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Abstract: A set of new linear multistep method of order three and four with extra derivatives are developed for
solving special second order ordinary differential equations. The extra derivatives are incorporated into the
methods, so that, a more accurate numerical results can be obtained. The methods are developed using the
sequence of Chebyshev polynomials as the basis function. The methods are then trigonometrically-fitted, so
that, they are suitable for solving highly oscillatory problems arise from the special second order ordinary
differential equations. Numerical experiments are carried out to show the efficiency and accuracy of the new

methods in comparison with methods in the literature.
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INTRODUCTION

The special second order Ordinary Ditferential
Equations (ODEs) can be represented by:

y”=f(X=Y)=Y(Xn)=Xn= (Xn)=yﬂ‘ )

in which the first derivative does not appear explicitly.
This type of problems often appears in the field of
science, mathematics and engineering such as quantum
mechamics, spatial semi-discretizations of wave equations,
populations modeling and celestial mechanics. The
solutions of such differential equations often exhibit
oscillatory properties and are harder to solve.

Equation 1 can be directly solved using Runge-Kutta
Nystrom (RKN) methods which can be seen by
Dommandetal. (1987) and Sommerjer(1987). Franco (1995)
and Coleman (2003) also developed hybnd algorithm
and constructed the order condition of hybrid method,
respectively as a different approaches to directly solve
Eq. 1. Recently, researchers practically used fitted
methods such as phase-fitted and trigonometrically-fitted
n order to enhance the efficiency of the original methods,
so that, accurate numerical results can be obtained when
the solutions to the problems are highly oscillatory. Some
RKN and hybrid methods with various modification
techniques for the integration of oscillatory problems can
be seen by Papadopoulos et al. (2009), Kosti et al. (2012),
Samat et al. (2011) and Ahmad et al. (2013a, b). On the

other hand, the smmplicity of the interpolation and
collocation methods has caught the attention of various
researchers to develop different types of collocation
methods for solving (Eq 1) such as the research of
researchers by Guo (2007), Jator (2008) and Yap et al.
(2014).

Hence, m this study, we developed a new extra
derivative Linear Multistep Method (LMM) with
collocation technique using Chebyshev polynomial as
basis function. In order to improve the efficiency of the
methods, we trigonometrically fitted the methods, so that,
the coefficients will depend on the fitted frequency and
step size of the problems.

MATERIALS AND METHODS

Derivation of LMM using collocation technique: The
general k-step LMM for solving special second order
ODEs 1s given as:

ialynﬂ - h2 iﬁlfﬂﬂ
1=n 1=n

where, f,, = y”.. o and B, are uniquely determined
and o, 0,70, «, = 1. Aboiyar et ol has constructed a
LMM with collocation technique using Probabilist’s
Hermite polynomial as basis function for solving first
order ODEs. Here, we will use Chebyshev polynomials as
basis function. The following are the first five terms
of the sequence from Chebyshev polynomials:
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T, (x)=1LT,(x)=x T,(x)=2x*-1
T, (x) = 4x7-3x, T, (x) = 8x*-8x 7 +1

(2)

In this study, we are going to develop linear
multistep method with extra derivatives of the form of:

k k k
Ejznajyﬂﬂ - hzzjznpjfnﬂ +h321:nn1gn+1 3

where, o, 1 and T1; are constant values, f, =y”,. and
2. = ¥ . We proceed to approximate the exact solution
v(x) by the mterpolating function of the form:

y(x)= ZGJT(n)(X—Xk) 4
1=0
which is the polynomial of degree n and satisfied Eq. 5:

y"(x):f(x,y(x),xk SXSXk+p),y(xk):yk ()

Derivation of LMMC (3): Forn = 4, Eq. 4 can be written
as:

y(x) =a,+a, (X—Xk )+a2 [(X—Xk )2 —1] +a, [(X—Xk )3 —3(x—xk )] +

a, [(X-Xk )4 B(x-x, )2 +1]

(6)
Differentiating Eq. 6, three times and we get the first,

Next, Eq. 6 and 8 are collocated at x = x,,, %, and
interpolated Eq. 9 at x = x,,, which yields:

Y(Xk+2) = aqua1 (Xk+2'xk)+az[

(
. {(Xk”—xk )3 _}ra (Xpor x4 )4 _

3%y, %, )
(11)
yu(xkﬂ): Za, +3326(Xk+1'xk)+ 12)
a44[3(xk+l-xk) -4] =f.
¥ (Xyy) =2a2+az6(xk+2—xk)+ 13)
a44[3(xk+2—xk) -4] =f.,
V(R ) = 68,42, 24(X, X, ) = g, (14)

