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Abstract: Reactive power optimization 1s recorded as a complex, non linear and very important problem for
keeping the power system ruming under normal conditions. In this study, original Particle Swarm Optimization
(PSO) and Chaotic (CPSO) algorithms are utilized as an optimization tools for the solution of this problem. Two
types of loads are presented in this problem: the constant loads (Light) and variable loads theavy) are presented
to evaluate and test the efficiency and consistency of the CPSO algorithm for solving this problem when the
load is changing. Tn this study in order to prevent plunge at the premature convergence to the local optima, also
to improving the quality and search ability of the original PSO algorithim, chaotic strategy is incorporating with
PSO algorithm to form a hybnd algorithm called CPSO algorithm. This incorporating 1s very helping to slip more
easily from the local optima, to get accurate solution and also to reach optimal solution i less number of
iterations compared to original PSO algorithm and other algorithms in the literature due to the special behavior
and ergodic of the chaos strategy than random search in original PSO algorithm. In this problem, the decreasing
of real Power Loss (P,) 15 an objective function while dealing with some of inequality and equality constrains.
The calculations of reactive power optimization are a part of Optimal Power Flow (OPE) calculations. The
original PSO and CPSO algorithms are tested on TEEE Standard-14 and-30 bus systems. The simulation
implications indicate that, CPSO algorithm has best convergence characteristic and obtained solutions close
to the optimal results for reducing power loss and dealing with mequality and equality constrains at the same
time comparison with original PSO and other techmques in the literature for constant loads and comparison with

original PSO for the case of variable loads.
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INTRODUCTION

Reactive power optimization is considered as a
complex and multi constraint optimization problem. Tt is a
very essential and important problem and 1t 1s utilizing to
find economic, reliable and safe operating for the power
systems by a proper adjustments of reactive power
parameters like generator Voltages (V,.), transformers ratio
(Tap) and the size of injected reactive power VAR source
[shunt Capacitors (Q) or shunt reactors (X;)] whule
dealing with some of equality and inequality constrains
and also can control the flow of reactive power (VAR) in
the systems (Khazali and Kalantar, 2011, Pires ef al,,
2012). The objective of this problem is to decrease power
losses and enhance voltage profiles of the system and
this objective can be done by control (Vg, Tap and the
amount of shunt Q. or 3 ) (Lai et al., 2005). The electric

power loads are changed from time to time and not
constant and this change may cause reduce or raise
voltages at nodes as well as the electrical losses due to
increasing the flow of reactive power (Khazali and
Kalantar, 2011). At no load conditions, load want the
reactive power (VAR) for magnetizing purposes but on
load conditions, it needs the reactive power (VAR) by the
relying on the type of the load which 1s mainly determined
by the configuration of the magnetic circuit. Reactive
power devices adjustment are change continuously with
the voltage level and the load because the control of
voltage in the power system is greatly depended and
assoclated with the control on the amount of the reactive
power (Mahadevan and Kannan, 2010). The advantages
of this problem behind the control of reactive power are
decrease in the power losses, enhancement of both
voltage profile and power factor (Aldrich et af., 1980).
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Undeniably, over the last decades, this problem plays a
vital role in the power system and has recorded an ever
growing interest of the researech because of remarkable
effect on the economic, safe and security operation
problem.

This problem 1s really a part of Optimal Load
Flow or (OPF) calculation were first introduced the
formulation of OPF calculations (Dommel and Tinney,
1968). Carpentier was developed OPF calculations i year
1979. Then, many researchers have been working on
solving OPF problem by utilizing multi methods, like
recursive quadratic, linear and nonlinear programing
and interior point method (Habibollahzadeh et al., 1989;
Aokl et al., 1987; Yan and Quintana, 1999; Momoh and
Zhu, 1999).

Several traditional optimization methods has been
presented for solving many complex and non continuous
optimization problems, like Differential Evolution (DE)
(EL Ela et al., 2011, Bhattacharya and Chattopadhyay,
2011), Gradient Search (GS) (David et al., 1986), Interior
Point methods (IP) (Granville, 1994) and Linear
Programming (LP) (Aoki et al, 1988, Deeb and
Shahidehpour, 1988). Zhu et al. have presented a new
method to solve optimal reactive power (volt-ampere-
reactive) problem utilizing Modified Interior Point (MIP)
technique to reduce power losses and to deal with one
new (VAR) utilization (Zhu and Xiong, 2003). These
traditional methods have many disadvantages, like
excessive big time, big numerical iterations in resulting,
slip to the local optima, difficulty n solving problem that
contain very large number of variables, not able for
dealing with non-linear and insecure convergence
characteristic. For these disadvantages, research has
developed and enhanced heuristic based algorithms for
the solution of complex problem and able to prevents
these disadvantages (El-Ela et al., 2010).

