t) w2 )V, Vo + Ve,

ct dt Lk2

Mode 3 [, t;]: During this move interval, C; is being
charged from auxiliary spillage inductor L, when turn S,
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Fig. 6: During CCM operation, current flowing path in 5 modes operation: a) Mode 1; b) Moede 2; ¢) Mode 3; d) Mode
4 and e) Mode 5
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is off. The present current way is appeared in Fig. 6 and M, | G | L,
the Diodes D, and D, are directing. The vitality put away Load
mn spillage nductor L,; 1s coursing through Diode D, and AC L p G Cs
the Capacitor C, 1s charged in a split second when 3, off.
Additionally, the L, keeps an indistinguishable current
bearing from in the past mode. The auxiliary spillage Diode rectifier
mductor current 1, 1s beng declined by 1,,,,. Current 1,,,
when the expanding i, approaches the diminishing i ,,, Fig. 7: Open loop Zeta converter
this mode closes at t = t,. Once when the current i, g 15
drops to zero, this mode ends at t = t.: = 1‘5’i_
E
L, () =ipg () =1y, (1) Q ig ¥ ) i
di () V. 062 064 066 068 07 072 074 076
—dt = E (1 5) . . Time (msec)
di () V.-V Fig. 8 AC input voltage
dt Ly , @
. . . %1
1, (0 =1, (-, (1) Sol
1
Mode 4 [t;, t,]: In this move interim, the vitality put away 40 ®)
in charging inductor L.m is discharged all the while to C, K 28: ] ] : . = =
and C,. The present stream way is appeared in Fig. 6d 20/ = e ; e
what’s more, the Diodes D, and D, are leading. As spillage 0.2375 0.238 0.2385 0.239 0.2395 024
vitality still courses through Diede D, and keeps on Time (msec)
charging Capacitor C,, currents i, and iy, are relentlessly  Fig. 9: Switching pulse and V, for M,
being dimimshed through T, and D,, the L, 1s conveying 10
1ts vitality for charging Capacitor C,. The vitality put away 5> | = i
i Capacitors C; 1s released always to the heap R. The ER-X3
voltage crosswise over S, 1s the same as in the earlier g § 0 ; i
mode. Current 1, 18 expanding, yet, 1 and 1 are 0 02 0406 08 1 12 14 16 18 2

diminishing, yet. This mode closes when current i, Time (m sec)

gets to be distinctly zero at t = t, (Singh ef al., 2015; Fig. 10: Output voltage
Chen et al, 2013, Vuthchhay and Bunlaksananusorm,

15 e - e——
2008; Dhali et al., 2012; Wei and Batarseh, 1998). E-. 2.0l
S 205
RESULTS AND DISCUSSION o= 0 i i

0 02 04 0608 1 1214 16 18 2
Conventional open loop Zeta converter with RL load: The Time (sec)
significance of recreation is evident for the preparatory  Fig. 11: Output power

outline design of any system. System conduct and

iy
[$2)

execution can be anticipated with the assistance of the

=
o

reproduction. To confum and examine the outline and

DC output
current (A)

execution of the preparatory stage, a re-enactment 5/ )
investigation of Zeta converter in open loop is perform o i i
med for info DC voltage of 15 V at 50 Hz and output DC 0 02 04 06 08 1 12 14 16 18 2
Voltage of 8.5 V and 14 W output control rating with an Time (sec)
exchanging recurrence of 10kHzwith RT. load (Ramkumar, Fig. 12: Output current
2017).

Power circuit of Zeta converter with open loop is shown in Fig. 8-10, respectively, power factor for open

shown mn Fig. 5. AC mput voltage 13 shown m Fig. 6. loop Zeta converter is shown in Fig. 11. Total harmonic
Switching pulse and Vds for MOSFET 1s shown m Fig. 7. distortion is shown in Fig. 12 and 13. For conventional
Output voltage and output current and output power are circuit THD value 1s very high (Sivakumar efal., 2017).
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Fig. 13: FI'T analysis for open loop Zeta converter
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Fig. 14: Input voltage to the Zeta converter
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Fig. 15:FFT analysis for open loop Zeta converter with
disturbance
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Fig. 16: Proposed closed loop Zeta converter with RT. load

Conventional open loop Zeta converter with disturbance
in the input side: In the circuit of conventional open loop

[P analyet Fundamental (50 Hz) = 84.17,
THD = 9.85%
70
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Fig 17 FFT analysis for closed loop Zeta converter
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Fig. 18: Input voltages

Zeta converter, a step disturbance 13 given in the mnput
side. Input voltage, output voltage, output current and
output voltage of the circuit is shown in Fig. 14-17,
respectively. Total harmonic distortion is shown in
Fig. 18

Proposed closed loop Zeta converter with RL load: The
closed loop Zeta converter for PFC with RL load Tt uses
a very simple control feedback which only requires output
voltage sensing (Subramamnian et af., 2017).

