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Abstract: Automated kinematic synthesis 1s still a raw material and researchers have to research more in this
critical stage of the design process. Graph theory intensively has used in this field of science but in this study,
it has been used in a very different way to present a new, simple, abstract and automated method to construct
optimum kinematic synthesis for a robot. The new presented methoed 1s intended for robot manipulator with
revolute joints and it 15 based on the heuristic graph formation principle. In this research, ant colony
optimization algorithm and graph theory toolbox have introduced as tools to improve the heuristic path or graph
before mapping to the equivalent kinematic synthesis of the robot. Two practical examples were presented to

prove the efficiency of the new method.
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INTRODUCTION

Kmematic synthesis for robot arm 1s a crucial step in
robot arm design 1t precedes all the next kinematic and
kinetic analysis. Kinematic synthesis is divided into
sublevels type synthesis which 1s choosing the optimum
topology and dimensional synthesis which 1s estimating
the optimum dimensions of a specific type. The two levels
have been chosen depending on the designer ambiguity
and experience. Also, many researchers try to make the
kinematic synthesis as an automated process. There were
many heuristic methods and numeric optimization
framework and (Liu and McPhee, 2007 ) 1s well reviewed
these works and has introduced an evolutionary method
using the Genetic algorithm and the incidence matrix from
graph theory to find the optimum type and dimensional
synthesis. Oliva and Goodman (2010) is an extension to
L research and has used convertible agents and an
evolutionary algorithm. Also, Pucheta and Cardona
(2013) is well reviewed prior works and introduced a
method based on graph theory to enumerate the
topological alternatives and has used precision position
method to dimension the feasible alternative. In this
study, a simple automated method was presented to find
the optimum topology as well as the optimum dimensions
of a robot arm for a prescribed task. The new method is a
graph theory based and works under some himitations will
be described later, it says that the plarmed graph from the
base point to the task point can be mapped (under some

limitations) to an equivalent kinematic synthesis of a
robot with a configuration as the same as the generated
graph. The procedure 1s described in details and two
practical examples are presented and the resulted
synthesis are simulated by 3D package software for the
prescribed task.

MATERIALS AND METHODS

Graph theory: The first form of this theory was
established by Leonhard Euler (Thiele, 2005) while trying
to solve the seven bridges of Konigsberg problem in
Fig. 1, this problem had asked for a path that can be cross
over all the seven bridges such that each one should be
crossed once. Graph theory (West, 2001 ; Bollobas, 2013)
will be explained briefly in the following section

Definitions: The proposed solution in this research 1s
based on the graph theory principles, so, we have to
explain some terminologies in this field of science briefly
that are useful in this text.

Graph: A collection of sets of Vertices V and Edges E is
called graph and can be described by the triple (V, E, g).
V 1s always nonempty set while E could be empty set. g 1s
mapping called incidence mapping and for each edge, e €
E there 1s subset g (¢) = {u, v} where uand v are vertices.
Figure 2 explains an example of a graph with four vertices
v,-v, as well as four edges e, -e,.

Corresponding Author: Doaa Mahmood Badr Ali, University of Kufa, P.O. Box 21, Najaf, Iraq

197¢



J. Eng. Applied Sci., 14 (6): 1976-1984, 2019

Fig. 2: Graph representation

Incidence: Consider Fig. 2 every edge is said to be
incident with the vertices that it connects, so, edge e, is
mcident with vertices v, and v,. Also, the vertex 1s said to
be incident vertex if it belongs to one or more edges, so,
v, is incident with edges e, and e,.

Adjacent vertices: Vertices are said to be adjacent 1f the
same edge connects them, for example, v, 1s adjacent to
v, and v,.

Adjacent edge: The edge 13 said to be adjacent to another
if they have a common vertex, for example, e, and e, are
adjacent edges.

Self-loop: An edge has the same end vertices, for example,
e, in Fig. 2.
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Fig. 3: Grid used by A*algorithm to reach the goal

Parallel edge: An edge shares its end vertices with
another edge, e, in Fig. 2.

Graph formation: A graph 1s a set of points m the space
it describes many different physical quantities versus
others like pressure and temperature, strain and stress,
etc., in this research we will take consider the graph which
describes the path of a moving particle in a constrained
space. One of the methods of generating such a graph is
heunstic methods like A-star algorithm (Hart ef al., 1968)
{Ghafil, 2013).