By substituting h = %%, and 2h = x.,-%, into
Eq. 10-14, we obtain the following:

Vier = 8, 7(h)a, +a, [ h*-1]+a; | h’-3h |+a,[ h*-8h*+1]

second and third derivatives of Eq. 7-9 as follows: (15
— 2 3
| ) . . Vi, —8,T(2h)a, +a, [4h -1]+a3[8h —6h}+ 16)
=a -+ x )+ - A1+
y (x)=a,ta,2(xx, ) +a, [(X x,) ] @ a,[16h*-32n+1]
3
a44[(x-xk) -4(X-Xk)]
f,., = 2a,+a,(6h}+a,[12h’-16 | (17)
y'(x)=2a,+a,6(x-x )+a, 4|:3(X-Xk)2 -4} (8)
f,., = 2a,+a,(12h)+a, | 48h*-16 | (18)
y (x)=6a,+a,24(x-x,) )
o ’ g,., =6a,+a,(24h) (19)
Rearranging Eq. 15-19 into matrix form as follows:
1 h h'-1 h'-3h h'-8h°+1 |a Vist
1 2h 4h*-1 8h'-6h 16h*-16h*+1| a, Yiers
0 0 zh &h’ 12h° -16 a, |=| hi,,,
0 0 2h 12K 48h’-16 ||a, | |hf,,
0 0 0 6h 24h’ a, | |hg.,
which can be simplified as:
XA-Y (20)
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Where A - [aﬂ al a’Z a3 a’4 ]T

1 h h*-1 h'-3h h*-8h?+1 v " » N T
1 2h 4h’-1 8h'-6h 16h*-16h” +1 “er Sier Bl Bl e

X=0 0 Zh 6h’ 12h?-16

, s From Eq. 20, we can solve for A, where:
0 0 Zh 1Zh 48h* -16
2

0 0 o0 6h 24h Aoxly @1

Solving Eq. 21, the coefficients of a,, a,, a,, a; and a, are obtained in terms of Vi1, Yoz fiers fierr and g,

1 10h* -7 1 2h* +6h* +7 1 2h* +12h* +7
o 1w T g bz =5 h? Bt

oy v, 113R-12. 1shi+12. 3,
TR h e feet (0 2

2f,,  13h"+4 1{3h* +2)

Tkl

3h 6 K3 o ok
C1f,, 1f

k+1 k+2

1
+ —
"3h 3 h 2o
1 £ +ifk+2 -
12 h 12 h* 12 h

= 2¥ " Yeer T

2z

Substituting the coefficients into Eq. 6 and letting x = x5, we obtain the following equation:

1 10h* -7 1 2h* +6h*+7 1 2h* +12h%* +7
X1<+3 2Yk+1 Yk+2 12 hz k+1+E hz k+2'§h72 e+l
113h%-12 1 5h* +12 3
‘”2——7&—— .+ (h*+2)g., (%, -%x, )+
{ 17§ BT, k+2 4( )gkl(kB k)
fo, 130'+4  1(30"+2) )
R Rt

4
Tpor 1 fk+2 4 1 ! 1 fk+1 1 fk+2 1 (Xk+3 _Xk) - —
- - Bkt +3 7 -3 +3 ” + - +— + - +
{3 h 3 h ng 1 [(Xk 3 X-k) (Xk 3 Xk)] 3ih 3h ng 1 S(Xkﬂ-xk)z " Y3

Letting 3h = (%,;-X,), we obtain the discrete form of LMMC as:

1 1
Yirs ~ Z¥ke2 - Yin +h2('gfk+1 + 7fk+2}+h3('ggk+1} (22)

Order and Consistency of LMMC method
Definition 1; Lambert (1973): The linear difference operator L 1s defined by:

Lly(x)h]= Z[%Y(Xﬂ'h)-hzuf(X+jh)-h3njg(x+jh)]

where, y(x) is an arbitrary function that is sufficiently differentiable on [a, b]. By expanding the test function and its first
derivative as Taylor series about x and collecting the terms to obtain:

L [y(x);h] = cny(x)-ﬁ-clhy‘(x)-*-, c o h Oy P (x) 4
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where, the coefficients of ¢, are constants independent of
v(x). In particular:

Sy =2T:U b=
e [P

€ = ET—D[EGJ_HJ}

HE)|

ok [ .
¢ = 2]_0[3!0:1_]“1_”]}

o T:u(jaj)

(23)

k(6 (D) (5-3)
] ] ]

° :JZD[H“"(q—z)!“"(q-rs)!“’}

Definition 2; Order of the method (Henrici, 1962): The
associated linear multistep method (Eq. 22) is said to be of
the order pif, ¢;=¢, = ... =¢,,, =0andc,, # 0.

