Journal of Engineering and Applied Sciences 14 (6): 1710-1713, 2019

ISSN: 1816-949X

© Medwell Journals, 2019

A Pseudo B-Ideal, Pseudo H-Ideal and a Pseudo Essence of a Pseudo BH-Algebra

Husein Hadi Abbass and Adel Hashem Nouri
Department of Mathematics, Faculty of Computer Science and Mathematics,
University of Kufa, Kufa, Iraq

Abstract: In this study, we define the notion of a pseudo B-ideal, a pseudo H-ideal and a pseudo essence of a pseudo BH-algebra. Also, we study some properties and relationship between them.

Key words: BH-algebra, ideal of BH-algebra, pseudo BH-algebra, pseudo ideal of a pseudo BH-algebra, pseudo B-ideal, pseudo H-ideal, pseudo essence, pseudo 0-commutative, pseudo G-part, pseudo BCA-part, pseudo closed ideal

INTRODUCTION

Jun et al. (1998) introduced the notion of BH-algebra which is a generalization of BCH-algebra and the notion of ideal of a BH-algebra. Kim and Ahn (2011) introduced the notion of essenceof BH-algebra. Abbass and Dahham (2012) introduced the notion of completely closed ideal of a BH-algebra. By Abbass and Mahdi (2014) introduced the notion of a closed ideal, p-ideal, q-ideal to a BH-algebra and BCA-part. Jun and Kim (2015) introduced the notion of a pseudo BH-algebra.

MATERIALS AND METHODS

In this sudy, some basic concepts about a BH-algebra, ideal of BH-algebra, essence BH-algebra, 0-commutative BH-algebra, G-part of BH-algebra, BCA part of BH-algebra pseudo, BH-algebra, pseudo subalgebra of a pseudo BH-algebra and pseudo ideal of a pseudo BH-algebra are given.

Definition 1; Jun *et al.* **(1998):** A BH-algebra is a nonempty set \mathfrak{X} with constant 0 and a binary operation "*" satisfying the following conditions:

- $x^*x = 0, \forall x \in X$
- $x*0 = x, \forall x \in X$
- $x^*y = 0$ and $y^*x = 0 \Rightarrow x = y$, $\forall x, y \in \mathfrak{X}$

Definition 2; Abbass and Dahham (2012): A nonempty subset S of a BH-algebra \mathfrak{X} is called a subalgebra of \mathfrak{X} , if for any x, y \in S, we have $x^*y\in$ S.

Definition 3; Abbass and Dahham (2012): A BH-algebra \mathcal{X} is said a 0-commutative if : x^* (0*y) = y^* (0*x). For all x, y, $z \in \mathcal{X}$.

Definition 4; Abbass and Mhadi (2014): Let \mathfrak{X} be a BH-algebra. Then the set $G(\mathfrak{X}) = \{x \in \mathfrak{X} : 0^*x = x\}$ is called G-part.

Definition 5; Abbass and Mahdi (2014): Let \mathfrak{X} be a BH-algebra. Then the set $\mathfrak{X}_+ = \{x \in \mathfrak{X} : 0^*x = 0\}$ is called the BCA-part of \mathfrak{X} .

Definition 6; Kim and Ahn (2011): Let, \mathfrak{X} be a BH-algebra. For any subsets G and H of \mathfrak{X} , we define $G^*H = \{x^*y: x \in G, yy \in H\}$.

Theorem 1; Kim and Ahn (2011): Let a subsets A, B and E of a BH-algebra, we have:

- $A \subseteq B \Rightarrow A^*E \subseteq B^*E \text{ and } E^*A \subseteq E^*B$
- $(A \cap B)^*E \subseteq (A^*E) \cap (B^*E)$
- $E^*(A \cap B) \subseteq (E^*A) \cap (E^*B)$
- $\bullet \qquad (A \cup B)^*E = (A^*E) \cup (B^*E)$
- $E^*(A \cup B) = (E^*A) \cup (E^*B)$

Definition 7; Kim and Ahn (2011): If A is a nonempty subset of a BH-algebra \mathfrak{X} satisfies $A^*\mathfrak{X} = A$, then A is called essence of \mathfrak{X} .