A*search: Tt deals with the searching area as a grid
collection and generates a path between two given points.
Figure 3 illustrates how the algorithm chooses next grid
poimnt in the way to the goal. The algorithm starts from
(start) point and selects the mimmum cost gnid point
according to the equation:

f(n) = h(n)+g(n) (1)
Where:
f(n) = The cost of the
(n) point, h(n) = The distance the successor and the
current points
g(n) = The distance between the successor

and goal points

Problem identification: Consider the problem of graph
formation which is illustrated in Fig. 4. The search space
is limited from 0-30 in both x and y-axis and A*should
plan a graph between the start and task points avoiding
the circular obstacles. It is obvious that the generated
graph is zigzagged and containing many unnecessary
segments. Thus, the next resaerch is to find a
solution to this problem and improve the quality of the
heuristic path.
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Fig. 4: Graph formation in constramed Cartesian space

Problem discretization: The proposed tools to improve
the heuristic graph is based on the discretization of the
contimious points on the graph mto a combinatorial
problem which is a graph theory problem. The procedure
can be explained as follows.

Consider the unacceptable graph m Fig. 4, the graph
consists of a series of points in the Cartesian coordinates
and each point has a slop which is defined by:

m =L (2)
Xi+1_x1
I=1, ..., n where nis the number of points consisting

the graph and m is the slope of the graph at point i. For
each point on the graph, calculate the slop using (Eq. 2)
where 1 indicates the index of the current point and i+1
indicates the index of the next point on the graph.

The Heuristic graph is segmented straight lines, thus,
whenever there is a change in the slop value on the graph,
9set a node or vertex as illustrated in Fig. 5. The vertices
are numbered for illustration purpose and no matter if they
are not numbered.

Add segments or call it an edge among all the
vertices, it 1s very important that the connecting edge
does not collide with any obstacle in the Cartesian space.
The resulted object which is shown in Fig. 6 is a
simple directed graph there is no parallel edges
and no self-loops.

In this way, we had discretized the problem and
mapped it into a combinatorial problem which is
defined in graph theory literature as finding shortest
path on a graph where starting point for our example 1s
vertex (1) and ending pomt 1s vertex (11) Fig. 6. Many
algorithms were dealt with finding the shortest path
on a graph like Dijkstra algorithm (Dijkstra, 1959),
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Fig. 5: Vertices on the graph represent the points of
changing the slop
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Fig. 6: The resultant simple graph after adding possible
edges between vertices

Bellman-Ford’s algorithm (Cherkassky et al, 1996),
Floyd-Warshall algorithm (Swathika and Hemamalini,
2017), Tohnson’s algorithm (Pettie, 2002). Tn this research,
the proposed optimization tools to find the shortest path
on the graph are graph theory toolbox in MATLAB and
ant colony optimization algorithm.

RESULTS AND DISCUSSION

Ant algorithm: Ant algorithms are designed for
combinatorial problems; Tt is perfect for finding the
shortest path on the graph this is ant algorithms are one
of the solutions to improve the heuristic path problem
shown in Fig. 6. Ant algorithm can be explained as
follows: consider Fig. 7, assume a barrier put at the path
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Fig. 7. How ants choose their path: a) Ants meet barrier
on their way; b) Randomly some of the ants go to
the left or right the barrier, Ants deposit
pheromone while walking, ¢) Because of the
evaporation, the long path will have less
pheromone than short path and d) By time
pheromone concentration which is represented
by the dashed line will be high on the short
path and this will be a temptation for anfs to
follow it

barrier they have to decide which path they have to take.
Initially there is no information about the new path, so,
some of the ants go to the left and some go to the right of
the barrier and while they are moving, they deposit a
pheromone. Ants who take the long path should spend
more time than ants who take the short path and the
evaporation rate of the pheromone is a function of time.

Consequently, the concentration of the pheromone
on the short path will be greater than what is on the long
path. This is a gradual process happening over time and
for each time cycle, ants follow, probabilistically, the path
of more pheromone. By the time, ants abandon the long
path due to its poorness with pheromone.

Ant system: Ant system (Dorigo, 1992) or just as can be
illustrated as follows: artificial ants make a tour over
points in a graph and this tour is just segmented lines
connecting the points. Each segment has two quantities
the length of the segment (cost) and the pheromone, the
later npdated contimiously during runtime. Ants choose
the next point on the graph according to the probabilistic
rule called state transition rule:

aplnGail . .
f )]
P, = JZ()[*c(i,u)][[na,u)]]l DO
0 otherwise

r__—e—”a.v’
v,

1

Fig. 8: Edge representation

Where:
T = The pheromone on the segment which is connecting
pointiand j

n = The inverse of the distance between pointiand j

- @
8(i, )

I, (I} set of points that have to be visited by the ant
m which is positioned at point i and u is the set of all
points of the tour.  is weighting parameter control the
importance of the cost with respect to the pheromone.
When all ants generate their tour among points, the global
update rule is implemented to update the pheromone
values using the equations:

Ti.j) = (1-&)*r(i,j)+i AT, (i.j) &)
m=1
Lt pen
AT G =11, ©®
] otherwise

where, O<<1is the pheromone decay parameter and L., is
the length of the path generated by the ant m. N is the
total number of artificial ants. Glabowski ef . (2012) has
solved the problem of the shortest path on a graph using
ant colony optimization in details.

