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Abstract: The problem of SDOF response under harmonic load is usually faced the engineers in their design
life. SDOF represents many structures m practice such as elevated liquid tower or tank. Any equipments or
machines mside structure can exert a harmonic loading on the structure itself. The objective of this research
18 to find the complete solution to the differential equation of SDOF structure under sinusoidal loading. Further,
state when the designer or mathematician can neglect the homogonous part of the total solution and when this
part has a significant effect on the total solution. In this study, mathematics of the differential equation for
particular solution 1s extended to include the homogenous solution. MATLAB was used to plot the
homogenous, particular and the total solutions for the covering differential equation. Many solution variables
(excitation frequency, loading frequency ratio and viscous damping ratio) were used to test the results obtained
and generalized the solution. From the data collected, it was concluded when the homogenous selution part
was neglected from the total solution, the results will have an error which depends on the value of the damping
ratio and the time at which the total solution evaluated. If the value of the damping ratio is small, large window
of time required to minimums the error. While a small windows of time required when the damping ratio has a
larger values.
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INTRODUCTION

In all the engineering dynamic of structures books,
when they reached to the subject of the response of
Single Degree of Freedom (SDOF) under harmonic
loadings, they only stated that the homogonous part of
the solution (transient component) vanished due to the
presence of the exponential factor, leaving only the
particular part (steady-state motion component) as
illustrated in structural dynamic boolk like the one that
authorized by Paz (2004). Clough and Penzien (1993) wrote
in their book dynamic of structure that the homogonous
part of the total solution of response of SDOF which
represent the transient response which damps out in
accordance with exponential factor while the second
term  represents the steady-state harmomic response
which will continue indefinitely. As known, there are
many applications on the SDOF system under smusoidal
loading in the literature but unfortunately most of the
previous studies were neglecting directly the
homogonous part from the total solution and their
solutions are depending only on the particular one
(Gattulli et al., 2004, Pandey and Bempal, 20086

Peng et al., 2007; Kavitha et al., 2016). The one important

work 1n this field was done by Gil-Martin et al. (2012)
which tried to include the transient part to the total
solution especially for un-damped systems.

The well-known analytical solution for the steady
state response of a SDOF system under harmonic loading
1s described n many structural dynamics textbooks. The
reason of this study 1s the complete solutions that include
the transient part and the only steady-state can differ
significantly n some circumferences for both damped and
un-damped systems. The objective of this study is to find
an analytically expression for the SDOF system under
sinusoidal loadings to the complete solution (steady state
part plus transient part) for both damped systems. Further
aims of this research are to determine when we can
neglect the homogonous part without an appreciated
ITOr.

MATERIALS AND METHODS

The covering differential equation that represents the
response of a damped Single Degree of Freedom (SDOF)
system under sine harmonic loading is given as (Chopra,
2007):

Mii{t)+Cat)+Ku(t) = P, sinwt (1)
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Knowing that, the parameters of above equation can
be defined physically as: M is the mass of the system, C
15 viscous damping coefficient, K 1s the stiffness of the
system, P, and W are the peak of the sinusoidal sine lead
and its leading frequency, respectively. Whereas the
other parameters can be defined physically as follow:

u(t) = Displacement time history of the SDOF system
u(t) = % = Velocity time history of the system

2
i(t) = % = Acceleration time history of the system

Equation 1 is a second ordinary linear differential
equation with constant coefficient. The general total
solution of this equation can be written as (Kreyszig,
2011

u(t)=u,(t)+u (t) (2)

where, u(t) 1s the total solution of Eq. 1 while both u,(t)
and ut) represent the homogonous solution part and
particular solution part of Eq. 1, respectively. Tt is known
that, the homogonous solution part of Eq. 1 means the
solution of the followmg homogonous differential
equation:

Mii, (t)+Cu, ()+Ku, () =0 (3

The solution of Eq. 3 18 well known and can be
written for under damped system (when the viscous
damping ratio is less than one) which represents the
actual situation of building engmeering problem as
(Villaverde, 2009):

u, (t) =e™ (¢ sinw t+o, coswt) 4)

where, £ 18 defined as a viscous damping ratio which 1s
equal to C/C, C,. =2 MW is defined as the critical viscous
damping coefficient, w i3 the non-damped natural
frequency of the system and w, - wy/i-€ 1s damped natural
frequency of the system. The particular solution part of
Eq. 1 means the solution of the following second order
differential Eq. 5:

Mii, (t)+Cu, (H)+Ku, (t) =P, sin %t (3

Mathematic says the general solution of Eq. 5 can be
written as (Chopra, 2007):

u, (t) =G, sinwt+G, coswt (6)

Differentiate Eq. 6 once and twice and by
substituting the differentiable functions into Eq. 35 and
after arrange and simplify the terms, G, and G, can be
written as (Kreyszig, 2011):

SR .- @

K| (1-p )2 +(22B)’

where, B=%/% which is called the excitation or loading
frequency ratio and:

G- =B ®
K (1-52) +(28R)

By substituting Eq. 7 and 8 mto Eq. 6 with suitable
arrangements, then the particular solution part
representing into Eq. 6 becomes (Craig and Kurdila, 2006):

P /K

)y o] @

uP (t) =

Adding Eq. 4 and 6 together to collect the total
solution of the differential equation of SDOF system
under harmonic loading as given in Eq. 2, the result yields:

u(t)= et (¢ sinwt+c,cosw,t)+

P /K N )
g gy e

(10)

Let us evaluate the constants ¢, and ¢, at specific
initial conditions which are named physically at rest initial
conditions. Mathematically at time equal zero; Both total
initial displacement and velocity are equal zero. Simply
from the first imtial condition (zero displacement at time
equal zero), ¢, will be as:

‘) :M an
(1-[32) +(2EB)

Te find ¢, differentiation of Eq. 10 is necessary to
find the velocity time history which represents the total
velocity response. The differentiation of Eq. 10 with
respect to time will be as:

U(t) =-Ewe ™ (¢, sinwt+e , coswt )+

et )
e (¢, w, coswt-c, wysinw t)+
P /K

[(1-[32 )2 +(2§B)2J

(12)
[(1-[32 )WoosWHzaBﬁfsmm]
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Now, applying the second initial condition (zero
velocity at time equal zero) with suitable simplification, ¢,
can be written as:

€ = B(P°/K) g2 (1
1 [(1-62)2+(2g5)1[2 ( )} (13)

So, after substituting Eq. 11 and 13 mto Eq. 10, the
total clear (without any constants) solution can be written

: B(P, /K) (1
e
u(t)=e™ E[(l_ﬁ ) +(28B) J .
SinWDHMCOSWDt (14
(1_82)2 ""(2&.6)2
P /K N )
o) ey e

Equation 14 represents the total solution to the
differential equation of SDOF response under harmonic
loading (Eq. 1) in term of both hom ogenous and particular
parts. It 1s difficult to study the effect of the first part
(homogenous part) of Eq. 14 analytically unless drawing
this function by suitable and flexible function drawings
software such as MATLAB as used m tlhis work. For
generality purposes, Eq. 14 can be written as:

u(t)=(P, /K)R(t) (1)

where, R (t) is called a resistance function which may be
defined as the total displacement time response for unit
(P,/K). Really, the resistance function is depended on £,
B and W which are classified as uncoupled variables.
Knowing that w, W, and % are each related with other by

Eorp.
RESULTS AND DISCUSSION

MATLAB was used in this research to draw Eq. 14 in
term of the resistance function defined by Eq. 15. The
drawings are divided mainly into three stages; The
homogonous part of the total solution, the particular part
of the total solution and the total solution itself. These
stages are drawn based on the solution variables listed in
Table 1. Three values of the excitation frequencies were
used as in Table 1 which is simulating the real practice
situation of low, medium and hgh loading frequencies.