Theorem 2; Kim and Ahn (2011): Let \mathfrak{X} be a BH-algebra. Then every a essence of \mathfrak{X} is a subalgebra of \mathfrak{X} .

Theorem 3; Kim and Ahn (2011): Let \mathfrak{X} be a BH-algebra. Then, every essence of \mathfrak{X} contains the zero element 0.

Definition 8; Jun et al. (1998): Let, \mathfrak{X} be a BH-algebra and $I(\neq \emptyset) \subseteq \mathfrak{X}$. Then, I is called an ideal of \mathfrak{X} if it satisfies:

- 0∈I
- If $x^*y \in I$ and $y \in I \rightarrow x \in I$, for all $x \in \mathfrak{X}$

Definition 9: An ideal I of a BCH-algebra is called a closed ideal of \mathfrak{X} if for every $x \in I$, we have $0 * x \in I$. We generalize the concept of an ideal to a BH-algebra.

Definition 10: An ideal I of a BH-algebra \mathfrak{X} is called a closed ideal of \mathfrak{X} if: $0*x \in I$, for all $x \in I$.

Definition 11; Abbass and Dahham (2012): Let \mathfrak{X} be a BH-algebra and I be a subset of \mathfrak{X} . Then I is called a BH-ideal of \mathfrak{X} if it satisfies the following conditions:

- 0∈I
- $x^*y \in I$ and $y \in I$ imply $x \in I$
- $x \in I$ and $y \in \mathfrak{X}$ imply $x^*y \in I$, $I^* \mathfrak{X} \subseteq I$

Definition 12; Jun and Kim (2015): A pseudo BH-algebra is a nonempty set \mathfrak{X} with a constant 0 and two binary operations "*" and "#" satisfying the following condition:

- X*X = X#X = 0
- X*0 = X#0 = X
- $x*y = y\#x = 0 \Rightarrow x = y, \forall x, y \in \mathfrak{X}$

Definition 13; Jun and Kim (2015): Let $(\mathfrak{X}, *, \#, 0)$ be a pseudo BH-algebra, then a nonempty subset S of a pseudo BH-algebra \mathfrak{X} is called a pseudo subalgebra of \mathfrak{X} , if for any x, yeS, we have $x*y, x\#y \in S$.

Definition 14; Jun and Kim (2015): Let $(\mathfrak{X}, *, \#, 0)$ be a pseudo BH-algebra, then I is called pseudo ideal of \mathfrak{X} , if it satisfies:

- 0*∈*I
- $x^*y, x\#y \in I, y \in I \rightarrow x \in I, \forall x, y \in \mathfrak{X}$

Definition 15; Jun and Kim (2015): A pseudo ideal I of a pseudo BH-algebra \mathfrak{X} is called a pseudo closed ideal of \mathfrak{X} , if for every $x \in I$, we have 0^*x , $0^{\#}x \in I$.

RESULTS AND DISCUSSION

In this study, we define a new types of a pseudo ideals, a pseudo essence subset and a pseudo essence ideal of a pseudo BH-algebra. Also, we study some propostions to other some types of a pseudo ideals of a pseudo BH-algebra.

Definition 1: A pseudo BH-algebra \mathfrak{X} is said a pseudo 0-commutative if:

- $x^*(0\#y) = y^*(0\#x)$
- $x\#(0^*y) = y\#(0^*x)$. For all x, y, $z \in \mathfrak{X}$

Example 1: Let $\mathfrak{X} = \{0, 1, 2\}$ be a set with the following Cayley Table 1. Then \mathfrak{X} is a pseudo BH-algebra.

Table 1: Pseudo 0-commutative

*	0	1	2	#	0	1	2
0	0	1	2	0	0	1	2
1	1	0	1	1	1	0	2
2	2	1	0	2	2	2	0

Definition 2: Let X be a pseudo BH-algebra. Then that set $G(X) = \{x \in X : 0 \le x = 0 \ \#x = x\}$ is called a pseudo G-part of X.

