Tournal of Engineering and Applied Sciences 14 (8): 2716-2728, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Task Scheduling for Mobile Cloud Computing Using Multi-Objective
EBCO-TS Algorithm

C. Arun and K. Prabu
Department of Computer Science, Sudharsan College of Arts and Science,
Pudukkottal, Tamil Nadu, India

Abstract: Based on certain defects encountered 1 mobile devices, like insufficient storage space, limited battery
energy, mobile applications faces numerous confronts in energy management, mobility management, security
1ssues and so on. This leads to the emergence of the new computing paradigm known as Mobile Cloud
Computing (MCC). This kind of computation helps in off loading certain tasks to the nearby cloud/cloudlets
for execution this makes task scheduling more crucial mutually at both the mobile cloud and the mobile devices.
In this research, this crisis have been modelled as a problem of energy consumption optimization problem while
considering priority based scheduling, load balancing and reduced power consumption and further solve it by
means of Enhanced Bee Colony Optimization based Task Scheduling [EBCO-TS]. A series of iterations were
performed to evaluate the recital of the algorithm efficiency and the outcomes are extremely superior and
acceptable in contrast to existing methods.

Key words: Energy-efficient, mobile applications, mobile cloud computing, task scheduling, enhanced bee

colony optimization based task scheduling algorithm, mobile devices

INTRODUCTION

Mobile Cloud Computing (MCC) integrates cloud
computing and wireless communication and attempts to
enhance the mobile application’s performance hosted at
mobile devices like smart phones, PDA’s which has been
developed rapidly mn past few decades. Owing to certain
mherent mobile device’s defect such as limited battery
energy, low CPU speed insufficient storage space and
inadequate sensing capacities (Conti et al., 2011) mobile
applications has numerous confronts 1 energy
management, mobility management, security issues and
s0 on. In order to provide an efficient outcome, MCC

succeeds in off loading certain computations have to be
performed over certain powerful cloud nodes for instance,
cloudlet-which offers higher advantages over
conventional mobile services (Kumar and Lu, 2010). With
respect to some resource or energy intensive mobile
applications hosted in mobile devices, oftloading a part to
remote cloud saves energy utilization extremely for the
devices. Mobile devices send the task to cloud and cloud
will execute the job and it will send back the result to
corresponding user (Arun and Prabu, 2017a, b) in Fig. 1.
Numerous mobile applications like health care, games and
e-Commerce are generated in mobile cloud computing
concept having it as base (Arun and Prabu, 2017a, b).

Push notification

(a8)
Applications
. e-Commerce
Devices
. Gaming
= S
Medical Network connectivity

=
— Automobile (((-)))
S
Business ‘
@ Entertainment
Productivity
»-

Custom App.

Fig. 1: Two tier architecture of mobile cloud computing

Cloud and point Ml

Anﬁics

Corresponding Author: C. Arun, Department of Computer Science, Sudharsan College of Arts and Science, Pudukkottai,

Tamil Nadu, India

2716

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

-

Wireless AP

IEE U

Mobile decw ces

?4

Cloudlet

p————
/,——'—‘" \k

i\"ﬁb
_ amazon
.’ ' WeDsenvices” o spe
Distant cloud

servesin internet

Fig. 2: Offloading model in three tier architecture of mobile cloud computing

Nonetheless, offloading the task is not efficient
always as it 13 mfluenced by numerous factors like
energy consumption of mobile devices during task
offloading, wireless channel transmission bandwidth,
energy consumption during executing the task at cloud
and so on Concurrently the mobile have to
communicate to the cloud for every time it will take more
reduce that

mobile-cloudlet-cloud

energy for data transmission, so as

energy the new 3 ter
architecture [5] is utilized to bring the cloud nearby
to the user. The cloudlet 13 capable of doing the same
thing which is done by cloud in Fig. 2. For example, the
mherent attribute of mobile devices are its mobality which
stimulates the users to transfer the Access Point (AP)
while user travel from one locality to another (Hung et al.,
2014). This sort of dynamicity leads the wireless
connectivity to be unavailable for sometimes. This leads
to the elongated waiting time than the usual in addition it
leads to refusal of response time for emergency task
cases. Therefore, energy consumption is a significant
factor which influences the offloading strategy. For
instance, if energy consumption due to task offloading at
mobile devices and data transmission through wireless
channel seems to be huge than the local task execution
devoid of offloading (Zhao et al., 2013) then there 1s no
use of executing the task remotely, 1e., saving power
utilization for mobile devices. Based on numerous states
of the art, task scheduling and task offloading
encountered in MCC is a multi-objective optimization
problem (e.g., execution time, cost, energy), measuring
that certain constraints are execution deadline.
For instance for an emergency task, total execution
should not exceed wuser’s specific deadline.
Moreover, 1t 1s assumed that the tasks acquired from
applications are independent which reduces the process
of uploading but does not hold MCC environment. For
mstance, task acquired from application partitioming

time

generally needs certain interactions like data
transmission between each other, so as to perform their
functionality.

In this research, the task scheduling model was
anticipated as a multi-objective optimization crisis with
relationship dependency amongst tasks. In specific, every
task m the application can either be executed locally over
mobile devices or upleaded to the mobile cloud.
Subsequently, task that needs continuous interaction
with the mobile users are needed to be performed at
mobile device, task that consume huge energy and tasks
that needs complicated computation are uploaded to the

mobile cloud (Wang e al., 2017).