Recently, several heuristic methods has
presented for solving reactive power optimization like,
Genetic Algorithm (GA), improved GA, real parameter
GA, adaptive (Durairaj et al., 2006, 2008; Devaraj, 2007,
Cao and Wu, 1997), Particle Swarm Optimization (PSO)
(Yoshida et al., 2000), hybrid PSO (Esmin et al., 2005),
Bacterial Foraging Optimization (BFO) (Tripathy and
Mishra, 2007), Evolutionary Programming (EP) (Wu and
Ma, 1995), Differential Evolution (DE) (EL Ela et af., 2011,
Bhattacharya and Chattopadhyay, 2011; David et al,
1986; Granville, 1994; Aoki et al, 1988; Deeb and
Shahidehpour, 1988; Zhu and Xiong, 2003; El-Ela et al.,
2010; Durairaj et al., 2006; Devaraj, 2007, Devaraj ef al.,
2008, Cac and Wu, 1997, Yosluda et al., 2000,
Esmin et al., 2005; Tripathy and Mishra, 2007; Wu and
Ma, 1995; Liang et al., 2007, Varadarajan and Swarup,

been

2008), Seeker Optimization Algorithm (SOA) (Dai et al.,
2009) and Gravitational Search Algorithm (GSA)
(Duman et al, 2012), etc. These techrmiques have been
presented to prevent the disadvantages of traditional
optimization methods. Cao et al. presented a solution to
the problem with a novel PSO algorithm based on Multi
Agent PSO (MAPSO) and this algorithm 1s presented on
[EEE node-30 system (Zhao ef af., 2005). Presented Hybnd
Stochastic Search (HSS) for the solution of the RPD
problem and this technicue is examined on TEEE-118 node
system (Das and Patvardhan, 2002). Nakamishi et al. have
utilized for reactive power as well as voltage control and
compared their implications with the Reactive Tabu
System (RTS) and presented this technique on a practical
power systermn (Yoshida et af., 2000). Zhang et al. have
presented adaptive for solving reactive power (VAR)
optimization problem (Zhang and Sanderson, 2009).
Kumari and Sydulu (2006) have utilized improved PSO
or the solving of optimal reactive power (VAR) problem.
Lee et al. have presented three new algorithms presented
on two test systems for solving reactive power as well
as voltage control (Vlachogiannis and Lee, 2006). Li et al.
(2009) have presented parallel PSO for solving dynamic
ORPD problem. As said by this theorem “No Free Lunch
(NFL)”, there is no optimisation approach that can solve
whole the optimization problem. Therefore, searching
of a new approach is still necessary for solving the said
problem.

In this study, so as to enhance the convergence
characteristic, quality, performance and to prevent the
problem from stick in the local optima in order to become
premature convergence in the original PSO techmique, a
chaotic strategy merged with PSO technique to form a
hybrid algorithm called Chaotic PSO (CPSO) techmuque.
This algorithm is helped more easily to slip from the local
optima due to the special behavior, dynamic properties
and ergodic of chaos strategy than random search in
original PSO approach. Original PSO and CPSO algorithms
are utilized for the solution of reactive power optimization
so as to decreasing the real power losses and voltage
profile improvement of the system. These algorithms are
tested on TEEE node-14 and-30 system for constant and
heavy (variables) loads where the load was changed from
constant load to heavy load in this study, so as to
examining and evaluating the ability and reliability of
these algorithms to solve this problem at any change in
loads. For heavy load (constant real and reactive) power
load demand at base case 1s multiplied by (p) factor where
represents the ratio magnitude for the load variation. From
the simulations implications indicate that CPSO technique
has high ability, best convergence characteristic,
robustness and effective for solving complex and non
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linear problem compared to original PSO and some
algorithms in the literature for constant loads and
compared to origmal PSO approach only for varable

loads.
MATERIALS AND METHODS

Problem formulation

Objective function: The great objective for this study is
to decrease the power losses for the system through a
proper adjustment of reactive power requirments whule
dealng with numbers of variables (ie., equality and
inequality) constrains at the sometime which can be
expressed as shown (Rajan and Malakar, 2015) from
Eq 1:

Min B, =3 @ Gy (VP4V} -2V V cos(@, -0y ) (1)
Where:
Ny = The No. of branches
P.. = The active Power losses

. = The conductance of line

. = The Voltage value at node

The Voltage value at node

The difference angles voltage at node i and j

1

s @ =

o< <
Il

Subjected to equality constrains (load flow
equations) from Eq. 2 and 3:

Poy-Po, -V, 3 15 V(G cos(P, 4By sin(@,) =0 (2)

Qai-Qri- VZ L Vi(Gy Sm(qb )+B1J COS(QDU):O (3)

NB = Depicts the number of nodes n the system
Po, Qu = The real (MW) and reactive power (MVAR)
output from the generators at node

Pn, Qn = The real (MW) and reactive power (MVAR)
load demand at node

G;.B; = The mutual and susceptance conductance
among node and node

@, = The voltage angle magnitude in node i and j

and a number of mequality constrains and that mvolves
two types of these constrains as illustrated below:
A-independent (control) variables such as (Rajan and
Malakar, 2015) from Eq. 4-6:

V.M <V, €V, "™ ie N, “4)

Tap,™ < Tap, <Tap,"™ Ke N (3)

T

Qo™ £Qu, Q™ ie N, ©®)
Where:
N = The No. of Generator nodes
VoA = Are the Minimum (Min) limit and Maximum
Vo= (Max) limit of Generator Voltage value at
T-node node

N- = Is the total No. of Transformers
Tap™, = Are the Mimmum (Min) limit and Maxiumum
Tap™ (Max) limit of Transformer ratio at branch
Ne = The total No. of Capacitor banks

o = The Minimum (Min) limit and Maximum

o (Max) limit of injected VAR source from

shunt capacitor at node T

B-dependent (state) variables such as (Rajan and
Malakar, 2015) from Eq. 7 and 8:

Qe <Qa, €Qu"™i€ Ny )
VSV SV e Ny, (8)
Where:
Ng = The No. of Generator nodes
e = The Mimmum (Min) limit and Maximum (Max)
o limit of reactive power output of generator at
node
Neq = The No. of load nodes
V,™ = The Mimmum (Min) hmit and Maximum (Max)
V., limit of voltage value at node

The generalized fitness function: In this study, V., Tap
and Q. are the independent (control) variables, therefore,
Vo, Tap and Q are self constrained. The state
(dependent) variables V| and Qg are constrained by
utilizing penalty factors by merging them to the objective
function (Eq. 1), so, Eq. 1 can be written as shown below
in Eq. 9 (Rajan and Malalar, 2015):

MinF =P, +A, 35 (v, v, =)

loss

X5 (Qu O

Where:

Ploss = Described in Eq. 1

A A = The penalty terms

NL = The No. of Loads nodes that outside the
limits

NG = The No. of reactive power output of

Generator nodes that outside the bounds
V™ Qu"™ = The bounds of dependent (state) variables,
given as:
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min : min
v ifv, <v,
lim _ : min min 10
v, "= 0if v M Sy Sy (10)
V’l’_‘nmax ifVILA > VLimaX
Ql’_‘nmm ifVL1 < QG1mm
Q lm _ OlfQ m1n<Q <Q max (11)
Gi G1 - G — G1
max : max
QG1 lfvh > QG1

Concept of average voltage: In this study, the new
average voltage index is suggested to deal with all voltage
nodes as well as satisfy most of the electrical utility limits.
Equation 12 of this concept can be written as shown

below:
2 N v
— i=1"1i (12)
L2 Nn

Where:

V,, = The average Voltage of all system

V, = The Voltage m node 1

N, = The total No. of nodes

Optimization process

Original PSO algorithm: PSO technique 1s a kind of a
stochastic optimization, the idea of PSO algorithm come
from the behavior of ammals that do not have leader in the
population or group, so, it has random behavior when will
search for food like bird flocking and fish schooling. It 1s
fast, simple, robust and high quality within lesser
calculation time in solving non-lmear and complex
optimization problem. Tt was first introduced by
Kennedy and Eberhart (1995). It 1s very similar to other
stochastic techniques like genetic algorithun but differs
from genetic algorithm that does not contain some of
genetic operators like mutation and crossover and also
PSO algorithm has memory that i1s necessary to the
algorithm. Every solution is defined as an individual. An
mndividual presented as possible solution. The collection
of individuals is called as a swarm. The number of the
search space dimensions 1s equal to the number of
variables in the issue, individual will flying through the
dimensions of the search space of the problem to search
for the best position in that space. Each individual has
optimal solution (position) found by the mdividual itself
and stored in special memory called local best position
(Pues) and the best solution (position) found between the
whole individuals in the populations (p,..) also stored in
a memory called global best position (g,.,), at every
iteration these positions will updated At every iteration
(step), the velocity and position from position and gy,..
position of the individuals will be modified by utilizing
Eq. 13 and 14 (Vlachogianms and Lee, 2006):

v =K (13)
OUFR_* (gbest(l)k X1k)
Xlkﬂ _ Xlk +Vik+1 (14
Where
v = The velocity of agent in iteration (K+1)
Wowo = The inertia coefficient
vr = The velocity of agent in current iteration
C, C, = The Cognitive and asocial positive constants
that utilize to pull every individual on the way
{0 Pues pOsition and g, position within range
[0-2.05]
R,, R, = The two Random numbers within limit [0-1]
Pusg = The personal best solution in iteration k
8wy’ = The global best solution in iteration k
%' = The position in iteration
xr = The position in iteration k
K = The constriction factor

It 1s utilize to guarantee the convergence of original
to a stable point, without want for velocity fixing and it
was introduced by Shi indicate that usmng of this
factor may be necessary and can be expressed as follow
{(Reddy and Reddy, 2008):

K ©=C+C,0=>4 (15)

2
12D DT AD |

In this study, (W) is reduced from (0.9-0.4) linearly
at iterations to search in a big area at the start of the
simulation and to attain balance between global
exploration (g,.,.) and local exploitation (py,.,) as follows:

Wi = W[MJ as)
A eration
Where:
W = The max (upper) value of weight
W = The min (lower) value of weight
iter = The current iteration

MaX,.4., = 1 he max (upper) iterations

CPSO algorithm: In spite of the advantages of original
PSO algorithm but often it has some disadvantages similar
to the other techniques and the main disadvantages in
original PSO algorithm 1z lighly depends on its
parameters, not sure to be global convergence and plunge
to the local optima near optimal solution when the
problem 1s very complex and contains very large numbers
of variables. Tn order to prevents these disadvantages and
to enhance the quality and convergence characteristic, a
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Select the parameters of CPSO algorithm
@hsCls(;sv“ﬁu‘N;.,}I,ﬁlaﬂuiﬂﬁn_g

R’

Generate initial swarm of individuals n with
random positions and velocities

v

| Initialize pbest and ghest |

h 4

Find fitness function (j.e., power losses) of each
individual in the current population

N

Current fitne!
individual>p
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best
|

pbest = Current fitness of the |
individual
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0 h Ay, |
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gbest
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gbest = Current fitness of the |
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| Update the velocity of the each individual based on Eq. 19 |

| Update the position of the each individual based on Eq. 14 |

Yes

Fig. 1: CPSO algorithm for solving reactive power optimization problem

chaos strategy merged with a P3O algorithm to form a
hybrid algorithm called CPSO and this way helping the
CPSO algorithm to slip from the local optima and to get
rapid convergence to the global solution due to the
special behaviour and high ability of the chaos
strategy than random search mn original PSO algorithm
(Hussain ef al., 2013). In this study, the logistic sequence
Eq. 17, adopted for establishing the hybrnid CPSO

algorithm is described by the following equation
(Yang et al., 2007):
B! =B (18°)), 0<p <1 (17

From Eq. 17, the control parameter 1s set within a
range [0.0 4.0], k is the number of the iterations. The
magnitude of u decides whether p stabilizes at a constant
area, oscillates within restricted limits or behaves
chaotically in an unpredictable form. And Eq. 17 1s
determimstic, 1t shows chaotic dynamics when p = 4.0 and
B'e{0, 0.25,0.5,0.75, 1}. It shows the sensitive depend on

its mitial conditions which is the basic features of chaos.

