Tournal of Engineering and Applied Sciences 14 (5): 1699-1705, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Performance Evaluation of Proposed Algorithm in Real-Time Streaming Warehouses

'D.S. Misbha and *J. R. Jeba
"Department of Computer Applications, Nesamony Memorial Christian College, Tamil Nadu, India
"Department of Computer Applications, Noorul Islam Centre for Higher Education,
Tamil Nadu, India

Abstract: The need to provide up-to-date information, streaming warehouses are used to screen multipart
systems such as web site complexes, data centers and world-wide networks, congregating and comparing
encumbered collections of happenings and measurements. For profound analysis and for rapid responses, both
chronological data and concurrent data that raising the problems in streaming warehouses were used. The data
warehouse gathers a large number of streaming data provisions that are generated by external sources and
reach target asynchronously. Scheduling updates is the most important processes that are concerned severely
in streaming warehouses. Scheduling algorithms provided for loading data in concurrent data warehouses that
are used in the applications such as online monetary trading, TP network screening and credit card scam
detection. In this study, the evaluation of performance analysis of RECSS algorithm 1s described. The first
objective of this study 1s to schedule the updates one by one on one or more processors in a way to reduce
the total mustiness. Tn tumn to verify the total fairness, the second objective of this study is to limit the
maximum “extend” in which to define (approximately) as the ratio between the periods of time of an update waits
t1ll being the process 1s concluded and the length of each updates. When compared to the previous research,
1t deserves the mustiness 1s provided that the processors are adequately fast and find that only those update
propagation algorithms which enforce no scheduling constraints are tolerable for use in a concurrent streaming

warehouse.

Key words: RECSS, C3, EARH, NMEARH. rolling horizon, virtualized clouds

INTRODUCTION

Power-related costs have become a major
cost-effective aspect for IT mfrastructures and
data-centers because of the power’s price amplification.
Companies are at present focusing on the need to improve
power efficiency. Cloud applications are considered in
remote Data Centers (DCs) where more power servers and
storage systems are placed. A rapid development of claim
for cloud based services fallout into organization of
enormous data centers overwhelming high amount of
electrical power. Power efficient model 15 essential for
entire infrastructure to minimize functional costs while
sustaining essential Quality of Service (QoS). Power
optimization can be achieved by mingling resources as per
the present utilization and providing well-organized virtual
network topologies.

Chiesi et al. (2015) a power-aware job scheduling
algorithm was presented based on efficient allocation of
the computing workload to the resources on
heterogeneous CPU-GPU architectures. The algorithm

built by Hsu and Feng (2005) presents a power-aware
DVFS run-time system that presents energy reduction
with minute performance loss. Jeba amd Victor (2011a)
proposed an efficient SMine (Sorted Mine) algorithm for
discovering repeated tasks and to decrease the number of
jobs in the list In SMine (Jeba and Victor, 2011b)
algorithm, the set of all repeated itemsets are extracted
in the database by limiting the number of scans.
Petrucei et al. (2009) put forward a dynamic configuration
approach for energy optimization in virtualized server
clusters and sketches an algorithm to dynamically
manage it. Goirl et al. (2010) presented a framework
that gives a consolidation methodology using turning
on/off machines, machine learning techniques and
power-aware consclidation algorithms to compact with
hesitant information while maximizing performance.
Wang et al. (2012) a method was proposed to
vigorously control the peak power while maintaining
system performance as high as possible. According to
latest studies, the average Resowrce Utilization (RU) in
most of the data centers is <30% (Barroso etal,

Corresponding Author: D.S. Misbha, Department of Computer Applications, Nesamony Memorial Christian College,

Tamil Nadu, India

1699

J. Eng. Applied Sci., 14 (5): 1699-1705, 2019

2013) and the power consumption of redundant
resources 18 >70% of peak power (Fan er al, 2007).