Literature review: In this segment, a review over the
current worls about task scheduling crisis in MCC is
discussed. In general, to speed up the application
execution time, power consumption or to save storage
space, the mobile applications are divided into numerous
pieces, termed as tasks in which the tasks are partially
scheduled on the execution node of the mobile cloud. The
optimization target significantly falls mto 2 kinds, either
reducing the overall execution time known as makespan or
reducing the energy comsumption (Lin et af., 2015;
Guo et al, 2016; Tsai et al,, 2013; Pham et ai., 2006;
Beloglazov et al., 2012). As the task scheduling crisis is
NP-hard (Wang et al., 2017) m which most heuristic
methods adopts to solve this crisis which cannot assure
to find the optimal outcome but 1t can acquire the optimal
solution.

Chen et al. (2015) anticipated a task scheduling
method to guarantee enhanced accessibility to cloud
network and to rush up processing time m MCC,
considering certain constraints like cost and network
bandwidth for cloud utilization. Moreover, the methods
on how to acquire certain metrics like earliest finishing
time or earliest starting time of tasks are not offered in

2717

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

which the algorithm complexity is unknown. Some of
the researches (Wu et al., 2013, Razaque et al., 2016;
Sindhu, 2015) gives more attention to resources in which
the nodes i MCC can schedule and process the tasks to
the MCC nodes by combining it and the information
amount, types of request resource tasks recuired for
execution m order to obtain the more swtable scheduling
strategy. Tsai ef al. (2013) anticipated the task scheduling
procedure based on Quality of Service (QoS) metrics, like
average execution, load balancing and make span. Tnitially
i accordance to (oS, they compute the priority tasks and
then tasks with greater priority are scheduled to the nodes
first. Hu er al. (2010) anticipated an effectual task
scheduling procedure for allocating workflow based on
network bandwidth availability. Nonetheless,
mvestigators adopts Min-Min and Min-Max algorithm to
adopt tasks to every nodes in cloud based on non-linear
programming model.

For tasks acquired from application partitioning,
certamn tasks are suitable for uploading the MCC or some
are not suitable. Selecting the tasks to guarantee and
upload the task-precedence requirements and application
completion time constramts are fulfilled has acquired huge
attention m the past. Ajit and Vidya (2013) describe a
strategy which initiated from minimal-delay scheduling
strategy and then it performs energy minimization by
applying frequency scaling or dynamic voltage
technique.

Sindhu (2015) deliberated resource scheduling policy
and energy-efficient dynamic offloading to diminish the
energy consumption and lessen application execution
time, to achieve energy-efficient computation offloading
over hard constraint for completion time of
application.

The investigators anticipated a Genetic algorithm and
a greedy algorithm with an adaptive selection of
appropriate mutation and crossover operations to
with
heterogeneous virtual machines or precedence constrant.
There exists enormous works which dealt with the
scheduling and task allocation for real-time works in cloud
environment as by Panwar and Mallick (2015), Ti ef al.,
(2011), Mondal ef al (2012). A differential evolution
algorithm to schedule tasks set to reduce make span and
total cost by integrating Taguchi approach within a

schedule and allocate the real time tasks

framework of differential evolution algorithm to provide
enhanced solution to the potential offspring.

Based on few reviews of literature, this research
spotlights on reducing the power consumption of mobile
devices locally, thus, fulfilling the application completion
time constramt and task-precedence requirements by
enhanced bee colony optimization for task scheduling. To

~

A Y
’
I

A Y

by
~
~
~
4

,

’

4

4

4

’

Fig. 3: Pictorial representation of task precedence
relationships

perform this optimization function, the mathematical
theoretical model and the enhanced bee colony
optimization for task scheduling algorithm to solve is
crisis is anticipated.

System model: Consider a mobile cloud computing
environment which preliminarily considers 2 parts: mobile
cloud and mobile users correspondingly. The mobile
cloud architecture 1s depicted in Fig. 2 in which the tasks
acquired from mobile users are uploaded to cloud through
the wireless access point. Therefore, AP offers radio
resources and communication support. The mobile cloud
performs admission control by momtoring the
availability of computing resources like memory,
storage and CPU of computing nodes, ie., Virtual
Machines (VIMs).

In general, mobile application comprises of task sets
1n various granularities, we represent the application by a
directed Task Graph, TG = (V, E) as in Fig. 2. Every node
“1"eV n G that specifies an edge and a task e (1, ;) that
specifies the precedence relationship amongst the tasks
“1" and “7” that 13 j cannot starts its execution until the
precedence of task i is completed. Therefore, in task graph
there exists only one ending node and starting node
correspondingly. The attention given to upload task
and scheduling the task has been explamned mn this
research.

A task “t” can be described as a 3-tuple t<= tid it
represents the application identification using numerical
values, workloads are specified by computation amount
when it is executed and Am specifies the data migration
between the tasks with precedence relationships as in
Fig. 3.

If certamn tasks in the application are involved in
uploading the execution, there exist 2 energy consumption
strategies at mobile devices. For instance, computational
consumption and mobile device needs to utilize energy in
executing application’s local tasks.

