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Abstract: Selection of test case is a standard testing technique to opt a subset of existing test cases for
execution, due to the limited budget and other necessary constraints. The key objective of tlus study 1s
automatic generation and optimization of test cases using bio-mspired Genetic Algorithm (GA). These search
optimization techniques lead to global best solution. These algorithms are used to generate test paths and then
optimize them. The case study on telemedicine simulation system is being presented here using use case
diagrams, activity diagram and sequence diagram. Activity diagram graph and sequence diagram graph show
test paths which are being optimized using Genetic algorithm. This study presents a novel approach for
generation of test cases using UML. Our approach consists of converting the all UMIL diagrams into graph and
integrated to form System Under Test (SUT). From the graphs different control flow series also called test cases
are recogmized and then optimized using Genetic algorithm. The system graph 1s then traversed to generate test
paths which are being optimized using GA. To explore the efficacy of our approach, we performed an empirical
study using MATLAB programs with manifold paths and other parameters. Our results indicate that generation
and optimization of test case is achieved efficiently in much less time.

Key words: Telemedicine diagnosis system, Genetic algorithm, use case, sequence diagram, activity diagram,

MATLAB

INTRODUCTION

Testing 1s both techmically and economically an
important part of high quality software production. Tt has
been estimated that testing accounts for half of the
expenses 1n software production. Much of the testing 1s
done manually or using other labor-intensive methods. It
1s thus, vital for the software industry to develop efficient,
cost effective and automatic means and tools for software
testing. Researchers have proposed several methods over
years to generate automatically solution which have
different drawbacks. This study examines automatic
generation and optimization of test cases using UMIL
(Unified Modeling Language) diagrams by applymng
genetic algorithm approaches. UML is a standard
visual modeling language intended to be used for
modeling, analysis, design and implementation of
software based systems. UML 1s a common language for
business analysts, software architects and developers. It
is used to describe, specify, structure, document and
design, existing or new software systems. According to
dynamic technology, software systems and their
environments change constantly. They are improved,
corrected and ported to new platforms to achieve the

benchmark of recent time. These changes can affect a
system adversely. UML Models are considered to reduce
the complexity of the problem with the increase i sizes
and changes in environment. Unified modeling language
has become the de facto standard for modeling and
design of software. It 13 widely accepted and used by
industry.

A sequence diagram explains how objects correspond
with each other in terms of a order of messages. A
sequence diagram 1s a best approach to visualize and
validate various runtime scenarios. A sequence diagram
shows how processes interact with one another and in
what order. Activity diagram is another important diagram
in UML to describe the dynamic aspects of the system.
Other diagrams are used to show the message flow from
one object to another but activity diagram is used to show
message flow from one activity to another.

Our approach consists of converting the activity
diagram mto Activity Graph (AG) and sequence diagram
into Sequence Graph (SG). Then, these graphs are
integrated to form System Under Test (SUT). This study
presents a novel approach for generation of test cases
using UML. Simulated telemedicine software 1s taken as
case study which is used to connect with patients with

Corresponding Author: Anju Bala, Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak,

India

1590



J. Eng. Applied Sci., 14 (3): 1590-1600, 2019

least cost, accessible to consultants from specialists with
increased patient engagement and better patient care.
Activity graph and sequence graph show test paths
which are bemg optimized using Genetic algorithm.
Genetic algorithm is heuristic based search method by
exploring good multidimensional search by maintaining an
optimized population, random actions consisting of the
combination regarding iterative search steps.

Literature review: A lot of research has been done in the
field of test data generation. The major factors involved in
test case generation are UML diagrams, different testing
types, different testing tools, different optimization search
techniques and various other approaches.

A techmique proposed by Sabharwal et af. (2010) for
the prior of test cases scenario which are derived from
state chart and activity diagram usinf Genetic algorithm
and stack information flow diagram. Stack based
application 1s used for allocating weight to each node of
state and activity diagram. Sumalatha and Raju (2013)
presents a test case generation with UML’s sequence
diagram by using Genetic algorithm where test cases are
optimized. By applying Genetic algorithm on sequence
graph, starting from the source, all paths are discovered
up to destination with loops also calculating the fitness
value for these paths. Maheshwari and Prasanna (2015)
have reviewed the literature about automatic test case
generation. In this survey, various factors for an automate
test case generation have been discussed to obtain better
efficiency in testing.