Problem description: In this study, a virtualized cloud 1s
embattled which is demonstrated by an innumerable set of
hosts, H = {h,, h,, ,} which supplies the hardware
infrastructure for creating virtualized resources to
persuade the user’s requirements. The self-motivated host
is modeled with n number of factors. For a given host h,,
it 1s differentiated by its resource routine defined by
Million Instructions Per Second (MIPS) (Wu et al., 2012;
Calheiros et al.,, 2011) with the quantity of RAM and the
network bandwidth i.e., h, = {c,. r,, n,} where the ¢,, r, and
n, represents the CPU ability, RAM and for the network
bandwidth of the kth host, respectively. Each host holds
a set of Virtual Machines (VMs) 1.e, V, = {08, Uy, ...,
Uy} For each Virtual Machine (VM) u; ¢ (u), 1 (u,) and
n (v,) are used to represent the fractions of CPU
performance, network bandwidth and amount of RAM.
Based on the workload, the virtual machines VMs are
dynamically established and bring to a halt on a single
host.

MATERIALS AND METHODS

Overview of NMEARH, EARH and Cuckoo search
NMEARH: NMEARH utilizes the rolling-horizon
optimization policy that is able to make jobs with firm
deadlines finish earlier, so, the schedulability is drastically
developed. NMEARH does not employ the Virtual
Machine (VM) migration while allocating concurrent jobs.
In addition, NMEARH was lacking m providing fine
trade-off between guarantee ratio and entire energy
consumption.

EARH: EARH system implements the rolling-horizon
optimization to efficiently promise the schedulability of
concurrent tasks and at the same time motivating to save
energy by active VMs consolidation. Tt provides the basic
mformation about the virtualization technology m cloud
computing and how it acts in the cloud computing
surroundings. The method to use a rolling horizon
approach on supply string optimization and scheduling
crisis has been applied in dissimilar contexts. Although,
a rolling horizon is generally used when uncertainties in
data subsist, a rolling horizon 1s also applicable to reduce
the size of the problem. Both a forward and backward
rolling horizon method 13 used for scheduling
multipurpose tasks. A rolling horizon approach is used to
optimize a hierarchical development system. EARH can
proficiently improve the scheduling quality of others in
different workloads and is appropriate for energy aware
scheduling in virtualized clouds.

Cuckoo search: CSA algorithm is based on the
necessitate litter parasitic activities of some Cuckoo
species 1 permutation with the Levy flight activities of
some birds and fruit flies. CSA 1s a new meta-heuristic
approach that models the ordinary activities of Cuckoos.
The 1dea behind this algorthm is that each Cuckoo lays
one egg at a time and deposits it n an arbitrarily selected
nest. The best nests with high quality eggs (solutions)
will be carried out over to the next generations. Likewise,
the best VM is selected for executing the newly coming
tasks.

Proposed RECSS strategy: A new algorithm called the
RECSS (Rolling Energy Cuckoo Scale Scheduling)
algorithm 1s proposed to mamtam the job scheduling
without any deadlines as well as to keep energy saving.
The overall architecture of the proposed RECSS strategy
1s shown Fig. 1.

The proposed RECSS strategy mvolves a Data
mining process, job scheduling process and job execution
process which was shown in Fig. 1. Relevant datasets are
extracted from the data warehouse during data mining
process. Job scheduling and resource allocation process
takes place in job scheduling phase. In the job execution
phase, the scheduled jobs are executed within their
deadlines. Resource utilization 1s analysed in job
scheduling phase and execution time and power
consumption were analysed during job execution.

Rolling-horizon optimization: The proposed approach
locates the entire new and walting task into a
rolling-horizon and then they are scheduled by the
Cuckoo scale scheduler. The jobs that scheduled are
permitted to be adjusted for the system schedulability
and possibly low power consumption. The pseudocode
for rolling-horizon optimization is
Algorithm 1.

given below

Algorithm 1;
optimization:

Pseudocode for rolling-horizon

1: for each new task t;