2718

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

Moreover, the mobile device requires more energy to
transmit the tasks remains to the MCC through the
wireless communication channels like 3G/4G, WIFI and so
on. This type of energy consumption i1z known as
communication consumption. However, if sum of 2 types
of consumption 1s greater than the consumption spent by
mobile devices while the complete application 1s locally
executed, thus, there is no point of view to upload tasks
to MCC. The energy consumption of mobile devices does
not incorporate energy consumption by mobile cloud.
For this cause, the MCC does not charge the mobile
users. If the costs exceeds over the user’s budget, the
user can avold choosing the uploading task to the mobile
cloud. Next section illustrates the details of energy
consumption and formulates the optimization
functionality.

Problem formulation: Assume, the application comprises
of “n” tasks. For every task, there exist 2 choices to
execute it, i.e., remotely or locally. Let ¢t be the variable to
indicate the execution strategy. If @t = 1, the task “t” will
be executed at the mobile device, if it is “0” otherwise.
Algorithm 1 contains the notations for task graph
precedence.

Algorithm 1; Notations for task graph precedence:

@t=> Variable for indicating
execution strategy

g ()= Cormputational task size

o> Processing speed

T!~»Task t execution time at mobile
E!»Energy consumed by mobile in
mobile execution

T¢ 2> Task t execution time at
cloud/cloudlet

E°=Energy consumed by mobile in
cloud/cloudlet execution
Xactiwe—?Power of mobile device during
execution

o> Processing speed of nodes at
cloudlets/cloud

¥;g.>Idle power

Kime? Transmitting power of mobile
device

pred (m)=*8et of immediate predecessor
asks of task t

RS=»Ready state for execution
TT=Termination time of the task
E=Energy utilization

A=rbandwidth

T Complete execution time
F-=The price of computation unit
provided by mobile clouds

It the task execution 1s performed locally, the execution
time is computed as follows in Eq. 1:

7 =50)

where, 3 (t)2computational task size o, >processing
speed. The energy consumption of mobile device is given
as in Bq. 2:

_ 5

E

E! X (2)

active
1

where, X_;.~2>power of mobile device during execution if
“t” 13 executed remotely, execution time can be computed
as in Bq. 3:

S(t
1e = S0 3
aE
where, ¢ processing speed of nodes at cloudlets/cloud.
The energy consumption of mobile device is given in
Eq. 4
S(t S(t
Etc = ()'xdle+ ()'Xtrans (4)
o A
Where:
Hig.~21dle power
Kiw~>transmitting power of mobile device

Whule the task 1s executed in cloud, the mobile device
remains in an idle state and 3{,, is used to compute the
mobile device energy consumption. Based on the
relationship between the tasks, assume that before
scheduling the task “t”, all the immediate task predecessor
must be completed before the execution for this cause, *“t”
requires the output results as mput parameters. To
calculate the complete execution time of application,
certain definitions are illustrated.

Def 1 (ready state): The ready state of the task “t” 1s
distinct as the primary starting time, whilst all the
immediate predecessor tasks have completed the
execution. Therefore, ready state of task “t” is executed
locally on mobile device. It 1s given in Eq. 5:

RS} = Max,, ., (T}, maxTT} &)

where, pred (m)=>set of immediate predecessor tasks
of task t, RS-ready state for execution. Time
consumption of input and output parameters are
ignored while transmission carried out amongst mobile
device and cloud. The parameters size is much smaller

2719

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

than the task itself and the 4G network greater power
and WiFi data transmission time
neglected. If “s” is executed locally, max {Tt', Tt,},
if “s” 18 scheduled to cloud for execution Similarly,
ready state of task “t” is executed remotely on cloud
and it is defined in Eq. &:

also makes

RS = max{TT™ maxTT} (6)
where, TT=>termmination time of the task.

Def 2 (Termination time): The termination time of task “t”
is given ag task “t” time which entirely completes the
execution. Thus, termination time of task “t” i1s executed
locally on mobile device and defined in Eq. 7:

TT = RS, +T! (7

Similarly, termination time of task “t” executed remotely on
cloud 1s defined in Eq. 8:

TT = RS +T¢ (8)

Besides, TT,™ represent the time when task “t” is

completely uploaded to the cloud wvia. wireless

connectivity. The definition is as follows in Eq. 9

Tttrans — maX{TTf, TTstfans}+ Sg) (9)

By these definitions, execution time of entire application
1s calculated as in Eq. 10:

T, =max {TT’, TT"} (10)

app

Assume that while 2 tasks are scheduled with
precedence relationships at the place,
communication energy consumption can be avoided. To
diminish the mobile device energy comsumption, the
only way 18 to off load complete application to cloud.
Nonetheless, there are 2 reasons to the mobile users
to follow this way. Initially,
requires frequent interactions with mobile users like
human face recognition which renders communication
energy consumptions and even degrade mobile
user’s quality of service as in Eg. 11. Secondly,
difference amongst cloud computing and other
computing resources like grid computing lies in cloud
computing and eamn its own profits. As a result,

same

some applications

mobile users enjoy computing convenience by
utilizing services offered by mobile cloud. In general,
the cost increases as sum of tasks wuploaded
increases.

F=min E (11)
where, E=Energy utilization

MATERIALS AND METHODS

Designs and scheduling algorithms: It leads to

NP-complete problem in case of finding optimal upload
decisions for task scheduling. Conversely, heuristic
intelligent algorithm is an approach to acquire an optimal
solution (Akbari et al, 2012). In this research, the
Enhanced Bee Colony Optimization for Task Scheduling
[EBCO-TS] is used to solve this crisis.