Table 1: Sohition variables

w_(rad/sec) G 14

20 0.7 0.02
0.04
0.06
0.08

0.04
0.06
0.08

0.04

0.06

0.08

200 0.7 0.01
0.04

0.06

0.08

1 0.01
0.04

0.06

0.08

2 0.01
0.04

0.06

0.08

2000 0.7 0.01
0.04

0.06

0.08

1 0.01
0.04

0.06

0.08

4z 0.01
0.04

0.06

0.08

For each one of loading frequency, three values of
excitation ratios were taken into account which represent
that the natural frequency of the system 1s larger, equal
and less than the excitation frequency. Finally four
different values of viscous damping ratios were
incorporated m  this  analysis. These
descending from the low, mtermediate to high value as
shown in Table 1.

Figure 1-3 show the variation of the resistance

values are

function with time for homogenous, particular and total
solutions, respectively. Fig. 1 represents the time history
of homogenous part of the total solution of SDOF
response under harmonic loads for four values of viscous
damping (£ =0.02, 0.04, 0.06 and 0.08) at specific excitation
frequency ® = 20 rad/sec and at specific excitation
frequency ratio B = 0.7. Tt was observed from this figure
that all responses follow similar pattern for all values of £.
The maximum response occurs at time approach zero and
then the response decreases as the time is increasing. It
1s also shown as the viscous damping ratio mcreases, the
time required to make the response approach zero 1s
decreasing. For example at £ = 0.02 the response approach
zero at time equal 7 sec. while only 2 sec required to
vanish the response at £ = 0.08.
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Fig. 1: Resistance function of homogenous solution for W =20rad/sec and p=10.7: a) £=0.02, b) £ =0.04; ¢) £ = 0.06 and
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Fig. 2: Resistance function of particular solution for ¥ = 20 rad/sec and p=0.7: a) £=0.02; b)£ =0.04; ¢) £ = 0.06 and
dE=008
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Fig. 3: Resistance function of total solution for™w = 20 radfsec and p = 0.7: a) £ = 0.02; b) £ = 0.04; ¢) £ =006
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Fig. 4: Variation of: a) Zero response and b) Maximum response with £ and P at ¥ = 20 rad/sec

Figure 2 shows the time history of the particular
solution part for four values of £ at™ = 20 rad/sec
and at P = 0.7. This figure clearly indicates that this part of
solution is in steady state. The total solution (both
homogonous and particular parts) variation with time for
the same above parameters (£ = 0.02, 0.04, 0.06 and 0.08)
(% =20 rad/sec) and (P = 0.7) is illustrated in Fig. 3. Itis
obvious from tlhis figure that the mfluence of the
homogonous part on the total solution 1s marked at the
beginning of time. Then, the homogonous part that called

transient part 13 become negligible after a sufficient time
window. The size of window depends on the value of
viscous damping ratio. When £ has a small value, large
window of time required avoiding the effect of transient
part of solution and small window required when has a
large value.

Figure 4-7 show the homogenous part varation of
zero response and maximum response with respect to
four values of viscous damping ratios (£ = 0.02, 0.04, 0.06
and 0.08) and for two values of excitation frequency ratios
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required a large time window for all low, medium and high
loading frequencies. While the maximum response, at

same values of B and for all values of ¥ decreases as the

1.5
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viscous damping is decreasing. Finally, Fig. 7 illustrates
the zero response and maximum response of homogenous
part variation with £ and for three values of excitation
frequencies (% = 20, 200 and 2000 rad/sec) at p =1. The
zero response 1s follow the same pattern for other value of
P greater or less than one. While the maximum responses
are identical for all the previous three values of #

CONCLUSION

According to above results and discussion, the
following scientific points can be concluded: Canceling
the homogenous solution part from the total solution of
the response of SDOF system under harmonic loading
resulted 1n small error which depends on the value of the
damping ratio and the time at which the total solution
found. If the value of the damping ratio is small, large
window of time required to minimums the error. While
small windows of time required when the damping ratio
has a larger values.
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