The new mertia weight factor (W p) 18 calculated by
multiplying the (W) in Eq. 16 and logistic sequence in
Eq. 17 and 18 as illustrates:

Wiy = W, *fE (18)

CPEO

To enhance the behavior and the searching ability of
the original, this study presents a new velocity change by
merging a logistic sequence equation (P) with inertia
weight factor (W ). Finally, by merging Eq. 16 and 17 the
following velocity updated Hq. 19 for the proposed CPSO
is obtained (Fig. 1):

\/‘,k+1 = chs:o * V1k+c1 * I * (pbm(l)k -Xlk ) i (1 9)
Cz * T *(gbest(i)k _X‘k )

In the CPSO algorithm, 15 decrease and oscillates
simultaneously from (0.9-0.4) for total iteration but in
original PSO 1s reducing linearly. Figure 1 shows the
flowchart for the CPSO algorithm.
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Table 3: Sirmulation implications of TEEE node 14 systermns at light loads

Table 1: Control variables limits for IEEE 14-node system

LEEE bus/independent variables Min Max
14 bus

Generator Voltage (Vi) 0.95 1.10
Transformer Tap (Tap) 0.90 1.10
VAR source compensation (Qr) 0.00 0.20

Table 2: Constrains of reactive power generation for IEEE 14-node system

LEEE bus/generator nodes Qe O

14 bus

1 0 10

2 =40 50

3 0 40

6 6 24

8 -4 24

RESULTS AND DISCUSSION
Case study and results: For demonstrating the

robustness, usefulness and applicability of the proposed
algorithms (1.e., origmal PSO and CPSO) for solving
complex and non-continuous problem, IEEE node-14
and-30 are utilized as a test system. Origmnal PSO and
CPSO algorithms are presented for solving reactive power
optimization problem. These algorithms are presented and
developed by MATLAB program. The load demand is
changed from time to time, thus, in this study, utilize two
type of loads (constant and variable load) so as to test the
ability, effectiveness and feasibility of these algorithms
for solving this problem at any change in load. For
variable load, constant (active and reactive power) load
demand at base case is multiplied by factor 1. And the
load (active and reactive) demand is changing by
utilizing equation as shown:

P, =W*P, (20)
Qu =H*Quy (21)
Where:
n = The magnitude of the load variation ratio
Pl Quoe = The initial (active and reactive) powers at
load nodes

IEEE 14-node system: This system mvolves 20 branches,
5 generators, 1 reactive power VAR sowrce
compensation (capacitor banks) and 3 transformers;
Bus, line, generator data, the bounds of reactive power
(Qg) for generators and other operating data. Table 1
shows comstrams of mdependent variables whle
constramns of reactive power (Qg) m MVAR for generators
are given in Table 2.

This system has nine dimensions for the search
space including 5 generator Voltages (V;), 1 reactive
power mjected from capacitor bank (Qc) and 3 transformer
taps setting (Tap) as shown in Table 3 and 4. This system
15 utilized as a test system for two cases of load as
follows:

SARGA
EP (Subbaraj (Subbaraj and

Control Base and Rajnarayanan, Rajnaray anan,

variables case CPSO  PSO 2009) 2009)
Vo 1.060 1.100 1.100 - -
Vaa 1.045 1.087 1.086 1.029 1.060
Vaas 1.010 1.058 1.056 1.016 1.036
Vo 1.070 1.095 1.067 1.097 1.099
Vos 1.090 1.100 1.060 1.053 1.078
Tap.; 0.978 0.975 1.019 1.04 0.95
Tap.s 0.969 0.975 0.988 0.94 0.95
Taps.4 0.932 1.018 1.008 1.03 0.96
Qcso 0.19 0.186 0.185 0.18 0.06
Reduction - 9.6 9.1 1.5 2.5
in Py, (%)

Total 13.550  12.243 12315 13.34620 13.21643
Py (mW)

Table 4: Simulation implications of IEEE node 14 system at heavy loads

Control variables Base case CPSO PSO
Vo 1.060 1.100 1.100
Vi 1.045 1.100 1.100
Va3 1.010 1.050 1.010
Vs 1.070 1.100 1.035
Vs 1.090 1.100 1.100
Tap.; 0.978 1.025 1.001
Tap.s 0.969 0.975 1.005
Taps.4 0.932 1.025 1.007
Quo 0.19 0.189 0.180
Reduction in Pr (%0) - 10.7 12.5
Tatal Pr (mW) 126.02 112.47 110.25
138 T T T
~ 134
2
E 132
g . Pl ol
% H H H H H
Q 128
g
T 126 |
AL s
12.2