EBCO-TS 18 stochastic search techmques mspired by
the evolution principles and heredity and formally
described by Goldberg. It 13 a robust algorithm for
computing NP-hard global optimization mncorporating
scheduling problems. This algorithm works iteratively to
provide better solutions for huge search space. In this
research an EBCO based task scheduling to solve
optimization problem, of which the description outline of
the process is given in algorithm 2.

The anticipated replica reduces the load encountered
in cloud environment and improves the cloud performance
(Lietal, 2011). The anticipated model computes the entire
tasks execution time to optimize resource utilization. The
algorithm reduces the jobs waiting time in the chain of
cloud environment (Karaboga and Akay, 2009).

Algorithm 2; Fitness value computation (Employer bee

and scout bee):

Step 1: Parameter initialization

Step 2: Emplovee bee agent construction using EBCO-TS

Step 3: Local search and fitness evaluation of bee agent

Step 4:1=0

Step 5: Repeat

Step6: N=0

Step 7: Repeat

a. Near Neighbourhood—»cloudlet/cloud search

b Far Neighbourhood=»/cloudlet/cloud search

¢. Fitness value computation

d Scout Bee Agent assignment to allocate Bee Agent based on mutual
probabilities

e Scout Bee Agent

I. Neighbourhood cloud migration

f. Find best Recruit Bee Agent, replacement of Onlooker Bee Agent
Tt fitness (Best Recriit Bee Agent) <fitness (Onlooker Bee Agent)

g. Find practical Recruit Bee agent, replace with Best Solution,
Tt fitness (Best Feasible Onlooker Bee Agent) <fitness (Best)

h. N=N+tL;

Step 8: Until (N = Employee Bee Agent)

Step 9: =141,

Step 10: Until (I = Max_iteration)

2720

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

Algorithm 3; Fitness values computation (Employee

forager bee agent and onlooker bee agent):

Step 1: Parameter initialization

Step 2: n#total employee bee agents, M+etatal onlocker bee agents,

I&Maximum Iteration No, ¢ #=Penalty control parameter
Migration-length¢Length of neighbourhood cloud/cloudlet
Step 3: Tnitialize ermployee bee agent with EBCO-TS Algorithim
Step 4: Evahiate emplovee bee agents
Minimization based fitness function
Step 5: Repeat
Cycle=1
1. No. of Bee Agents =0, 1 (probability)
. For every employee bee agents

a. Apply searching strategy of near neighbourhood cloud/cloudlet
If fitness (Near neighbour)<fitness (Employ ee forager bee agent) then
Employee forager bee agents = Near_Neighb our

b. Apply search strategy far neighbourhood cloud/cloudlets
If fitness (Far_neighbour)<fitness (Employee forager bee agent) Then

[Calculate probabilities based on fitness.

e Tdentify possible bee agents (onlooker bee agents) that sent to food
patches discovered by employee bee agents in accordance to earlier
determined probabilities

f. N; =Number onlooker bee agents send to the i® cloud/cloudlet
Onlooker bee agent of ith solution = migration of neighbourhood
clouds/cloudlets

h. Determine the fitness significance of each onlodker bee agent, If overall

fitness value and bee agents stability (Onlooker bee agents) is

enhanced than suitability factor of employ ee forager bee agent solution
then replace with onlooker bee agents solution

Best solution

Scout bee agents

Bee agents initialization using EBCO-TS Algorithm

Total number of worst employee bee agents in total population is

compared with bee agent solutions

[If current. bee agent solution is enhanced than employ ee forager agent
solution then replace the recent sohition with scout bee agent solution.
Else consider employee bee agent solution is reassigned for next round
devoid of making further change.

7. Cycle =Cycletl;

8. Until (Cycle = Total _iteration)

TR oW

Algorithm 4; Optimization using local search:

Step 1: Let ;=@ ¥ j =1, ..., m (S; is task given to the agent j)

Step 2: Build separate onlooker bee agents for each task Li., firstly,

Li=(, .., m ¥

Step 3: Consider random order of tasks, T=1

Step 4: While (no task have been allotted) repeat

a. Select any onlooker bee agent randomly from Li by mutual probability
function that rely on bee agent typj and required resource for task i

b. The probability of minimal cost of onlooker bee agent is selected.
Assign current task with onlooker bee agent
c. LetI=i+1

Algorithm 5; Neighbourhood cloud/cloudlets:

Step 1: Let S ={i|i? {1,...,n}} , k=1 Migration to neighbourhood =3

Step 2: If' S = @3 else end; otherwise i is ejected

Step 3: Let j* is onlooker agent j which minimizes,

Step 4: Assign iy to j*, output, calculate fitness

Step 5: If Fitness<fitness (migration to neighbourhood) the migration to
neighbourhood

Step 6: k: k+1, retum to step 2

Step 7: Output migration to neighb ourhood

In the anticipated EBCO-TS algorithm balances load
amongst tasks in cloud environment. The algorithm was

Initialize the parameters for all the VM’s

v

Identify the neighbourhood cloud randomly

No

Has the bee
completed it’s
seaarch?