Graph theory toolbox: Graph object was introduced in
MATLAB, since, R2015b and it contains many useful
functions in graph theory calculations. Consider solving
the problem in Fig. 6 where we have to find the shortest
path from the start point of the graph (vertex 1) to the
endpoint of the graph (vertex 11). The procedure can be
described as follows.

Arrange the data of the directed graph in the form:
It is important to order the edges correctly starting
from the first edge and proceeded in the direction of the
final edge on the graph also for a specific edge, The
first vertex should be directed to the second vertex,
for example, the edge in Fig. 8 should be represented
as e =(v,, vy

- Make the sparse matrix using sparse ( ) function
using the following syntax
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D6 = sparse(vertex 1 ID,vertex Z ID,weight,11,11)
h = view(biograph(DG, [], "Showweights', 'on'))
[dist,path,pred] = graphshortestpath(DG,1,11)
set (h.Nodes(path), 'Color’, [1 0.4 0.4])
edges = getedgesbynodeid(h,get(h.Nodes (path),'ID"));

set (edges, 'LineColor', [1 0 0])
set(edges, 'LineWidth',1.5)

Fig. 9: Code smippet for the shortest path

Table 1: Directions of edge

Table 3: Weights of the edges in the directed graph

Edges Vertex 1 Vertex 2 The weight of edge (length)
Start edge - - -

Tntermediate edges

Final edge

Table 2: Coordinates of the ordered vertices

Vertex ID X-axis y-axis
1 29 29
2 28 28
3 28 27
4 27 26
5 27 21
6 20 14
7 18 14
8 10 &
9 10 3
10 8 1
11 2 1

¢ Sparse (vertex 1 column, vertex 2 column, weight
column, . n ) where n is the maximum number m the
column vertex 2

*  Use graph shortest path ( ) to find the shortest path
on the graph by the following syntax

[dist, path] = graph shortest path (sparse matrix,
starting vertex, goal vertex) where dist is the total length
of the improved graph and the path 1s a set of ordered
points to represent the improved graph. It 15 worth to
mention that graph shortest path is based on Dijkstra
algorithm and achieves the best walk from vertex to vertex
over the given segments, so, it is impossible to jump from
the start point to the endpoints because in this case there
1s no walk,

Example: Consider improving the graph in Fig. 4. From
step 1-3 in 3, we can determine the nodes (vertices) where
the graph changes its slop. Figure 5 illustrates the results
where there are 11 vertices and they should be arranged
with their coordinates in a matrix in correct order {rom 1-11
as shown m Table 1 and 2.

From step (4) in 5, estimate all the possible edges that
comnect vertices i Table 1 without colliding with
obstacles in the search space. There should be 19 ordered
edges and dmected from vertex 1 (start point) in the
direction of the vertex 11 (goal point ) and data should be

EdgeID Vertex 11D Vertex 21D Weight
1 1 2 1.414
2 1 3 2.236
3 1 4 3.605
4 1 5 8.246
5 2 3 1.000
[ 2 4 2.236
7 2 5 7.071
8 3 4 1.414
9 3 5 6.082
10 4 5 5.000
11 5 6 9.899
12 5 7 11.401
13 6 7 2.000
14 7 8 11.313
15 7 9 13.601
16 8 9 3.000
17 9 10 2.828

held in the matrnix as shown in Table 2. The length law can
calculate the weight of the edge which is the length
between its vertices and the results should be as in

Fig. &:
Weight = (Xz'x1)2 +(Y2 ¥, )2 (7)

Calculate the sparse matrix using sparse ( ) by
assigning second, third and fourth columns of the matrix
which s shown m Table 2, n 1s the maximum number 1n the
third column (vertex 2ID) and has a value of 11. The
shortest path can be estimated by assigning the sparse
matrix, start vertex and goal vertex to graph shortest path
function, the following code snippet in Fig. 9 can be used
to for the above mentioned procedure: the result should
be as m Fig. 10. Figure 11 illustrates the original graph
versus the improved one where the improved graph has
a total length of 41.4956 while the total length of the
original graph is 43.8701.

Practical application; Kinematic synthesis (Liu and
McPhee, 2007): Selecting the best mechanism among
enormous proposed choices 1s still an open field
and all the achieved researches are limited and
no one has introduced a complete formulation or
systematic solution. The following procedure should be
followed o conduct a kinematic mechanmism synthesis
(Table 3):
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Fig. 10: Shortest path on the directed graph
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Fig. 11: Improved graph versus original graph

¢ Define the task of the mechanism
*  Construct the type synthesis
*  Evaluate the dimensional synthesis

For a specific task, the selection of the optimum
topology for a mechanical structure 1s called type
synthesis while estimating the optimum dimensions and
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Fig. 12: The cormresponding robot configuration to the
improved heuristic graph

inertial properties for a specific topology is called
dimensional synthesis. Selection the optimum topology 1s
done according to the following requirements:

¢ The nature of the moving mechanism, for example,
the rotated linkages are different from translated
linkages

»  The degree of freedom of the mechamsm

»  Number of the discrete outputs where each output
has a single or multitask purposes

¢  The nature of the required task, a single task or
multitask or generally how many tasks are required
from the mechanism.