Test case automation using optimization approach
gives an efficient test suite for the given problem
model. Many reviewers have worked on test case
generation using Genetic algorithms (Zhang and Wang,
2011; Ahmed and Hermadi, 2008; Mateen et al., 2016).
Gulia and Chillar (2012) proposed an approach for the
generation and optimization of test cases using Genetic
algorithms from UML state chart diagrams, on the case
study of driverless train. All the possible test paths are
generated from the UML state diagram. For the generation
of optimized test cases, they have randomly selected few
test path sequences and applied Genetic algorithms
crossover technique. Efficiency of test cases has been
evaluated usmg mutation analysis. Another approach
based on Genetic algorithm, presented by Bala and Chillar
(2018) adopts a case study on on-line hospital
appomtment. Maximum test path have been generated by
converting sequence diagram to sequence graph and then
optimized very efficiently. Xanthakis et al. (1992)
proposed a Genetic algorithm which help in generating the
test data. As Genetic algorithm are used for generating
test data of the structure. User selects the path and all

relevant branches executed from programs. By summation
of branch predicated fitness function can be calculated.
Kaur and Goyal (2011) have presented a Genetic algorithm
to prioritize the test cases on the basis of code coverage
information. To develop fault detection rate, data on real
approaches are used. As a result of this study, TCP
method may increase the fault detection rate using
clustering approach. A variable length Genetic algorithm
has been proposed by Srivastava and Kim (2009) that
optimizes and selects path testing average criteria. Genetic
algorithm 13 used 1n control flow graph. All possible paths
are covered in testing in software under test and weights
are allocated to the edges of control flow graph by using
80-20 rules. Bala and Chillar (2018) proposed an improved
variation of Genetic algorithm which employs mendel
operator for prioritization of test cases. The proposed
method has been applied on telemedicine simulator such
that the testing effort reduces significantly while the code
coverage remains almost the same. This 15 achieved by a
novel mendelian operator based Genetic algorithm by
following two principles.

Harman (2007) focused on search based software
engineermg for automated test data generating. Here,
Genetic algorithm 15 used for automated test data
generation rely on search based software engineering.
Zhang and Wang (2011) use simulated annealing
algorithm into Genetic algorithm to generate the test data
for path testing. A simulated amnealing algorithm i1s
inspired by the annealing of metals. The adaptive Genetic
simulated annealing algorithm is proposed by Zhang and
Wang (2011) to automatically generate the test data. The
steps 1if this algorithm is shown in his study. The fitness
value, crossover, mutation another modification are
applied in Genetic algorithm procedure. The majority of
software test-data generation techniques are based on
Genetic algorithm.

Problem formulation: A telemedicine simulator is
considered for optimization of test cases. Telemedicine
software is the platform used by providers to connect
with patients and share video and images. It 1s
convenient, accessible for patients with least cost,
accessible to consultants from specialists with increased
patient engagement and better patient care. Some most
popular  telemedicine  solutions  specialties  are
teleradiology, telepsychiatry teledermatology,
teleopthamology, ete. (Fig. 1). We have taken a simulation
of the telemedicine software for case study.
Through this software, we help the patient 1 disease
diagnosis and reducing the consultation time by
providing the appointment with the specialist. The
procedural steps for appointment module of the
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Fig. 1: Use case diagram

multi-agent system for diagnosis are as follows: the
patient request for appointment by using the patient login
file which invokes the appointment agent. The
corresponding agent interface with the patient agent and
main agent with its main function being to give confirmed
appointment information to the appointment requesters.
The mam agent interface with appoimntment agent and
doctor agent. The purpose of core in main agent is to
cross examine the request of appomtment against doctor
schedule to provide accessible appointment slots. The
purpose of core in the doctor agent 1s to obtain doctor’s
schedule distantly and interface with the doctor’s
appomtment database and the schedule agent. The
schedule agent interfaces with the main agent and

gives proof of doctor’s schedule and confirmed
appointments.