Update the available resource

Is the solution
optimal?
Yes

Store the current optimal solution and update
pheromones value in the table

¥

| Output best possible solution

v
| Stop \

Fig. 4: Flow chart representation for resource allocation
strategy based on EBCO-TS algorithm

emerged from bees characteristics that how they acquire
food from nest. The specific objective of this research
incorporates: the algorithm is better to balances load
amongst dependent jobs 1n cloud
environment. Figure 4 shows the flow representation of
the proposed work. These are numerous steps to
overcome the crisis termed cloud load balancing. The
procedure 1s as follows:

computing

¢+ Input parameters of bee’s optimization method
should be initialized

» Available VMs are measured over cloud environment

» Avalable VM list 1s loaded mto runtime memory with
CPU and RAM

¢ The list of available resource is revised with available
VM list

» Resource capacity 1s measured for every resource

2721

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

¢ TLoad task list to runtime memory

¢ Calculate tasks length in earliest finish time to
compute each mdividual task length, subdivide the
task and create subtask “17

¢ Calculate probability value of available VIM

¢+ Compare resource usage of available VMs and task
length with probability value

* Evaluate VM Load m resource usage percentage form

¢ Calculate failure rate of VMs to determine
trustworthy VMs to allocate current task

* Shortlist the available VMs which processes the
given task

* Assign task “t” to resource with highest probability
and minimum response time

* Update resource list with current values of VM load

* Update pheromone value for every available resource

¢ Repeat initial steps

RESULTS AND DISCUSSION

Simulation and results analysis: This study presents the
experimentation through numerical
compute the efficiency and effectiveness of the proposed
approach.

simulations to

Experiment setup: The experiment was performed on the
laptop with 8192 M of RAM, 2.5 GHz Intel CPU, Microsoft
Window 7 OS. The algorithms are executed in cloud sim
environment and computation carried out in diverse
parameter settings, like energy utilization, task scheduling
and load balancing (Som and Kalra, 2014) m EBCO-TS.
Task graph structure was imtialized owing to random
simulation. For each task, the workload is generated
randomly and data transmitted into subsequent tasks.

In the experiment, once the parameters are initialized
for every task, decision to upload it or not are defimte. To
abridge the system model and eliminate the waiting time
of tasks in the uploading process, assume that every task
must be uploaded to mobile cloud does not require
waiting time (Dasgupta et al., 2013). Occasionally, it 1s
essential for enormous calculation through offline
method.

While constructing task graph based on real-world
application, task graph generally has specific structure,
task dependency and number of node relationship. For
instance, perform first experimental set based on task
graph to verify influence of probability of occurrence and
rate of convergence. Figure 5, there are roughly 10 tasks
in mobile application, every numerical value over the node
represents computational data size of task (Mondal et al.,
2012) and every numerical value on edge sigmfies the data
migration among 2 tasks with dependency relationships.

0.5000 7

8.0000 {2 NGA

7.5000 {® BGA

7.0000

6.5000 1

6.0000

5.5000

. 5.0000 4

£ 45000 4

S 4.0000

3.5000 1

3.0000 4

2.5000 4

2.0000

1.5000 1

1.0000

0.5000

R e A
S £ S S 2 EgE g g¢ g ¢
& a I /5 ° 5 & & S = a a I
(=1 < < (=] < = < = — — — — —

Variables

Fig. 5: Representation of task allocation using virtual
machine vs. Makespan iterations

The workload of every task and data transmission
amongst 2 tasks with dependency relationships are
produced randomly.

First, the influence of probability over malkespan for
finding the optimal solution using EBCO-TS is studied.
Based on the parameter settings, first set the probability
to default value and Maximurm Iteration (MI) to 100. The
algorithm runs for 50 times under each probabilistic
determination to obtain average makespan and results are
depicted in Fig. 5.

Figure 6 shows the graphical representation of task
allocation in VM and total mumber of tasks for
experimental iterations. This investigation considers four
existing algorithms such as FCFS, Min-Min and PSO
along with the proposed EBCO-TS. VM allocates the task
appropriately and the proposed method shows superior
utilization of resources when compared to the existing
methods. Task scheduling is related to the makespan
utilization, 1.e., ready state and termination time of task.
The makespan time of the proposed method is 4.1 sec
while the existing methods shows 8.125 sec. Because of
this, allocating more number of tasks to the proposed
algorithm 1s higher and efficient. The task scheduled for
the proposed method is 50, 52, 54, 56, 58 and 60. An
average of additional 2 tasks was scheduled to the
proposed EBCO-TS method.

Figure 7 and 8 show the pictorial representation of
nmumber of jobs executed in the cloudlet/cloud
environment with respective to the execution time. The
proposed EBCO-TS shows better trade-off when
compared to the existing research. Figure 9 the makespan
time utilization is computed for the existing algorithms
such as FCFS, Min-Min and PSO with the proposed
EBCO-TS method. The stating time and the termination
time of the proposed method 1s performed faster asthe

2722

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

|| ./xgraph

==)E

|Close ||Hdcpy||Abou‘L|
Mo.of Tasks

X Graph

E0.0000:
S9.0000

Tt 1=t IR0
P=00E

S2.0000

EBCO-TSH

S57.0000

S6.0000

S5.0000

S<.0000;

53.0000

Sz.0000

S51.0000:

S50.0000

<13.0000

¥

<8.0000

<7.0000

<6.0000

<5.0000

<<4.0000

<3.0000

1.0000 Z.0000 3.0000

<.0000

Wirtual kMachines

5.0000 B.0O000

Fig. 6: Graphical representation of task allocation using virtual machime vs. No. of tasks