2: Q-NULL; R-NULL; EC8-NULL

3: Task are added into Q and Memory Allocation in VM

4: Add a new task t, into set Q

5: for (t) each task t, do

6: if ty=a; then

7 Add task t; into set Q

8: Add task t, into VM

9: end if

10: else if t;<a,; then

11: It =rt+,,

12: VM-t

13 Update the ready time of Task
14: Update the Waiting Task in to VM
15: end if’

J. Eng. Applied Sci., 14 (3): 1699-1705, 2019

process
DWW

0600000050 ok |

olling horizan —

T -

VM1) Execute joh Tob

2 .Execmejnh execution
.Bxau.ltajuh X

Fig. 1: Overall architecture

In the pseudocode of rolling-horizon optimization,
before adding the innovative tasks into the rolling-horizon
Q, it 18 set to null (line 2). When the new task enters it
adds into the set Q and all the waiting tasks are also
added into the set Q (lines 4-7). The ready time of each
VM is computed and this ready time is the starting time of
the task in the VM (lines 10-12). Bring up to date the ready
time of the each VM and update the waiting task into the
VM (lines 13 and 14). After that the tasks are scheduled.

Energy-aware task scheduling and execution: After
updating all the tasks into the VM, the tasks are
scheduled usmng Cuckoo scale scheduler based on the
deadline. The tasks are then assigned priority. The
priority of tasks may be lugh, medium and low. Based on
the priority, the jobs are executed, i.e., the jobs with higher
priority are executed first The pseudocode of
energy-aware task scheduling and execution algorithm is
given in algorithm 2.

Algorithm 2; Pseudocode of RECSS algorithm:
1: After updating each tasks
2: Sorttasks in Q by their deadlines in a non-descending order

3: for each task t; in set Q do

4: Schedule task t; by ENERGY Cuckoo Scheduling
Algorithms;

5: if calendar(ti) ! = 1 then

6: Reject task t,

i end if

8 else

9: Update Scheduling decisions;

10: ECS=ECS+,

N end else

12: end for

13: Execute the Schedule Task from the VIM

14: for each task t, in set Q, do
15: Start while

16: while(t; < Qn)
17 SE=ECS()
18: it+;

19: End while

The energy-aware Cuckoo scale scheduling algorithm
is in heuristic fashion. Tt allocates each task toa VM in a
way to aggressively meet task’s while
conserving energy consumption. After updating each
task into the set QQ, the tasks are sorted based on their
deadline (lines 1-3). After sorting, the tasks are scheduled
using energy-aware Cuckoo scale scheduling algorithm.
If the VM can meet the tasks deadline, it accepts the task,
otherwise rejects it (lines 4-6). After that the scheduling
decisions are updated and the energy consumption rate
1s calculated for each tasks. The scheduled tasks are then
executed (lines 9-13).

deadlines

RESULTS AND DISCUSSION

Performance evaluation: To demonstrate the performance
improvements gained by RECSS, three algorithms are
compared-NMEARH (Non-Migration EARH), EARH
(Energy-Aware Rolling-Horizon) algorithm and CS
{Cuckoo Search) algorithm. The performance metrics are
compared in terms of task count. The task count varies in
the range 100.

Comparison of recss with nmearh, earh and cs algorithm
for resource allocation: The proposed algorithm is
compared with NMEARH, EARH and CS. The
performance metrics such as resource allocation, energy
consumption and resource utilization are considered for
performance comparison. Resource allocation is the total
resources allocated to each VMs. Energy consumption is
the total energy consumed be each host for executing
the task. Resource utilization 1s the average host
utilization

The resources allocated to each VM must be low and
thus it reduces the cost. If the allocation of resources 1s
maximum, it will costs high. Figure 2 shows it is observed
that the proposed RECSS algorithm allocates only a
minimum amount of resources than the existing
NMEARH, EARH and CS algorithms. For RECSS, the
percentage of resource allocation increases slightly when
the number of task increases. But in NMEARH, EARH
and CS, the percentage of resource allocation increases

1701

J. Eng. Applied Sci., 14 (5): 1699-1705, 2019

O RECSS

O Cuckoo
O EARH
O NMEARH

RESOURCE ALLOCATION
SaNNeyssEneRIuRReRE

Fig. 2: Task count vs. resource allocation

:
:
2
:

Fig. 3: Task count vs. power consumption

considerably when the task count increases. The CS
algorithm and NMEARH does not employ the VM
migration and does not employ rolling-horizon
optimization which leads to high percentage of resource
allocation when compared to RECSS.