Following database tables have been used m the
proposed scheme: doctor data, patient’s data,

doctor-expertise, disease-expertise, disease-test,
disease-symptoms, doctor-authentication, doctor-patient,
patient-test, doctor schedule, patient prescription.

MATERIALS AND METHODS

We here enlighten our research to automatic
generation and optimization of test cases using UMIL
artifacts. UML 1s standard language Unified Modeling
Language (UML) was released by Object Management
Group (OMG) m 1997 (Mateen et al, 2016). It 13a
modeling language in software engineering. Tt is being
designed to specify, construct and document to software
artifacts with support to special aspects of software such
as dynamics and structural aspects. Approach used to
generate and optimize test cases.

| Start
A
| Enquiry about |

Check availabilitv (log in) D

|Data not availablel

v

Validate patient

| Resister patient I

Enroll for treatment

[Process notj
start

Ty Pa—

Add detail of patient
»| Update patient status

Fig. 2: Activity diagram

+  UMIL diagram

s Tse case diagram
»  Sequence diagram
*  Activity diagram
*  (Genetic algorithm

Use case diagram: Figure 1 is discussed in use case
diagram. 11 = Resisteration; U2 = Fill on line query
performa; U3 = Logm (using paptient 1d); U4 = Query for
expertise, U5 = Given appomtment, U6 = Not given
appomtment; U7 = Consult to doctor.

Activity diagram: Figure 2 is discussed in activity
diagram.

Sequence diagram: Figure 3 15 discussed in sequence
diagram.

Conversion of sequence diagram to sequence graph:
Figure 4 is discussed in conversion of sequence diagram
to sequence graph.

Integration of all graphs: Figure 5 15 discussed in
integration of all graphs.

1592



J. Eng. Applied Sci., 14 (3): 1590-1600, 2019

| Patient | [ ssemoontrotier | [ Bapomse | |Doctors DBipatient DB |
Given patient ID Q1
L Check for validity Q2
Q; > Check patient detail 23
I_f‘ . x 03 . hl
invalid then (exit () Information status Return status
Resister for treatment , Q_S Call resister
Q8 method/form ™ Store data/submit form Q7
If unsuceessful then relogin Info ion Q6 Retum status i
B Detail test Qu
Go for test " i
Display No. of test Prescribe tost —|
Add disease QL2
] symptom/report - Submit detail Q13 Send to doctor
# |  expertise/DB Qi4
Doctor not available exit () Display preseriptions . L
Mention prescription
Query for appointment N Q_IS
o Submitquery ~ QI6 Check
Q18 > appointment ace. E
No appointment confirmed . "
° ¢ Display data To expwetise
Exit Q _‘QE Check expertise Qo™° appointment because -
» of doctor M2 of busy schedule Q21
Request for appointment If yes od
and inform ||

Fig. 3: Sequene diagram

How to calculate weight of total unsuccessful path:
374+38+39+10+1 4421424428 = 211.

Test path generation using integrated diagram:
Unsuccessful end = ue successful end = se. Ul-U7 = 1,
U7-54 = 9, 34-unsuccessful = 10, S8-unsuccessful = 14,
S8-S15 = 20, S15-unsuccessful = 21, S15-518 = 23 S18-
successful = 28, S21-successful-All = 36, S22-
unsuccessful = 28, UsS-unsuccessful 37, U3-
unsuccesful = 38, U2-unsuccessful = 39, unsuccessful-
Ad-successful end = 40, PATH 1 = 306, PATH 2 = 358,
PATH 3 =484, PATH 4= 553, PATH 5=659, PATH 6=
668, PATH 7 =289, PATH 8 = 290. Figure 6 1s discussed
1n test path generation using integrated diagram.