0 20 40 60 80 100 120 140 160 180 200
Iteration

Fig. 2: Convergence for IEEE-14 node power system with
original PSO algorithm at light loads

Case (1) at constant (light) load: This case 1s utilize [EEE
node-14 as a test system at constant (light) loads (when
p = 1). In this case, the system loads, total generations
and power losses in this case are: Py, = 259.0 MW and
Qua = 735 MVAR; P, = 2723 MW and Q. = 824 MVAR,
P =13.55 MW and Q,,,, = 54.5 MV AR, respectively. The
simulation results for this case and comparison with EP
and SARGA algorithms (Subbaraj and Rajnarayanan,
2009) which are given in Table 3. Figure 2 and 3 illustrate
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Fig. 3: Convergence for IEEE-14 node power system with
CPSO algorithm at light loads

—— Before PSO and CPSO
— After PSO
— After CPSO
- Average before PSO and CPSO
e Average after PSO
st Averaoe after CPSO
112
110
1.08

Voltage (p.u)
P
o
(2]

Bus No.

Fig. 4 Voltage profile for TEEE-14 node power system at
light 1oads

the convergence characteristic of original PSO and CPSO
algorithms, from these figures indicate that the
convergence characteristic of CP3S0O best than original
PSO, Fig. 4 shows the voltage profile for this case after
and before original algorithms and from this figure, 1t 1s
clear that the average voltage at initial is about 1.048 and
at PSO 1s about 1.059 and at CPSO 1s about 1.082. The
reduction in Power Losses (P)) are 9.6% at CPSO, 9.1% at
PSO, 1.5% at EP and 2.5% at SARGA algorithms. From the
simulation implications indicate that CPSO algorithm has
high ability and reliability in solving complex problem in
power system than original PSO and other two algorithms
in the literature.

124

122

120

118

116

Real power loss (mW)

114

112
0O 20 40 60 80 100 120 140 160 180 200

Iteration

Fig. 5: Convergence for IEEE-14 node power system with
original P3O algorithm at heavy loads
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120
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116

114

Real power loss (mW)
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0O 20 40 60 80 100 120 140 160 180 200
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Fig. 6: Convergence for TEEE-14 node power system with
CPSO algorithm at heavy loads

Case (2) at variable (heavy) load: This case is utilize [EEE
node-14 as a test system at variables (heavy) loads (when
p = 2.5). In tlus case, the system loads, total generations
and power losses in this case are: P,y = 668.2 mW and
Qua = 189.6 MVAR; P = 794.2 MW and Q o= 641.9
MVAR; P, = 126.02 MW and Q .= 4934 MVAR,
respectively and there are 2V at node 4 and 14 outside the
limits m the system and these voltages m pu are V, = 0.949
and V,, = 0.928. The simulation results for this case and
comparison with original PSO algorithms which are
given in Table 4. Figure 5 and 6 show the convergence
characteristic of original PSO and CPSO algorithms, from
these Figure mdicate that the convergence characteristic
of CPSO best than original PSO. Figure 7 shows the
voltage profile for this case after and before original PSO
and CPSO algorithms and from Fig. 7, it is clear that
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Table 7: Simulation results of IEEE 30 node systemn at light load

Table 5: Control variables limits for TEEE 30 node system

IEEE bus-30/variables Min Max
30 bus

Generator Voltage (V) 0.95 1.10
Transformer position (Tap) 0.90 1.00
VAR source compensation (Q,) 0.00 0.20

Table 6: Constrains of reactive power generation for IEEE 30-node system

IEEE bus-30/generator nodes Qi Ot
30 bus
1 0 10
2 -40 50
5 -40 40
8 -10 40
11 -6 24
13 -0 24
—— Before PSO and CPSO
— After PSO
— After CPSO
Average before PSO and CPSO
——. Average after PSO
. Average after CPSO
1.1&
1.1C
=
g 108
()
g
°
> 1.0C
0.95
.\\
0.9C

BusNo.