Definition 3; Consistency of the method: The method 1s
said to be consistence if it has order at least one. In order
to find the order and consistency of LMMC, we compare
equation m Definition 1 with Eq. 23. We obtain the
coefficients of:

7 1
Mo = 5 (24)

1
C“"D :1:051:_2: (IZ:L“D :'gal‘ll :ga

By substituting the coefficients mto Eq. 23, we obtain:

Hence, the new method has order p = 3, it 1s

y(x)=a, +al(x-xk)+a2[(x—xk)2 —1}r
aj[(x-xk)3 —3(X—Xk)]+a4|:(X—Xk)4 -§(x-x, )’ +1J+

a, [(x-xk)5 -20(x-x%, )3 +5(x-xk)J
(25)
Differentiating Eq. 26, three times gives:

y{x)=a +a,2(x-x,) +a33[(x_xk)z _1}_

a44[(x—xk)3 —4(X*Xk):|+ 2155[(x—xk)4 —12(xka)2 +1J
(26)
y (x)=2a, +a,6(x-x, )+ 344[3(x -Xk)z -4]

a520[(x -xk)3 -6(x—xk)}

+
(27)

v (x)=6a, +a,24(x-x,) +a560[(x—xk)2 - 2} (28)

Equation 26 and 28 are collocated at x = x,.,, %,., and
Eq. 27 at X = X, Xyu; Which yields:

Vit :an-&-(h)al-&-az[h2-1J+a3[h3-3h]+ (29)

a,[h*-8h*+1|+a,[ h’-20n" +5h |

Yirs :au+(2h)al+a2[4h2—1}+aj[8h3-6h}+ (30)

a,[16h*-32h’ +1]+a,[ 32h°-160h" +10h |

f,., = 2a,+a,(6h)+a, [12h2-16}ra5 [20}13-12011}

consistent, since, it has order p>1, thus, it is convergent. (31)
The met‘.hod. 18 de.noted as ligear mult%step method with f,.,=2a,a,(18h)ta, [48h2—16}ras [540h3-360h}
extra derivative using collocation technique of order three
(LMMC (3)). (32)
8., = 6a,+a,(24h)+a, (60hh’-120) (33)
Derivation of LMMC (4) order and consistency of the
?;tzofsfr;tinss;iyﬁge4dzzve the LMMC of order four. 8., - 6a,+a, (48h)+a, ( 240hh? _120) (34)
Equation 29-34 can be written in matrix form as follows:
XA=Y (35
Where:
[1 b h®*-1 h’-3h h*-8h*+1  h’-20h°+5h
1 2h 4h®-1 8h’-6h 16h*-32h°+1 32h°-160h° +10h
x=|0 0 1w 48h’ -16h 160h" - 240h*
0 0 zh 18h’ 108h* -16h 540h* -360h’
0 0 0 6h 24h? 60h* -120h
0 0 6h 48h* 240h°-120h |
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a’4 aS ]T

hf,

k+3

T
hg, . hgk+2]

Solving Eq. 35, we obtained the coefficients of a-a, and a; in terms of i\, Yo Tz fies err and g0

~ 3(6h' +6h* +7) (2h*-8h*-21)  (32h'+72h°+49)  (17h°-18h*-56)
B = e~ Yers 20h? T w3 60h Bin ™ 30h Burz
1,1 (153" +120h* +110) (30" +120h* +100) (392h" + 480h* +165) +(149h“-690h1-495)
a ———— — -
1 h yk+1 hyk+2 loohj k+2 100h3 k+3 300h2 gk+1 300h2 gk+2
3(3h2+4) 2(h2+3) 2(9h2+7) (9h2+32)
a, = +2 7 +3 7 + + +
2 10h k+2 s e+ 15h B+ 15h2 Btz
2(h* +1) 2(h* +1) (8h” +3) (23 +18)
d; = - p w2 T p a3 T 7 Bker T P 2o
sh sh 15h 30h
g - g > T, 44
+ 20n K7 20n <7 60T 15k ¢
Lo 1 1 L1 . 3 .
*soh® KT soh? P 100m® KT 1007 UK