Example 2: Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley Table 2.

Table 2: Pseudo G-part of ¥

	*	0	1	2	3	#	0	1	2	3
	0	0	1	2	3	0	0	1	2	3
	1	1	0	2	3	1	1	0	2	3
I	2	2	1	0	1	2	2	2	0	2
ĺ	3	3	3	3	0	3	3	3	1	0

Definition 3: Let X be a pseudo BH-algebra. Then the set $X_+ = \{x \in X : 0^*x = 0 \# x = 0\}$ is called a BCA-part of X.

Example 3: Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley Table 3.

Table 3: Pseudo BCA-part of ¥

*	0	1	2	3	#	0	1	2	3
0	0	0	0	0	0	0	0	0	0
1	1	0	2	3	1	1	0	2	3
2	2	1	0	1	2	2	2	0	2
3	3	3	3	0	3	3	3	1	0

Definition 4: A nonempty subset I of a pseudo BH-algebra \mathfrak{X} is called a pseudo B-ideal of \mathfrak{X} if it stisfies:

- 0∈
- $x^* (z \# (0^*y)), y \in I \text{ imply } x^*z \in I$
- x#(z-(0#y)), $y \in I$ imply $x\#z \in I$

Example 4: Let $X = \{0, 1, 2, 3\}$ be a set with the following cayley (Table 4). Then, X is a pseudo BH-algebra and let $I = \{0, 1\}$ be a subset of X, then, it is a pseudo B-ideal of X.

Table 4: Pseudo B-ideal of ¥

*	0	1	2	#	0	1	2
0	0	0	0	0	0	0	0
1	1	0	2	1	1	0	2
2	2	1	0	2	2	2	0

Proposition 1: Let, \mathfrak{X} be a pseudo BH-algebra such that $\mathfrak{X} = \mathfrak{X}_+$, then, every pseudo ideal of \mathfrak{X} is a B-ideal of \mathfrak{X} .

Proof: Let, I be a pseudo ideal of \mathfrak{X} and x^* ($z \# (0^*y)$), $y \in I$. For all $x, y, z \in \mathfrak{X}$. Since, $\mathfrak{X} = \mathfrak{X}_+ \to x^*$ (z # 0) $\in I$. Since, \mathfrak{X} is a pseudo BH-algebre $\to x^*z \in I$. Thus, $x^*z \in I$. Similarly, $x \# (z^*(0 \# y))$, $y \in I$ imply $x \# z \in I$. Hence, I is a pseudo B-ideal of \mathfrak{X} .

Proposition 2: Let \mathfrak{X} be a pseudo BH-algebra. If a pseudo B-ideal of \mathfrak{X} is a pseudo G-part of \mathfrak{X} then, it is a pseudo ideal of \mathfrak{X} .

Proof: Let, $\mathfrak X$ be a pseudo ideal of $\mathfrak X$ and let x^*y , $x^*y\in I$, $y\in I$. For all x, y, $z\in \mathfrak X$. Since, I is pseudo G-pert of $\mathfrak X\to x^*0\in I.\to x^*$ $(0\#(0^*y))\in I$ and $y\in I$. Since, I is a pseudo B-ideal of $\mathfrak X\to x^*0\in I$. Since, $\mathfrak X$ is a pseudo B-algebra $\to x\in I$. Similarly, $x\#y\in I$, $y\in I\to x\in I$. Hence, I is a pseudo ideal of $\mathfrak X$.

Proposition 3: Let \mathfrak{X} be a pseudo BH-algebra such that $y = z \# (0^*y)$ and $y = z^*(0 \# y)$, then every pseudo B-ideal of \mathfrak{X} is a pseudo ideal of \mathfrak{X} .