1.6000 7
1.5000
1.4000
1.3000 1
1.2000
1.1000
1.0000 9
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000 1
0.0000

Values

0.4000
0.6000+
0.8000
. 24000
< 2.6000
“ 2.8000
3.0000+
3.20004
3.4000+
3.6000
3.8000:
4.0000
4.2000
4.4000
4.6000-

—_——— =

< 2.2000

&
=
o

Fig. 7: Graphic all representation of number of jobs
running in mobile cloud environment

5.0000 SO . B
45000 1
4.0000 7
3.5000
, 3.0000
=2 25000 4
S
2.0000
1.5000
1.0000
0.5000 1
0.0000 T

7.0000———

7.5000+
8.0000

6.0000—T

0.5001
1.0000
1.5000
2.0000
2.5000:
3.0000:
3.5000:
4.0000
< 4.5000:
2 5.0000
5.5000+
6.5000+
8.5000]
9.00004——T
9.5000-

=2

Fig. 8:Execution time for the proposed EBCO-TS
algorithm

power consumption of executing a task will be
reduced efficiently. The makespan time utilization of
the proposed method 15 500, 620, 540, 610, 595, 750,
900 sec based on the task allocated. In which 1t 1s
lesser than that of the existing methods like FCFS,
Min-Min, PSO.

The makespan increases when the probability either
decreases or increases from 0.02 that 1s the total time of
execution of application reaches mimmum (Mondal ef af.,
2012) while the algorithm obtains best solution, 1e.,
attaining Minimum Energy Consumption (MEC) with
probability being 0.02. A striking conclusion is that the
average makespan almost increases by 68%, when the
probability 15 set to 0.1 and 0.2, comrespondmngly.
Consequently, it is vital to set suitable probability to
solve task scheduling crisis. There are no obvious
correlations amongst MEC and iterations when
probability varies. When probability falls from 0.02-0.1,
average iterations to attain MEC are the same. Therefore,
achieving best solution, i.e, minimum energy
consumption, typically takes more iterations than
ordinary situations. Figure 10 explains the execution time
of the proposed EBCO-TS algorithm with the existing
research.

The next set of experiments was conducted to verify
the probability effect on makespan when attaining MEC
as in Fig. 11. The maximum 1iteration remains 100. It 1s
easier way to attain mimmum energy consumption during
scheduling (Liu and Wang, 2012) compared to other
probability settings. Average make span enlarged by 10%
when probability is set to 0.4 and 0.7, correspondingly. Tt
is also decisive to select appropriate probability to resolve
task scheduling problem m this research.

2723

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

g

/xgraph

EE

|Close|[Hdcpy][About |
Makespan Time x 103
2.3000

X Graph

FCFSIIT

2.2000
2.1000

NMIN-MINEL
FEOL

y EBCO-TSI}

2.0000

1.9000
1.8000

1.7000

1.6000

1.5000

1.4000

1.3000
1.2000

1.1000
1.0000

0.9000

0.8000
0.7000

0.6000

0.5000

2.0000

Virtual machines

6.0000

Fig. 9: Graphical representation of virtual machine time vs. Makespan iterations

44.0000 -
42.0000

40.0000
38.0000
36.0000
34.0000 T
32.0000 7
30.0000]
28.0000 |
26.0000 |
24.0000 |
22.0000 |
20.0000 |
18.0000 |
16.0000 |
14.0000 |
12.0000 _|
10.0000 |
8.0000 |
6.0000
4.0000
2.0000

Values

I

0.5000
1.0000
1.5000 -
2.0000
2.5000 4
3.0000
3.5000
4.0000
4.5000

Variables

5.0000

6.00001

6.5000

7.0000-_,

7.5000

8.0000 I

8.5000+

9.0000 _I

5.5000+
9.5000 =

Fig. 10: Representation of total execution time for running a task

Figure 12 and 13, shows the graphical representation
of task scheduled based on the percentage of resource
utilization and the load balancing strategy while allocating
jobs to the cloud/cloudlets. In final experimentation
set, generate task graph randomly and number of tasks
ranging from 10-12, to verify the effects of tasks on the

algorithm running time, when attaining MEC. It 13 obvious
that the amount of tasks have considerable influence over
time to obtain best solution. For instance while number of
tasks raises from 10-12, corresponding average makespan
also mereased by 150%. For this reason, execution time of
tasks at mobile device or cloud size mcreases, along