We substitute a,, a-a, and a; into Eq. 35 and by
letting x = %43 and 3h = (X.5-%,), we obtain the discrete
form of LMMC as:

2

h
yk+3 = 2Yk+2 _yk+1 +E(9

h3
+ fk+3 ) - %(gkﬂ + 2gk+2 )
(36)
In order to find the order and consistency of the

LMMC, we compare equation in definition 1 with Eq. 36.
We obtain the coefficients of:

i

k+2

=2, 0

(]

=1l o

Oy 1 2:1>M1:_

By substituting back the coefficients into Eq. 23, we
obtain:

From defimtion 2, the new method is considered as
having order p = 4. The new method 1s consistent, since,
the order p>1. The method 18 denoted as linear multistep
method with extra derivative using collocation techmque
of order four (LMMC (4)).

Trigonometrically-fitting the methods: In this study, we
adapt the trigonometrically-fiting technique to LMMC

(3). By letting some of the coefficients to be unknown
values of ke, forI =1, 2, 3, LMMC (3) in general form can

be written as follows:
Your = 2V, ¥, th? (klfn-l+k2fn )+h3 (kagn-l) (37)
Integrating Eq. 37 using the linear combination of the
functions {sin(vx), cos(vx)} for veR. We obtain the

following Eq. 3&:

cos(H) = 2-cos(H)-H? (k, cos{H)+k, +k,H sin{H})

ksin{H) = k,Hcos{H)
Where: (38)
H = vh
h = The step size
v = The fitted frequency

Solving Eq. 38 and letting, k, = -1/6, the value of the
remaimng coefficients 1s obtain in terms of H:

o Z T3 e, 81 L 20777
* 6 80 60480 3628800
7939 (1)
3421440
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3

=_l_in_iH4 17 ue 31 - 691 H1U+O(H12)
6 18 45 1890 8505 467775

This new method is denoted as trigonometrically-
fitted linear multistep method with extra derivative using
collocation techmique of order three (TF-LMMC (3)).

Then we apply the trigonometrically-fitting technicque
to LMMC (4). By letting some of the coefficients to be
unknown values of k, fori=1, 2, 3, 4, rewrite the formula
in general form, we have:

Var1 = 2V 'an1+h2 (klfn+k2fn+1 )+h3 (kjgn—1+k4gn)
(39)

We integrate Eq. 39 using the linear combination of
the function {sin{vh), cos(vh)} for veR. Therefore, the
following equation are obtained:

cos(H) = 2-cos{H)-H* (k, +k,cos(H) +k,Hsin{ H))
k,sin( H) = -H| k,cos(H) +k, |
Where: (40)
H=vh
h = The step size
v = The fitted frequency

Solving Eq. 40 simultaneously by letting k, = 9/10 and
k, = -1/30 the value of the remaimng coefficients 1s
obtained in terms of H as follows:

_1 1 313, 923
10 144

2

100800 725760
6437 }PU+C%I{Q)
12474000
k4=-J¥+4§—}#+r 83 e, 983 8+O(Hm)
15 400 432000 1209600

This new method 1s denoted as trigonometrically-
fitted linear multistep method with extra derivative using
collocation technique of order four (TF-LMMC(4)).

RESULTS AND DISCUSSION

In this study, the new methods TMMC (3, 4),
TF-LMMC (3, 4) are tested for problems. The 1-6 in order
to show the methods capability for solving oscillatory
problems. The methods are compared using a measure of
the accuracy, Absolute error which is defined by:

1

Absolute error = max{”y(xn) ~ Yl

Where:

y(x,) = The exact solution
Ya = The computed solution

The test problems are listed as below.

Problem 1; An almost periodic orbit problem studied by
Stiefel and Bettis (1969):

¥"(x)+y, (%) =0.001cos(x), v, {0)=1, y/(0)=0
v,"(x)+ v, (x)=0.001sin(x), y,(0) =0, y,'{0) = 0.9995

Exact solution is y, = cos(x)+0.0005xsin(x) and
y, = sin(x)-0.0005xcos(x). The fitted frequency 1s w = 1.

Problem 2; In homogeneous system by Lambert and
Watson (1976):

d*y, (x)
dt’

=o'y, (x)+ @' f(x)+1 (x),y,(0) =a+1(0),

Y1‘(0) =f‘(0)

d’ \

ORI sty (x) 10t + £ ().92(0) =10}
vy, (0) =awa+1(0)

Where:

fix) = o105

a =01

y,(x) = acos(wx)+i{x)

vo(x) = asin(wx )H{x)

The fitted frequency is @ = 20.