Algorithm 1; Generation and optimization of test paths:
GEN-Automatic (AUT)-OPT Testcases
Input: -Use Case, Activity Graph (AG), Sequence Graph (8G) — (SUT)
Output: -Optimized test path
1. Discover all the paths, P = {p1, p2, p3, p4, ...,} from start node to the
end node in SUT
2. Weights are allocated to path in ascending order from left to right and up
to down. Each nodes are being assigned weights and sibling weights are
calculated from the parent node
3. Next is to calculate the cost (x) of each path by adding the weights of all
succeeding nodes on that path
4. Genetic algorithm is being applied to the SUT
5. Calculate fitness value

a. Calculate the fitness of cost (x) for each path

b. Fitness function is calculated by F (x) = x*x

¢. Probability for individual is calculated as p (1) = px 'S F(x)
7. To generate new population best traits are being selected Trom existing
or initial population for mating

Roulette Wheel Selection:
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Fig. 4: Conversion of sequence diagram to sequence graph

i. Calculate the fitness value eval (vi) for each chromosome vi(i =1, ,
pop_size)
ii. Find the total fitness of the population: mp_s=

PE eval(v,)

i=1

iii. Calculate the probability of a selection pi for each chromosomes v (1=
1,...,pop_size)
P = eval(v, )/t

iv. Calculate the cumulative probability qi for each chromosome v(i=1,...,

pop_size)
4= 2}:191'

The selection process is based on spinning the roulette wheel pop size
times; Fach time we select a single chromosome for a new population in the
following way:

i. Generate a random mumber r firom the range [0,,,1]

ii. Tf r<gi then select the first chromosome (v); otherwise select the ith
chromosome ui (2<i<pop_size) such that g, <r<g;

8. Crossover: For each chromosome in the (new) population:

i. Generate a random(float) number r from the range [0,,1]

il. If r<p,; (0.8) select given chromosome for crossover

iii. Now we mate selected chromosome randomly: for each pair of coupled
chromosome we generate a random integer number pos from the range
[1, m-1] (m is the total length----number of bits-----in a chromosome). The
number pos indicates the position of the crossing point

Two chromosome

(©1b2, .o, By B, .., b)) and

(€162, ...» CposCrostts -oos Cny)

Are replaced by a pair of their offspring:
(b:by, ..., by s, .., by) and
(€1€2, s CrosCrugtls -s Cr)

9. Mutation: Mutation is performed on bit by bit basis. Another parameter
of the genetic system, probability of mutation p,, gives us the expected
number of mutated bits p,.an. pop_size. Every bit(in all chromosome in
whole population) has an equal chance to undergo mutation, i.e., change
from 0-1 or vice versa. So, we proceed in the following way

For each chromosome in the current, (i.e., after crossover) population and for
each bit within the chromosome:

i Generate a random (float) number r from the range [0,..., 1]

il.  Ifr<p, qn, mutate the bit

10. If Feasible:

11. Following selection, crossover and mutation the new population is ready
for its next evaluation

This complete process is rehearsed till the minimization of the fitness value
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Fig. 5 Integration of use case, activity diagram, SDG into System Under Test (SUT)

Path 1: y7A A S AT—p Ad—Pp S| —p S2— 53— §4 —P UE—P A4 —» 5E =306

Path 2: u7-»Al-+A2»AT—p Ad—» S1—p 82— 53— S4—> 55—»- 56 —p- 37— 58
UE —» A4—»SE =358

Path 3: u7-PAHPAT—RAT—P A4 §]1—B 52— §3 —» 54 —» 55— 56— 87— 8§
89— §10—PS1—+512—>S1 37—+ §14—»5]1 5P UE—p-A4—> SE=484

Path 4: u7 »AHAZ—BA—PAL —»-§]— 52— 53— 54— S5—Pp 86—p 87— 53
89— 51 0—»S11—»812—pg | —P514 —»51 5—>516—P517—»5| 5—PUE—» A4 SE= 553

Path 5: y7rA HPA2Z—P A3 —P AL —p-§]1 —P 52 —P53 —> 54 —p S5—P-56—»-857—> 58
59 —» 510—pS11—»512—5] 35 14—»515—>516—»S1 7—S1§—»S19—520
S2+—»522—»{F—»-A4—» SE=659

Path 6: u7pA HeA2>— A3— Ad—P-51— 52— S3 — - S4— §5—p-56—p S7T— 58
89— 510—»-511—+512—p-5 1 3—5 14—»515—»5 ] 6—517—p§1 5—PE519—» 820
821—*822— Successful —AS— AG— A7—p AB—PAI—P Al0—PA | |—»SE = 668

Path 7: U3 —»UE—»A4—»SE =285
Path 8: U2 —»UE—» A4—» SE=289
Fig. 6: Test path generation using mtegrated

or the maximum number of generations is reached or all the scenarios have 12. Test cases are optimized by generating the best scenario as output
been traversed 13. End
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RESULTS AND DISCUSSION
Experimental analysis: We  have performed
experimentation in MATLAB framework. A simulated
telemedicine software project has been developed for
generating the test cases and detailed description of
Genetic algorithm 1s given here. All the results are
generated using the following parameters of the Genetic
algorithms as listed in Table 1. Parameters have been
tuned after some experimentation (Table 1-25).