2724

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

23.0000 7
22.0000 1 M M
21.0000 1
20.0000 1
19.0000 1
18.0000 1
17.0000 1
16.0000 1
15.0000 1
14.00004 7
13.0000
£ 12.0000-
S 11.0000 - -
10.0000 [|
9.0000 1
8.0000 M M - -
7.0000
6.0000
5.0000
4.0000
3.0000
2.0000
[HAMNAA ARRAMA
0.0000 T T T T T T T T
0.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000 50.0000
Variables
Fig. 11: Representation of task scheduled based on execution time
100.0000 - 1.0000)
950000 - 0.9500 4 ==~ = Load balancing /,/
90.0000 - 0.9000 1 No. task allocated e
85.0000 0.8500 ol
80.0000 - 0.8000 e
75.0000 0.7500 Pie
70.0000 0.7000 e
65.0000 0.6500 el
60.0000 0.6000 e
% 55.0000 - 2 0.5500 - Pie
= 50.0000 - = 0.5000 - e
> 45.0000 - > 0.4500 - -
40.0000 - 0.4000 7
35.0000 0.3500 e
30.0000 0.3000 i
25.0000 A 0.2500 -7
20.0000 0.2000 - -
15.0000 015004 7
10.0000 0.1000 4,7
5.0000 0.0500
0.0000||||||||||||:|1|1|1|(£ 0.0000 —/r/——F——F—7m™—7"—T"—"T"T"T""T""T"T"TTT—TT
Lo cocoococooocoooco S 00 0 0 0 0O o0 0 QO DO oS
S22 DDS S Sdoocooe2
SR22S88352858E538583228¢2¢ SES:S5555:5522:855:2¢¢:¢8
A B B B R I R = N — S A M T T n 8 S NNw % S
Variables Variables

Fig. 12: Graphical representation of energy consumption
vs. task allocation

with communication time. The number of iterations of
EBCO-TS increases, when number of tasks raises. As an
outcome, number of iterations also increases.

Figure 14 illustrates the energy consumption of
the proposed EBCO-TS with the existing methods like
FCFS, Min-Max and PSO. Our proposed method shows a
significant change in the energy consumption strategy
when various task has been allocated. The anticipated
method shows better trade off in comparison with the
prevailing works.

Fig. 13: Graphical representation of allocated task vs. load
balancing

Figure 15 shows the load evaluation strategy of the
proposed EBCO-TS with the existing algorithms such
as FCFS, Min-Min and PSO. The computation shows
various changes n the balancing the load when the
number of users request for cloudlet increases. The
proposed EBCO-TS shows a constant balancing
strategy when the number of users increases. Existing
algorithms shows lacks in balancing the load, thus,
leads to the excessconsumption of energy. The proposed
method shoes superior trade off when compared to the
existing methods.

2725

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

./ xgraph

Fig. 14: Existing and proposed system comparison graph for energy consumption

Jxgraph

Fig. 15: Graphical representation of load evaluation based number of tasks

CONCLUSION

Scheduling the task in MCC gives an NP-hard
problem which has influenced the attention of
numerous researchers m past few decades. This
research models this crisis as an energy
consumption optimization problem while considering
data transmission, task dependency, load balancing
and some constraint conditions such as ready state and

termination time and further solve it using EBCO-TS
algorithms. The algorithm shows efficient way
offloading the task to cloud and the way to reduce
energy consumption. The proposed algorithm shows
better trade off compared to the existing methods. The
future research can be extended by testing the algorithm’s
performance with much huge task graphs and develop
more proficient heuristic algorithms to resolve the
task scheduling crisis.

2726

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

REFERENCES

Ajit, M. and G. Vidya, 2013. VM level load balancing in
cloud environment. Proceedings of the 2013 4th
International Conference on Computing,
Communications and Networking Technologies
(ICCCNT), Tuly 4-6, 201 3, TEEE, Tiruchengode, India,
ISBN:978-1-4799-3926-8, pp: 1-5.

Akbari, R., R. Hedayatzadeh, K. Ziarati and B.
Hassanizadeh, 2012. A multi-objective artificial bee
colony algorithm. Swarm Evol. Comput., 2: 39-52.

Arun, C. and K. Prabu, 2017b. Applications of mobile
cloud computing: A survey. Proceedings of the 2017
International Conference on Intelligent Computing
and Control Systems (ICICCS), JTune 15-16, 2017,
TEEE, Madurai, India, ISBN:978-1-5386-3901-6, pp:
1037-1041.

Arun, C. and K. Prabu, 2017a. Architecture of mobile
cloud computing. Pak. I. Biotechnol., 14: 302-304.

Beloglazov, A, J. Abaway and R. Buyya, 2012.
Energy-aware resource allocation heuristics for
efficient management of data centers for cloud
computing. Future Gen. Comput. Syst., 28: 755-768.

Chen, H., ¥X. Zhu, H. Guo, J. Zhu and X. Qin et al., 2015.
Towards energy-efficient scheduling for real-time
tasks under uncertain cloud computing enviromment.
T. Syst. Software, 99: 20-35.

Conti, M., 8. Chong, S. Fdida, W. Jia and H. Karl ef al.,
2011. Research challenges towards the future
internet. Comput. Commun., 34: 2115-2134.

Dasgupta, K., B. Mandal, P. Dutta, J K. Mandal and S.
Dam, 2013. A Genetic Algorithm (GA) based load
balancing strategy for cloud computing. Procedia
Technol., 10: 340-347.

Guo, S, B. Xiao, Y. Yang and Y. Yang, 2016.
Energy-efficient dynamic offleading and resource
scheduling in mobile cloud computing. Proceedings
of the 35th Annual IEEE International Conference on
Computer Communications (IEEE INFOCOM 2016),
April 10-14, 2016, TEEE, San Francisco, California,
ISBN:978-1-4673-9954-8, pp: 1-9.

, T, T Gy, G. Sun and T. Zhao, 2010. A scheduling
strategy on load balancing of virtual machine
resources 1 cloud computing enviromment.
Proceedings of the 3rd International Symposium on
Parallel Architectures, Algorithms and Programming,
December 18-20, 2010, Dalian, China, pp: 89-96.