Problem 3; In homogeneous system studied by Franco
(2006):

1ol 99 %005(2)() -%sin (2x)
" _| 2 2 =5 2 2
ST e 01 [PEITY g 99
e “—sin(2x)  -——cos(2x)
2 2 2 2

{10t

Exact solution 1s given by:

) = -cos (10x )-sin (10x }+8cos(2x)
y(1)= cos (10x )+sin (10x )+8sin(2x)

The fitted frequency 1s = 10.
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e TF-LMMC(3) o LMMC(3)
x RKN3 (4)
+ DIRKN3 (4)

EHM3 (4)
PFRKN4 (4) + DIRKN (HS)
SIHM3 (4)

Log (max-error)

N

0.4

\\ .

0.6 0.8

Time (sec)

02 10
Fig. 1: The efficiency curve for TF-LMMC (3) for problem
1withT ,=10andh=09/2fori=1,...,5

Problem 4; Homogeneous problem from Chakravarti and
Worland (1971):

y (x)

-y(x).y(0)=0y (0) =1

Exact solution is y(x) = sin(x). The fitted frequency is
w=1.

Problem 5; Homogenous given by Attili et al. (2006):

N[~

v (0)

Nl

-64y(x),y(0) =

y (x)
Exact solution is:

V17

y :Esin(8x+q),q:p- tan'*(4)

The fitted frequency is w = &.

Problem 6; In homogeneous equation studied by
Papadopoulos et al. (2009):

y'(x)- Wzy(x)+(w2 - 1)sin(x),y(0) =1y (0)=w+1
y(x) = cos(ex) +sin(mx)+sin(x)

Exact solution is y(x) = cos{wx ) +sin(wxHsin(x). The
fitted frequency is w = 10. The following are the notation
used in Fig. 1-12. The numerical results are shown in
efficiency curves in Fig. 1-6 for TF-LMMC (3, 4) are
shown in Fig. 7-12.

Fig. 2:

Fig. 3:

Fig. 4:
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e TF-LMMC (3) o LMMC(3)
* DIRKN (HS)

x RKN3 (4) PFRKN4 (4)
+ DIRKN3(4) ~ SHM3(9)
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£
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-6

74
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—r —— T
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The efficiency curve for TF-LMMC (3) for problem
3withT,,=10'andh=0.125/2fori=1, .., 5

T « TRLMMC(3) = LMMC(3) - EHM3(4)
2% = RKN3 (4) PFRKN4 (4) * DIRKN (HS)
3 * DIRKN3 (4) SIHM3 (4)
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_4— L '-'\\,“‘h-\-\-:— -,
— 1 ) e SO
§ L _'\-\_\_\s. g
5 . —
8 —
g Ny
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104
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1
24 & e
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r— T T T T T T T T
0.2 04 06 08 10 12 14
Time (sec)

The efficiency curve for TF-LMMC (3) for
problem 4 with T, 10 and h 0.5/2
feri=1,..,5
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* TRLMMC (4) = LMMC (4) PFRKN4 (4)
®._ " DIRKN (HS) * DIRKN3(4) SIHM3(4) (HS)
2 A = TELMMC(3) = LMMC (3) EHM3 (4) 2] M H3 @
* RKN3(4) PFRKN4 (4) * DIRKN (HS)
0 - * DIRKN3 (4) SIHM3 (4) ] ., -
N T e
2 4 - - . 'g L] - —
. % 5 n
s M S ; -6 * - L
5 4 ‘I\ - = g &,
% T =S N
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é -6 - *I + - .8
- 8 |II B
e -10
-10 - 1 \
- _\_\_‘—\-_
N e
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Fig. 8 The efficiency curve for TF-LMMC (4) for problem

Fig. 5: The efficiency curve for TF-LMMC (3) for problem 2with T, ;= 10*and h=0.125/2 fori=2, .., 6
SwithT _,=10'andh=0.1/2fori=3, ..., 7

ol -« TRLMMC(¥) - LMMC(4) + PFRKN4(4)
. ". ° DIRKN(HS) * DIRKN3(4)  SIHM3(4)(HS
-1 A s TRLMMC(3) = LMMC(3) EHM3 (4) L ?
# RKN3 (4) PFRKN4 (4) * DIRKN (HS) 2 ~ =

* DIRKN3 (4) SIHM3 (4)