Fig. 7. Voltage profile for TEEE-14 node power system at
heavy loads

the average voltage at initial is about 1.003 and at PSO is
about 1.007 and at CPSO is about 1.043 and all voltages of
the system are mside the limits after CPSO algorithm but
V, 1s still outside the limits after original PSO algorithm.
The reduction in Power Losses (P,) are 12.5% at CPSO,
10.7% at PSO algorithms. From the simulation implications
indicate that CP3O algorithm has high ability and
reliability in solving complex problem in power system
than original PSO.

IEEE 30-node system: This system is utilized as another
test system to evaluate efficiency of the presented
algorithms. This system involves 6 generators at nodes
(1,2,5,8,11 and 13), 2 reactive power (shunt capacitors)
VAR sources at buses (10 and 24) and 4 transformers at
branches ). Bus, line, generator data, bounds of reactive
power (Qg) in MVAR for generators and other operating
data were given in this system has 12 independent

SARGA

EP (Subbaraj (Subbaraj and

Control Base and Rajnaray anan, Rajnarayanan,
variables case CPSO PSO 2009) 2009)
Vi 1.060 1.100 1.100 - -

Vaa 1.045 1.086 1.072 1.097 1.094
Vas 1.010 1.052 1.038 1.049 1.053
Vi 1.010 1.059 1.048 1.033 1.059
Vai 1.082 1.083 1.058 1.092 1.099
Vais 1.071 1.100 1.080 1.091 1.099
Tapy, 0.978 1.008 0.987 1.01 0.99
Tap;; 0.969 0.993 1.015 1.03 1.03
Tap; 5 0.932 1.024 1.009 1.07 0.98
Tapss 0.968 0.987 1.012 0.99 0.96
Qe 0.19 0.077 0.077 0.19 0.19
Qe 0.043 0.123  0.128 0.04 0.04
Reduction - 8.7 7.4 6.6 83
in P, (%)

Total 17.55 16.01 1625 16.38 16.09
P (mW)

Table 8: Simulation results of IEEE 30 node system at heavy load

Control variables Base case CPSO P3O
Vau 1.060 1.100 1.100
Ve 1.045 1.089 1.086
Vas 1.010 1.040 1.037
Vg 1.010 1.049 Lo47
Vs 1.082 1.100 1.083
Vo 1.071 1.100 1.089
Tap, 0.978 1.004 0.990
Tap,, 0.969 0.982 0.986
Taps 0.932 1.017 1.025
Tap:4 0.968 0.975 0.990
Qen 0.19 0.103 0.104
Qcaa 0.043 0.162 0.157
Reduction in Pr (%0) - 10.1 10.5

Total P, (mW) 50.07 45.00 44.78

{control) vaniables including 5 Generator Voltages (V), 2
injected reactive power from capacitors (Qy) and 4
transformer Tap (Tap) as given m Table 5-8 and their
constrains tabulated in Table 5 and the constrains of
generator reactive power (Qg) in MV AR are shown in the
Table 6. This system is utilized as a test system for two
cases of load as follows:

Case (1) at constant (light) load: In this case utilize IEEE
node-30 as a test system at constant (light) load
(when p = 1). In this case, the system loads, total
generations and power losses in this case are: P, = 283.9
MW and Q.4 = 1262 MVAR; P, = 3009 MW and
Qe = 1339 MVAR, Py, = 17.55 MW and Q,,,, = 67.69
MV AR, respectively. The simulation results for this case
and comparison also with EP and SARGA algorithms
{(Subbara; and Rajnarayanan, 2009) which are given in
Table 7. Figwe 8 and 9 show the convergence
characteristics of this system with original PSO and CPSO
algorithms and from these figures clearly conclude that
the CPSO algorithm 1s best and reaching optimal solution
in less iterations than original PSO algorithm. Figure 10
shows the voltage profile of this system before and after
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Fig. 8: Convergence of IEEE 30-node system with PSO
algorithm at light load (Minimum real power loss)
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Fig. 9: Convergence of IEEE 30-node system with CPSO
algorithm at light load (Minimum real power loss)

original PSO and CPSO algorithms and from this figure it
1s clear that the average voltage at imtial 15 about 1.029
and at original PSO about 1.035 and at CPSO about 1.050.
The reduction in Power Losses (P) are 8.7% at CPSO,
7.4% at PSO, 6.6% at EP and 8.3% at SARGA algorithms.
From the simulation implications mndicate that CPSO
algorithm has high ability, efficiency and reach the optimal
solution in lesser iterations in solving complex problem in
power system than original PSO techmique and other two
algorithms 1n the literature.