Proof: Let I be a pseudo B-ideal of $\mathfrak X$ and $x^*(z \# (0^*y))$, $y \in I$. For all $x, y, z \in \mathfrak X$. Since, $y = z \# (0^*y)$ then $x^*y, y \in I$ imply $x \in I$. Similarly, $x \# (z^*(0 \# y))$, $y \in I$ imply $x \in I$. Hence, I is a pseudo ideal of $\mathfrak X$.

Definition 5: A non empty subset I of a pseudo BH-algebra \mathfrak{X} is called a pseudo H-ideal of \mathfrak{X} if it satisfies:

- 0∈I
- $(x^*y) \# (x^*z) \in I \text{ and } y \in I \Rightarrow x \in I$
- $(x \# y)^* (x \# z) \in I$ and $y \in I \Rightarrow x \in I$. For all $x, y, z \in \mathfrak{X}$

Example 5: Let, $\mathfrak{X} = \{0, 1, 2, 3\}$ be a set with the following Cayley Table 5. Then, \mathfrak{X} is a pseudo BH-algebra and let $I = \{0, 1\}$ be a subset of \mathfrak{X} , then it is a pseudo H-ideal of \mathfrak{X} .

Table 5: Pseudo H-ideal of ✗

*	0	1	2	3	#	0	1	2	3
0	0	1	2	3	0	0	1	2	3
1	1	0	2	3	1	1	0	2	2
2	2	1	0	2	2	2	0	0	1
3	3	0	0	0	3	3	0	0	0

Proposition 4: Every pseudo H-ideal of a pseudo BH-algebra **X** is a pseudo ideal of **X**.

Proof: Let, I be a pseudo H^* -ideal of $\mathfrak X$ and let x^*y , $x \# y \in I$ and $y \in I$. For all x, y, $z \in \mathbb X$. Since, $\mathfrak X$ is a pseudo BH-algebra $\Rightarrow (x^*y) \in I = ((x^*y)\#0) \in I = (x^*y)\#(x^*x) \in I$ and $y \in I$. Similarly, $x \# y \in I$ and $y \in I \Rightarrow x \in I$. Hence, I is a pseudo ideal of $\mathfrak X$.

Definition 6: Le, $t \mathfrak{X}$ be a pseudo BH-algebra. For a subsets A and B of \mathfrak{X} , then A*B and A#B are defined as follows:

- $A*B = \{x*y: x \in A, y \in B\}$
- $A\#B = \{x\#y: x\in A, y\in B\}$

Proposition 5: Let, \mathfrak{X} be a pseudo BH-algebra.

- If 0∈B⊆ X. Then ∀B⊆ X, we have B⊆ A*B and B⊆A#B
- If $0 \in A \subseteq \mathfrak{X}$. Then $\forall B \subseteq \mathfrak{X}$, we have $B \subseteq A *B$ and $B \subseteq A \#B$

Proof: Let, $x \in A$, Since, \mathfrak{X} is a pseudo BH-algebra, then, $x = x*0 \in A*B$ and $x = x\#0 \in A\#B$. Hence, $(A \subseteq A*B)$ $(A \subseteq A\#B)$. Similarly of (1).

Definition 7: If A is a nonempty subset of a pseudo BH-algebra \mathcal{X} satisfies $A^*\mathcal{X} = A$ and $A\#\mathcal{X} = A$, then A is called a pseudo essence subset of \mathcal{X} . If A is a pseudo ideal of \mathcal{X} , then it is called a pseudo essence ideal of \mathcal{X} .

Example 6: Let, $\mathfrak{X} = \{0, 1, 2, 3\}$ be a set with the following Cayley Table 6.

Table 6: Pseudo essence of ¥

*	0	1	2	3	#	0	1	2	3
0	0	0	0	0	0	0	0	0	0
1	1	0	2	3	1	1	0	2	3
2	2	1	0	1	2	2	2	0	1
3	3	3	3	0	3	3	3	1	0

Then $\mathfrak X$ is a pseudo BH-algebra. Let, $A=\{0,1\}$, $B=\{0,2\}$ and $C=\{0,1,2\}$ then A,B and C are a pseudo

essence subset of \mathfrak{X} . But $D = \{0, 3\}$ is not a pseudo essence subset of \mathfrak{X} , since, $3*2 = 1 \notin D$ and $3#2 = 2 \notin D$.