»  The complexity of a specific task

Designers usually give equal aftention to the
constraint as well as the above mentioned requirements.

Proposed method: This research article is presenting a
simple automated method to find the best kinematic
synthesis at both type and dimensional levels. The
abstract idea is that the path planned from a start point to
the task point is equivalent to the kinematic synthesis for
the robot arm at a specific configuration. Consider Fig. 11
where the hidden line 1s the improved heuristic graph,
the method maps all the nodes on the graph to joints on
the robot configuration and maps all segments on the
graph to links on the robot. Figure 12 illustrates the
corresponding robot type to the mmproved graph where
the robot base frame is corresponding to the start point
on the graph and the end-effector coordinate frame is
corresponding to the task or goal point on the heuristic
path. Also, it 1s worth to mention that this method works
under limitations which are evaluated depending on the
designer ambiguity:
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Fig. 13: Case study 1 problem where the rod block 1s an
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Fig. 14: The planned graph between the base and task
points in the C-space

¢ The workspace should have a relatively low number
of constraints

*  The coordmates of the base and task pomts should
be selected carefully

¢  The method provide a solution for a single task
kinematic synthesis problem, thus, for mult tasks
problem, greedy selection may be used to select the
best type that meets all the requirements

Case study 1: Figure 13 explains the case study that will
be used to test the proposed approach where according
to the requirements of design the base and task points
and constrained obstacles are defined.

Firstly the A-star algorthm makes its way starting
from the base pomnt to the task pomnt avoiding obstacles
in the configuration space denoted by the red block. The
blue line in Fig. 14 expresses the path between the two
points where the type of the robot should follow. Tt is
obvious from Fig. 14 that this path does not represent
optimally planned one.
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Fig. 15: setting nodes at places of slope directions
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Fig. 16: Resulted directed graph

The next step is tracking the planned path seeking for
these points at which the slope get changed and set
nodes at these places. For the requirement, start and end
points have considered nodes it 1s like the rotation DOF
for the end-effector. Figure 15 shows the noded line where
each black squares indicate a node.

The refinement step is needed where we have a set of
ordered nods describing a directed graph with vertices
and edges are illustrated in Fig. 16 which is an ordinary
graph theory problem.

By calculating the weights of the edges which they
are the distances between nodes and apply Dijkstra’s
algorithm for the shortest path which has embedded in
MATLAB from Version R2015b. Figure 17 explains the
shortest path on the graph denoted by the reddish
line.

The resulted path is equivalent to the robot type and
dimensionality. Figure 18 explams the simnulation
model of the solved robot using CAD file package
3DS MAX.
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Fig. 17: The shortest path on the graph estimated by
Dijkstra

11 Omamn
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Fig. 18: CAD file for the robot type and dimensionality
given by the proposed approach
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Fig. 19: The planned path for case study 2

Case study 2: A more complicated environment for the
robot has suggested . Fig. 19 where the robot has to
move among obstacles which they are denoted by red
block. After defining the design recquirements and
condition, the solution can be seen as in Fig. 20-23. In this
case study, one of the requirements 1s maximum link
length should not exceed some limits otherwise the
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Fig. 20: Noded path
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Fig. 21: Possible segments between nodes in the path of
case 2
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Fig. 22: Mimimum segments needed for the task point
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Fig. 23: CAD simulation for the resulted robot of case

automatic approach m this research has to break the link
mto two equal parts. Figure 22 shows the 3D simulation
for the resulted robot for this situation

CONCLUSION

A new automated, graph theory based method for
kinematic synthesis was presented in this research. The
heuristic graph was generated using A star search
algorithm between the start and task points. Two tools to
improve the heuristic path was introduced which are ant
colony system and graph theory toolbox. The improved
graph 1s mapped to the comresponding kinematic
synthesis where graph start point represents the
base frame of the robot, the task point on the graph
represents the end-effector position, nodes on the
heuristic path represents the revolute joints on the robot
configuration and line segments on the graph represent
the links of the robot. The proposed method provides a
systematic automated way to predict the optimum type
and dimensional synthesis of a robot but still needs the
designer ambiguity to get the feasible solution and the
door is open for future research. Two examples were
presented to find the optimum planar robots for a single
task and the results are perfect.
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