- -4 N e 5
5 W e — o £ -
I, ; SR
& gt s £ -
£ Y— o -6
< 6| =Sl 8
= e a
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8 "'l..\ -8 "\\\.-
9 e
k\\"\,‘ 10 _\-\_"‘——\._*
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Fig. 6 The efficiency curve for TF-LMMC (3) for problem Fig. 9: The efficiency curve for TF-LMMC (4) for problem

GwithT_,=10"andh =0125/2 fori=3, ... 7 3withT_,=10"andh=0125/2fori=1,..,5
252 TELMMC (@) » LMMC (4) PFRKN4 (4)
ol 4 = TFLMMC(4) = LMMC(4) PFRKN4 (4) . “ DIRKN(HS)  * DIRKN3(4)  SIHM3(4) (HS
%, * DIRKN(HS) * DIRKN3(4)  SIHM3(4) (HS)
14 lﬁ -4 4k .
| e

.24 i : - ¥ v
2 4 I'|I a é B =y
é 1 - D 8 1 1 w
8.5 & T 3

-6 . 104 b

-\"u\.
7 o L\
8 ‘H_H____q_ﬁ_ " . o ey
e "._,_:—'—'_'_'_'_'_.
o or e s 10 12 1 02 04 06 08 10 12 14 16
' ' T ) ' ' ’ Time (sec)
Time (sec)
Fig. 10: The efficiency cwve for TF-LMMC (4) for
Fig. 7. The efficiency curve for TF-LMMC (4) for Problem problem 4 with T, = 10" and h = 0.5/2' for

1withT_,=10'andh=09/2 fori=1,...5 1=1,..,5
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. -
2 + TFLMMC (4) = LMMC (4) PFRKN4 (4)
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Fig. 11: The efficiency cuwrve for TF-LMMC (4) for

existing methods in comparisons. Hence, having extra
derivtives m the multistep method do improved the
accuracy of the methods. However, TF-LMMC (3, 4) are
clearly superior mn solving special second order ODEs
with oscillatory solutions, since, it involves lesser
computational time and better accuracy. Although,
TF-LMMC (4) is an implicit method, the method is more
accurate in terms of accuracy and need lesser time to do
the computation compared to the existing the methods in
comparisons. We can conclude that TF-LMMC (3, 4) are
very promising methods for integrating oscillating
problems.
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NOMANCLATURE

problem 5 with T,, = 10 and h = 0.1/2
fori=3,...7
2] » TRLMMC (4) = LMMC (4) + PFRKN4 (4)
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Fig. 12: The efficiency cwrve for TF-LMMC (4) for
problem 6 with T,, = 10° and h = 0.125/2
fori=3,...7

CONCLUSION

In this study, we developed linear multistep methods
with extra derivatives using collocation technique of order
three (LMMC (3)) and four (LMMC (4)) and modified
version of the methods which are Trigonometrically-Fitted
Linear Multistep Method denoted as (TF-LMMC (3, 4)),
respectively.

The results show a significant improvement n
accuracy for the method when adapted to
trigonometrically-fitted. Numerical results for LMMC (3)
which has order three is as comparable as other existing
methods which are of order four and numerical results for
LMMC (4) which 15 order four 1s shghtly better than other

h

Method

Te
TF-LMMC (3)

LMMC (3)

TF-LMMC (4)

LMMC (4)

EHM3 (4)
RKN3 (4)

PFRKN4 (4)

DIRKN (HS)

DIRKN3 (4)

SIHM3 (4)
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Step size used

Method employed

Size of interval
Trigonometrically-Fitted Linear
Multistep Method with Collocation
method of order three developed in this
chapter

A Linear Multistep Method with
collocation method of order three
developed in this chapter
Trigonometrically-Fitted Linear
Multistep Method with Collocation
method of order four developed in this
chapter

A Lmear Multistep Method with
Collocation method of order four
developed in this chapter

Explicit three-stage fourth-order Hybrid
Method derived by Franco (2006)
Explicit three-stage fourth-order RKIN
method by Hairer et al. (2010)
Explicit  four-stage fourth-order
Phasge-fitted RKN  method by
Papadopoulos et al. (2009)

Diagonally  mplicit  three-stage
fourth-order RKN method derived by
Sommeijer (1987)

Diagonally implicit  three-stage
fourth-order RKN method derived by
Senu ef al. (2010)

Semi-implicit three-stage fourth-order
hybrid  method  developed by
Ahmad et al. (2013a, b)
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