Comparison of RECSS with NMEARH, FARH and CS
algorithm for Power Consumption: Figure 3 show the
performance of the three algorithms on power
consumption with RECSS. It was observed that the
proposed algorithm minimizes power when compared to

1702

J. Eng. Applied Sci., 14 (5): 1699-1705, 2019

100+
95+
90+
851

75478
70-
65
60
554
504501
45{4%]
404 3¢
35
304

O RECSS
0 Cuckoo
O EARH

O NMEARH

RESOURCE UTILIZATION

20+

804 e 84

154

Fig. 4: Task count vs. resource utilization

NMEARH, EARH and CS. The power consumption of C3
is higher than RECSS because there are unlimited
resources 1n clouds, thus when task count increases, new
hosts will be in progress by the CS to finish more tasks.
However, not all the tasks can be completed effectively
although, there are sufficient resources. One can point
this to the fact that starting a new host or creating a new
VM needs extra time cost which makes some concurrent
tasks with firm deadlines cannot be finished within their
timing limitations. Thus, more resources are allocated to
the new host which leads to high cost and high power
consumption n NMEARH, EARH and CS. Besides,
RECSS have low power consumption because it employs
rolling-horizon optimization policy that is able to make
taslks with firm deadlines terminate earlier. Therefore, the
schedulability 1s significantly improved m RECSS.

Comparison of recss with nmearh, earh and c¢s algorithm
for resource utilization: Figure 4 it was observed that
the proposed RECSS has much higher resource
utilizations than the other three algorithms. This is
because the utilization of rolling-horizon policy m RECSS
makes the system acknowledge more tasks with firm
deadlines which sometimes needs new computing
resources and thus minimizes the resource utilization a bit.
Conversely, the VM migration policy can make the system
entirely utilize the host computing capacity. Because of
non-migration of VM m NMEARH, the resource utilization
1s very low.

Comparison of RECSS with NMIEARH, FARH and CS
algorithm for execution time: Figure 5 shows the
comparison of execution time of the proposed RECSS
algorithm with the other three algorithms. Tt was clear from
Fig. 5 that the execution time is low in RECSS than
NMEARH, EARH and CS. Thus is because highly secured
VM migration 1s possible in RECSS. The execution
time is high in NMEARH than EARH and CS due to
non-migration of VM which takes a lot of time to execute
the tasks.

Overall performance evaluation: Figure 6 shows the
overall performance analysis of the proposed system with
CS, EARH and NMEARH. The RECSS improves the
overall performance with increase mn task count compared
with CS and EARH. NMEARH degrades the overall
performance because of non-migration. The overall
performance of NMEARH increases rapidly with low task
count but decreases with merease m task count.

Table 1 illustrates that RECSS show significant
improvement when compared with NMEARH, EARH and
CS algorithms. It can be observed that the NMEARH
preserves more energy, 1.e., NMEARH has the most power
consumption when compared to EARH, CS and RECSS. Tt
indicates that utilizing the VM migration policy is very
efficient when scheduling concurrent tasks. On one point
of view when the task count increases, current VMs can
be combined to make some room for creating new Vs

1703

J. Eng. Applied Sci., 14 (5): 1699-1705, 2019

O RECSS
0 Cuckoo
O EARH

O NMEARH

EXECUTION TIME
[5,)
o

Fig. 5: Task count vs. execution time

@ RECSS

\ / 5 X @ CUCKOO
af \a;f 1\\34/ O EARH
404 o/ 1 @ HMEARH
30 ’ / x . 34 34
20|/ %
1012
0 T r T T T T r T
10 20 30 40 50 60 V0O @80 90 100
Fig. 6: Overall performance analysis
Table 1: Performance mefric evaluation CONCLUSION

Cuckoo
Performance metrics RECSS search EARH NMEARH
Resource allocation (99) 20 30 33 39
Power consumption{*10°) W 15 22 26 32
Resource utilization (%0) 78 50 45 38
Execution time (sec) 15 25 29 35

which avoids the power consumption caused by
adding new active hosts. On the other hand, the VMs in
light-load host can be migrated to other hosts and then
the nactive hosts can be shut down which further
reduces the energy consumption.