At the input AC side a bridge rectifier is used for a
PFC using an capacitor and inductor combination. A small
value of V,, compared to the reference value and resulting
value, passes through the Proportional Integral (PI)
controller generates the PWM output and which has been
used for switching the MOSFET (M1). This kind of
inherent PFC characteristics with constant duty ratio and
switching frequency, offering an attractive solution for
lower power applications (Erickson and Maksimovic,
2007).

The output voltage direction 15 given by the
nput circle as appeared n Fig. 19 where the output
detected Voltage V| is contrasted and a reference V
current and the blunder is enhanced in a corresponding
essential (PI) controller which 1s contrasted and a
saw-tooth slope V, in this mamer giving the beat to
power switch. Subsequently, this circuit is controlled
by the distinction in the on time interim and the
steady exchanging recurrence f, (Yuvaraj et al., 2017,
Prabha et ai., 2017).
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Fig. 22: Hardware setup

Input voltage, output voltage and output current are
appeared m Fig. 20-22 individually. Control figure for
closed loop circle Zeta converter is appeared in Fig. 22
(Tao et al., 2008)

Proposed closed loop Zeta converter with disturbance
in the input side: Tn the circuit of closed loop Zeta
converter, a step disturbance is given in the input side.
Input voltage, output voltage and output current for
the cirouit 13 shown m Fig. 20-22. Total harmome

Table 1: Closed loop Zeta converter

Input voltage Output voltage Qutput power Efficiency (%)
12 4.30 3.80 92.0

13 7.60 11.40 93.1

14 8.10 13.13 94.0

15 8.45 14.29 94.5
Table 2: Open loop Zeta converter

Tnput voltage Output voltage Qutput power Efficiency (%6}
12 6.50 8.59 91.0

13 7.10 10.28 92.3

14 7.78 12.10 92.6

15 8.50 14.08 93.1

distortion is shown in Fig. 17 and 19 (Kochcha and
Sujitjorn, 2010; Singh and Chaturvedi, 2008; Shaik and
Babu, 2012; Martins et al., 1996; Tse, 2003; Smgh ef af.,
2008; Martins and De Abreu, 1993; Garcia et al., 2003;
Lascu et al., 2005, Anonymous, 2007; Singh et al., 2015;
Chen et al, 2013; Vuthchhay and Bunlaksananusorn,
2008; Dhali et al., 2012, Wei and Batarseh, 1998).

Experimental results: Hardware results are shown in
the following section for proposed method and an
experimental prototype model of the PWM Zeta converter
has been constructed. The hardware setup with detailed
specifications is shown in Fig. 23. TR2110 is used as the
dnver circuit. PIC16F84A 13 used as the processor. A
Pi-filter 1s added to avoid control error caused by the
switch noise.

Performance tabulation: Table 1 and 2 1s discuss i the
performance tabulation

CONCULSION

The performance of Zeta converter is compared by
comparing converter in both open loop and m closed
loop. Zeta converter in closed loop has low THD value
and power factor near to unity than open loop system.
This study clarifies the pulse width regulated Zeta
converter. In this study, design and simulation of Zeta
converter in open loop and closed loop are taken for
9.2V, 15 W output. Both the circuits are recreated with RT.
load. The closed loop Zeta converter has an efficiency of
96.5%. The THD of the closed loop Zeta converter is
good comparing to open loop. The power factor level is
very near to unity. The closed loop Zeta converter
proposed circuit has low THD. It permits remedy of
current working mn discontinuous mode and in this way it
is more sufficient for the application with high power gain.
The efficiency of Zeta in open loop and closed loop is
discussed m this study, respectively. Thus, Zeta
conwverter i closed loop with ZVZCS gives better
performance comparing it with to previous methods.
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