Table 2: Initial population

The possible solutions generated from GA are given
in Table 1-4. We have recorded the solutions after every

Table 1: Empirical parameters for GA

Variables Values
Max No. of generations 40
Crossover Probability (Pc) 0.8
Mutation Probability (Pm) 0.1

Population 8

Selection operator Roulette wheel
Crossover operator Ringle point.
Mutation operator Bit flip
Encoding method Binary

X st

Chromosome:

Random No.

P(i) Ca)

668 446224
659 434281
553 305809
484 234256
358 128164
306 93636
290 84100
289 83521

1

SO OO O
e ===
(= el elall =R
(= el el = =)
e e ==
[ e = R = e i

0.2463
0.2399
0.1689
0.1294
0.0708
0.0517 0.9073
0.0464 0.9538
0.0461 1

0.2465
0.4864
0.6554
0.7848
0.8356

0.2369
0.2289
0.6489
0.6397
0.5896
0.6896
0.7986
0.9250

e R A N = =
SO oR R~ OO
o, R, OO ~O
—S oo SR —~O

Table 3: Population after roulette wheel selection

X Chromosorme:

Random No.

Forcrossover (Y/N)

668 1
668
553
553
553
484
358
289

[ R R S T
-0 OO0 OO0
OO =D DD
S =0 OO0 o0
—_ e b e Y D
[= ol o il el e

[ = = T R SO S

0.8669
0.0862
0.3664
0.3691
0.6850
0.5979
0.7893
0.3676

oo oD 0o
A A Al s

Table 4: Chromosomes _after crossover

X Chromosome:

668
552
485
669
553
552
358
289

== -
_H_, oo oo
(=i lle el =
o= o0 O = oD

0

—_ e D

cooo~,oo~
e R R T S
o~ o0~~~ o~
c—~oocoooo
_Ho O~ ~,oO

Table 5: Mutation site

Row No.

Colurmn No.

[= L PERL VA S PSR

GO 0O D e D

Table 6: Chromosomes after mutation

X Chromosomes after mutation

668
552
483
541
555
556
374
289

== -
—F—, o oo~ OoO
oo D O O =D
O =D O O = OO

0

—_ e D

1

oo o~oo
P R R T G
SN -
oo~ OO o
== ==
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Table 7: Feasible chromosomes

X Feasible chromosoime:

668 1 0 1 0 0 1 1 1 0 0
553 1 0 0 0 1 0 1 0 0 1
484 0 1 1 1 1 0 0 1 0 0
553 1 0 0 0 1 0 1 0 0 1
553 1 0 0 0 1 0 1 0 0 1
553 1 0 0 0 1 0 1 0 0 1
358 0 1 0 1 1 0 0 1 1 0
289 0 1 0 0 1 0 0 0 0 1
Table 8: Population after 10 generations

X st Chromosome: P C) Random No.
668 446224 1 0 1 0 0 1 1 1 0 0 0.2465 0.2465 0.2356
659 434281 1 0 1 0 0 1 0 0 1 1 0.2399 0.4864 0.2256
553 305809 1 0 0 0 1 0 1 0 0 1 0.1689 0.6554 0.6256
484 234256 0 1 1 1 1 0 0 1 0 0 0.1294 0.7848 0.5689
358 128164 0 1 0 1 1 0 0 1 1 0 0.0708 0.8556 0.4589
306 93636 0 1 0 0 1 1 0 0 1 0 0.0517 0.9073 0.7895
290 84100 0 1 0 0 1 0 0 0 1 0 0.0464 0.9538 0.8695
289 83521 0 1 0 0 1 0 0 0 0 1 0.0461 1 0.9568
Table 9: After selection