This research presents a comparative analysis of
various scheduling algorithms such as RECSS, EARH and
NMEARH, taking into consideration the energy
awareness for optimal performance of cloud data centers
and achieves excellent provisioning of resources. The
algorithms focus on various parameters such as resource
allocation, resource utilization, power consumption and
execution time. The evaluation shows the proposed
RECSS algorithm outperforms significantly the other two
algorithms.

1704

J. Eng. Applied Sci., 14 (5): 1699-1705, 2019

RECOMMENDATIONS

The future research aims to compare the proposed
algonthm with Cuckoo search algorithm and to obtain the
experimental results based on the metrics considered in
this research.

REFERENCES

Barroso, L.A., J. Clidaras and U. Holzle, 2013. The
datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synth. Lectures
Comput. Archit., 8: 1-154.

Calheiros, RN., R. Ranjan, A. Beloglazov, CAF. de
Rose and R. Buyya, 2011. CloudSim: A toolkit for
modeling and simulation of cloud computing
environments and evaluation of resource
provisioning algorithms. Software: Pract. Experience,
41: 23-50.

Chiesi, M., L. Vanzohm, C. Mucci, EF. Scarselli
and R. Guermrieri, 2015, Power-aware job
scheduling on heterogeneous multicore
architectures. IEEE. Trans. Parallel Distrib. Syst., 26:
BOB-877.

Fan, X., W.D. Weber and L.A. Barroso, 2007. Power
provigioning for a warehouse-sized computer.
Proceedings of the ACM SIGARCH Computer
Architecture News Vol. 35, June 09-13, 2007, ACM,
San Diego, California, UJSA., ISBN:978-1-59593-706-3,

pp: 13-23.

Goirt, I, F. Julia, R. Nou, J.L. Berral and J. Guitart et af.,
2010. Energy-aware scheduling in virtualized
datacenters. Proceedings of the 2010 IEEE
International Conference on Cluster Computing
(CLUSTER), September 20-24, 201 0,TEEE, Heraklion,
Crete, Greece, ISBN:978-1-4244-8373-0, pp: 58-67.

Hsu, CH. and W.C. Feng, 2005. A power-aware run-time
systemn for high-performance computing. Proceedings
of the 2005 ACM-IEEE Conference on
Supercomputing, November 12-18, 2005, TEEE,
Washington, DC, USA., ISBN:1-59593-061-2, pp: 1-1.

Jeba, IR. and D.S. Victor, 201 1a. Comparison of frequent
item set mining algorithms. Intl. J. Comput. Sci. Inf.
Technol., 2: 2838-2841.

Jeba, J.R. and S.P. Victor, 2011b. A novel approach for
finding frequent item sets with hybrid strategies. Intl.
I. Comput. Appl., 17: 30-33.

Petrucci, V., O. Loques and . Mosse, 2009. A dynamic
configuration model for power-efficient virtualized
server clusters. Proceedings of the 11th Brazillian
Workshop on Real-Time and Embedded Systems Vol.
2, May 25, 2009, National Science Foundation,
Virgima, USA., pp: 35-44.

Wang, X, M. Chen, C. Lefurgy and T.W. Keller, 2012.
Ship: A scalable hierarchical power control
architecture for large-scale data centers. ITEEE. Trans.
Parallel Distrib. Syst., 23: 168-176.

Wu, L., SK. Garg and R. Buyya, 2012. SLA-based
admission control for a software-as-a-service
provider in cloud computing environments. .
Comput. Syst. Sci., 78: 1280-1299.

1705

	1699-1705 - Copy_Page_1
	1699-1705 - Copy_Page_2
	1699-1705 - Copy_Page_3
	1699-1705 - Copy_Page_4
	1699-1705 - Copy_Page_5
	1699-1705 - Copy_Page_6
	1699-1705 - Copy_Page_7