Case (2) at variable (heavy) load: This case is utilize TEEE
node-14 as a test system at variables (heavy) loads (when
p = 1.5). In this case the system loads, total generations
and power losses in this case are: P, = 444.9 MW and
Qpag = 198.1 MVAR; P, = 4950 MW and Q ;= 331.0
MVAR; P, = 5007 MW and Q,, = 190.5 MVAR,
respectively. In this system there are 3 voltages at nodes

—— Before PSO and CPSO
—— After PSO
—— After CPSO
.. Average before PSO and CPSO
.. Average after PSO
......... Average after CPSO
1.14
112 |
1.10 |
~ 1.08
=
o
o 106
g
g 1.04
1.02
1.00 |
0.98 *

BusNo.

Fig. 10: Voltage profile of IEEE 30-node system at light
load
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Iteration

Fig. 11:Convergence of IEEE 30-node system with
origimal PSO algorithm at heavy load (Minimum
real power loss)

26, 29 and 30, respectively, outside the limits and these
Voltages mpuare V,,=0.939, V,,= 0.949and V,, = 0.930.
From this case, conclude that the losses are increased
when the load is increasing and the voltages are
decreasing. The simulation results for this case and
comparison with origmal PSO algorithms which are
tabulated in Table 7. Figure 11 and 12 show the
convergence characteristic for original PSO and CPSO
algorithms, figures that the
convergence characteristic of CPSO best and reached the
optimal solution in less iterations than original PSO.
Figure 13 shows the voltage profile for this case after and
before original PSO and CPSO algorithms and from this
figure, it 1s clear that the average voltage at imitial is about

from these indicate

2120



J. Eng. Applied Sci., 14 (7): 2112-2123, 2019

47.5 ...... E ....... — e —— : ....... g T i :. ...... :

Y U S N VR AU SRS SN SR S S

Real power loss (mW)

455 L.

45.0

i i ! ! i i 1 ] i i
0 20 40 60 80 100 120 140 160 180 200

Iteration

Fig. 12: Convergence of TEEE 30-node system with CPSO

algorithm at heavy load
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Fig. 13: Voltage profile of IEEE 30-node system at heavy
load

0.999 and at PSO is about 1.023 and at CPSO is about
1.030 and all voltages of the system are inside the limits
after CPSO and original PSO algorithms. The reduction in
Power Losses (P) are 10.5% at CPS0O, 10.1% at PSO
algorithms. From the simulation implications indicate that
CP3S0O algorithm has high ability and reliability in solving
complex problem in power system than original PSO.

CONCLUSION

In this study, original PSO and CPSO algorithms are
employed for solving reactive power optimization problem
which is considered as non continous optimization
problem with contaimng numbers of equality and
mequality constrains. The goal of utihzing objective

function are to decreasing of active Power Loss (Py) and
voltage profile enhancement of the power system through
a proper control for the reactive power devices. In this
study, the chaotic strategy merged with PSO algorithms
in order to prevent plunge into the local minima at the
premature convergence due to the high ability and
ergodic of the chaos strategy than random search in
original PSO technique and to get rapid convergence to
the global solution. In order to evaluate and test these
two algorithms, TEEE node and standard power systems
are utilized as a test system. Also mn this study employed
two types of loads mn order to test the proposed
algorithms for solving this problem at any change in loads
because the loads are variable from time to time and these
two types of loads are: constant (light) load and variable
(heavy) load and concluded that when the loads are
increasing the losses also will increasing and the voltage
will decreasing as discussed in the results. From
simulation mmplications, proved that CP3O algorithm 1s
best performance, lugh ability, high speed in convergence
characteristic, also obtains lesser loss reduction with less
number for iterations and obtains optimal settings of the
independent variables than original PSO algorithm and
other reported algorithms for light load and best than
original PSO technique for heavy load. Also, the results
indicate that CPSO algorithms has high flexibility,
effective and robustness for solving complex and non-
continuous problem m the power system and 1t 1s believed
that CPSO will encouraging as algorithm for future
research for displaying a fruitful implication.
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