X Chromosorne: Random No. For crossover (Y/N)
668 1 0 1 0 0 1 1 1 0 0 0.5974 Y

668 1 0 1 0 0 1 1 1 0 0 0.3353 Y

553 1 0 0 0 1 0 1 0 0 1 0.2992 Y

553 1 0 0 0 1 0 1 0 0 1 0.4525 Y

553 1 0 0 0 1 0 1 0 0 1 0.4226 Y

358 0 1 0 1 1 0 0 1 1 0 0.3596 Y

289 0 1 0 0 1 0 0 0 0 1 0.5583 Y

289 0 1 0 0 1 0 0 0 0 1 0.7425 N

Table 10: After crossover

X Chromosomes after crossover-

556 1 0 0 0 1 0 1 1 0 0
556 1 0 0 0 1 0 1 1 0 0
361 0 1 0 1 1 0 1 0 0 1
665 1 0 1 0 0 1 1 0 0 1
665 1 0 1 0 0 1 1 0 0 1
550 1 0 0 0 1 0 0 1 1 0
289 0 1 0 0 1 0 0 0 0 1
289 0 1 0 0 1 0 0 0 0 1
Table 11: Mutation site

Row No. Cohumn No.
2 1

4 1

4 6

6 8
Table 12: Chromosomes after mutation

X Chromosomes atter mutation:

556 1 0 0 0 1 0 1 1 0 0
44 0 0 0 0 1 0 1 1 0 0
361 0 1 0 1 1 0 1 0 0 1
137 0 0 1 0 0 0 1 0 0 1
665 1 0 1 0 0 1 1 0 0 1
546 1 0 0 0 1 0 0 0 1 0
289 0 1 0 0 1 0 0 0 0 1
289 0 1 0 0 1 0 0 0 4] 1
Table 13: Chromosomes after feasible

X Chromosomes after feasible.

553 1 0 0 0 1 0 1 0 0 1
289 0 1 0 0 1 0 0 0 0 1
358 0 1 0 1 1 0 0 1 1 0
289 0 1 0 0 1 0 0 0 0 1
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Table 13: Continue

X Chromosoimes atter feasible.
668 1 0 1 0 0 1 1 1 0 0
553 1 0 0 0 1 0 1 0 0 1
289 0 1 0 0 1 0 0 0 0 1
289 0 1 0 0 1 0 0 0 0 1
Table 14: Population after 20 generations
X K Chromosome: P C) Random No.
668 446224 1 0 1 0 0 1 1 1 0 0 0.2465 0.2465 0.1256
659 434281 1 0 1 0 0 1 0 0 1 1 0.2399 0.4864 02145
553 305809 1 0 0 0 1 0 1 0 0 1 0.1689 0.6554 0.5689
484 234256 0 1 1 1 1 0 0 1 0 0 0.1294 0.7848 0.7895
358 128164 0 1 0 1 1 0 0 1 1 0 0.0708 0.8556 0.6598
306 93636 0 1 0 0 1 1 0 0 1 0 0.0517 0.9073 0.8659
290 84100 0 1 0 0 1 0 0 0 1 0 0.0464 0.9538 0.8659
289 83521 0 1 0 0 1 0 0 0 0 1 0.04614 1 0.9856
Table 15: Chromosomes after selection
Chromosomes No, XXX

Chromosomes after selection: Random No.  for crossover (Y/N)
668 1 0 1 0 0 1 1 1 0 0 0.652451 N
668 1 0 1 0 0 1 1 1 0 0 0.604991 N
659 1 0 1 0 0 1 0 0 1 1 0.387245 Y
358 0 1 0 1 1 0 0 1 1 0 0.142187 Y
358 0 1 0 1 1 0 0 1 1 0 0.025135 Y
306 0 1 0 0 1 1 0 0 1 0 0.421112 Y
290 0 1 0 0 1 0 0 0 1 0 0.618410 N
289 0 1 0 0 1 0 0 0 0 1 0.725775 N
Table 16: Chromosomes after crossover
X Chromosoimes atter crossover
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
355 0 1 0 1 1 0 0 0 1 1
310 0 1 0 0 1 1 0 1 1 0
662 1 0 1 0 0 1 0 1 1 0
354 0 1 0 1 1 0 0 0 1 0
290 0 1 0 0 1 0 0 0 1 0
289 0 1 0 0 1 0 0 0 0 1

Table 17: Population after 30 generations
X X*x Chromosorne; P(1) C() Random No.