Proposition 6: Let, \mathfrak{X} be a pseudo BH-algebra. Then every pseudo essence ideeal of \mathfrak{X} is a pseudo is a pseudo essence subset of \mathfrak{X} .

Proof: Let, A be a pseudo ideal of \mathfrak{X} and let x, y \in A. Since, $x^*y\in A\subseteq A^*A\subseteq A^*\mathfrak{X}=A$ and $x\#y\in A\subseteq A\#A\subseteq A\#\mathfrak{X}=A$. Hence, A is a pseudo essence subset of \mathfrak{X} .

Remark 1: The converse of proposition (6) may be not true in general as follows in example (1), since, A is a pseudo essence $1*3 = 0 \in A$ and $1 \in A$ but $3 \notin A$ and $1 \notin A$ but $3 \notin A$.

Proposition 7: Let, \mathfrak{X} be a pseudo BH-algebra. Then, every pseudo essence ideal of \mathfrak{X} is a pseudo closed ideal of \mathfrak{X} .

Proof: Let, A be a pseudo essence ideal of \mathfrak{X} , then, $0 \in A$. Let, $x \in A$, then, $0 * x \in A * A \subseteq A * \mathfrak{X} = A$. Thus, $0 * x \in A$, similarly, $0 \# x \in A$. Hence, A is a pseudo essence closed of \mathfrak{X} .

Definition 8: A nonempty subset I of a pseudo BH-algebra \mathfrak{X} Then, I is called pseudo BH-ideal a of \mathfrak{X} if it satisfies:

- 0∈I
- x^*y , $x # y \in I$ and $y \in I$ imply $x \in I$
- x∈I and y∈I and imply x*y, x#y∈I, I* x̄, I# x̄ ⊆I. For all x, y∈ x̄

Proposition 8: Let, \mathfrak{X} be a pseudo BH-algebra. Then every a pseudo essence ideal of \mathfrak{X} is a pseudo BH-ideal of \mathfrak{X} .

Proof: Let, A be pseudo essence ideal of \mathfrak{X} . Since, $A^*\mathfrak{X} = A$, then $A^*\mathfrak{X} \subseteq A$ and $A^{\#}\mathfrak{X} = A$, then $A^{\#}\mathfrak{X} \subseteq A$. Thus, A is a pseudo essence ideal of \mathfrak{X} and $A^*\mathfrak{X}$, $A^{\#}\mathfrak{X} \subseteq A$. Hence, A is a pseudo pseudo BH-ideal of \mathfrak{X} .

CONCLUSION

In this study, the notions of pseudo B-ideal, pseudo H-ideal and pseudo essence of a pseudo BH-algebra are introduced. Furthermore, the results are examined in terms of the relationship between pseudo B-idea, pseudo H-ideal and pseudo essence of a pseudo BH-algebra.

REFERENCES

- Abbass, H.H. and A.A. Hamza, 2017. On U-BG-filter of a U-BG-BH-algebra. Appl. Math. Sci., 11: 1297-1305.
- Abbass, H.H. and H.A. Dahham, 2012. Some types of fuzzy ideals with respect to an element of a BG-algebra. MSc Thesis, University of Kufa, Kufa, Iraq
- Abbass, H.H. and L.S. Mahdi, 2014. A new class of BH-algebra. MSc. Thesis, University of Kufa, Kufa, Iraq.
- Jun, Y.B. and S.S. Kim, 2015. On pseudo BH-algebra. Honam Math. J., 37: 207-219.
- Jun, Y.B., E.H. Roh and H.S. Kim, 1998. On BH-algebras. Sci. Math., 1: 347-534.
- Kim, E.M. and S.S. Ahn, 2011. An application of complicationness to BH-algebra. J. Korea Soc. Math. Educ., 4: 293-304.