Hung, P.P., T.A. Bui and EN. Huh, 2014. A New
Approach for Task Scheduling Optimization in
Mobile Cloud Computing. In: Frontier and Innovation
in Future Computing and Communications, Park, I.T.,
A. Zomaya, HY. Jeong and M. Obaidat (Eds.).
Springer, Dordrecht, Netherlands, ISBN:978-94-017-
8797-0, pp: 211-220.

Karaboga, D. and B. Akay, 2009. A comparative study of
artificial bee colony algorithm. Applied Math.
Comput., 214: 108-132.

Kumar, K. and Y.H. Lu, 201 0. Cloud computing for mobile
users: Can offloading computation save energy?
Computer, 4: 51-56.

Li, K, G. Xu, G. Zhao, Y. Dong and D. Wang, 2011.
Cloud task scheduling based on load balancing
ant colony optimization. Proceedings of the 2011
6th Amual International Conference on China
Ond, August 22-23, 2011, [EEE., Dalian, Liacmng
China, pp: 3-9.

Lin, X., Y. Wang, Q. Xie and M. Pedram, 2015. Task
scheduling with dynamic voltage and frequency
scaling for energy minimization in the mobile cloud
computing environment. TEEE. Trans. Serv. Comput.,
8:175-186.

Liu, Z. and X Wang, 2012. A PSO-based
algorithm for load balancing i virtual machines
of cloud computing environment. Proceedings of
the International
Intelligence, June 17-20, 2012, Springer, Berlin,
Heidelberg, Germany, 1SBN:978-3-642-30975-5, pp:
142-147.

Mondal, B., K. Dasgupta and P. Dufta, 2012. Load
balancing in cloud computing using stochastic hill
climbing-a soft computing approach. Procedia
Technol., 4: 783-789.

Panwar, R. and B. Mallick, 2015, Load balancing

computing using dynamic load
management algorithm. Proceedings of the 2015
International Conference on Green Computing and
Internet of Things (ICGCIeT’15), October 8-10,
2015, TEEE, Delhi, India, ISBN:978-1-4673-7909-0,
pp: 773-T78.

Pham, D.T., A. Ghanbarzadeh, E. Koc, S. Otr1 and S.
Rahim et al., 2006. The bees algorithm-a novel tool
for complex optimisation problems. Proceedings of
the 2nd T*PROMS Virtual International Conference
on Intelligent Production Machines and Systems,
Tuly 3-14, 2006, Elsevier, yAmsterdam, Netherlands,
pp: 454-459.

Razaque, A., N.R. Vennapusa, N. Som and G.S. Janapati,
2016. Task scheduling in cloud computing.
Proceedings of the 2016 IEEE Conference on Long
Island Systems, Applications and Technology
(LISAT), April 29, 2016, IEEE, Farmingdale, Long
Island, New York, USA., ISBN:978-1-4673-8490-2, pp:
1-5.

Sindhu, S., 2015. Task scheduling in cloud computing.
Intl. J. Adv. Res. Comput. Eng. Technol., 4: 3019-
3023,

Conference on Swarm

in cloud

2727

J. Eng. Applied Sci., 14 (8): 2716-2728, 2019

Soni, G. and M. Kalra, 2014. A novel approach for load
balancing in cloud data center. Proceedings of
the 2014 IEEE International Conference on
Advance Computing (IACC), February 21-22, 2014,
TEEE, Gurgaon, India, TSBN:978-1-4799-2572-8, pp:
807-812.

Tsai, J.T., J.C. Fang and J.H. Chou, 2013. Optimized task
schedulmg and resource allocation on cloud
computing environment using improved differential
evolution algorithm. Comput. Oper. Res., 40: 3045-
3055,

Wang, J., I. Tang, G. Xue and D. Yang, 2017. Towards
energy-efficient task scheduling on smartphones in
mobile crowd sensing systems. Comput. Networks,
115: 100-109.

Wu, X, M. Deng, R. Zhang, B. Zeng and S. Zhou, 2013. A
task scheduling algorithm based on QoS-driven in
cloud computing. Procedia Comput. Sci., 17: 1162-
1169.

Xia, F., F. Ding, J. Li, X. Kong and I..T. Yang et al., 2014.
Phone2Cloud: Exploiting computation offloading for
energy saving on smartphones in mobile cloud
computing. Inf. Syst. Front., 16: 95-111.

Zhao Y. L. Chen, Y.Li,P. Liuand X. Liet al, 2013. RAS:
A Task Scheduling Algorithm Based on Resource
Attribute Selection m a Task Scheduling Framework.
In: Intermnet and Distributed Computing Systems,
Pathan M., G. Wei and G. Fortino (Eds.). Springer,
Berlin, Heidelberg, ISBN:978-3-642-41427-5, pp: 106-
119.

2728

	2716-2728 - Copy_Page_01
	2716-2728 - Copy_Page_02
	2716-2728 - Copy_Page_03
	2716-2728 - Copy_Page_04
	2716-2728 - Copy_Page_05
	2716-2728 - Copy_Page_06
	2716-2728 - Copy_Page_07
	2716-2728 - Copy_Page_08
	2716-2728 - Copy_Page_09
	2716-2728 - Copy_Page_10
	2716-2728 - Copy_Page_11
	2716-2728 - Copy_Page_12
	2716-2728 - Copy_Page_13