668 446224 1 0 1 0 0 1 1 1 0 0 0.246534 0.246534 0.18590
659 434281 1 0 1 0 0 1 0 0 1 1 0.239935 0.486469 0.23560
553 305809 1 0 0 0 1 0 1 0 0 1 0.168956 0.655425 0.20180
484 234256 0 1 1 1 1 0 0 1 0 0 0.129424 0.784849 0.17890
358 128164 0 1 0 1 1 0 0 1 1 0 0.070809 0.855658 0.35680
306 93636 0 1 0 0 1 1 0 0 1 0 0.051733 0.9073901 0.78560
290 84100 0 1 0 0 1 0 0 0 1 0 0.0d6464 0.953856 0.85460
289 83521 0 1 0 0 1 0 0 0 0 1 0.046144 1 0.86540
Table 18: Chromosomes after mutation

X Chromosomes after mutation

668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
867 1 1 0 1 1 0 0 0 1 1
310 0 1 0 0 1 1 0 1 1 0
658 1 0 1 0 0 1 0 0 1 0
354 0 1 0 1 1 0 0 0 1 0
802 1 1 0 0 1 0 0 0 1 0
289 0 1 0 0 1 0 0 0 0 1
Table 19: Chromosomes After feasible

X Chromosomes _after feasible.

668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
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Table 19: Continue

X Chromosomes _after feasible

306 0 1 0 0 1 1 0 0 1 0
659 1 0 1 0 0 1 0 0 1 1
358 0 1 0 1 1 0 0 1 1 0
668 1 0 1 0 0 1 1 1 0 0
289 0 1 0 0 1 0 0 0 0 1
Table 20: Mutation site

Row No. Cohumn No.
7 1

5 8

3 1

Table 21: Chromosomes _after selection

Chromoesomes No. XXX

Chromosomes after selection Random No.  for crossover (Y/N)
668 1 0 1 0 0 1 1 1 0 0 0.766831 N
668 1 0 1 0 0 1 1 1 0 0 0.336699 Y
668 1 0 1 0 0 1 1 1 0 0 0.662382 N
668 1 0 1 0 0 1 1 1 0 0 0.244165 Y
659 1 0 1 0 0 1 0 0 1 1 0.295507 Y
358 0 1 0 1 1 0 0 1 1 0 0.680178 N
306 0 1 0 0 1 1 0 0 1 0 0.527847 Y
289 0 1 0 0 1 0 0 0 0 1 0.411594 Y
Table 22:
X Chromosomes after crossover-
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
284 0 1 0 0 0 1 1 1 0 0
659 1 0 1 0 0 1 0 0 1 1
358 0 1 0 1 1 0 0 1 1 0
690 1 0 1 0 1 1 0 0 1 0
289 0 1 0 0 1 0 0 0 0 1
Tabel 23: Mutation site
Row No. Column No.
6 5
Table 24: Chromosomes after mutation
X Chromosoimes atter mutation:
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
284 0 1 0 0 0 1 1 1 0 0
659 1 0 1 0 0 1 0 0 1 1
326 0 1 0 1 0 0 0 1 1 0
690 1 0 1 0 1 1 0 0 1 0
289 0 1 0 0 1 0 0 0 0 1
Table 25: Feasible chromosomes
X Feasible chromosotme
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
668 1 0 1 0 0 1 1 1 0 0
289 0 1 0 0 1 0 0 0 0 1
659 1 0 1 0 0 1 0 0 1 1
306 0 1 0 0 1 1 0 0 1 0
668 1 0 1 0 0 1 1 1 0 0
289 0 1 0 0 1 0 0 0 0 1

10 generations (Table 1). Represents the imtial population ~ Wheel selection. After applying Roulette Wheel selection
which 1s randomly generated. Probabilities and cumulative next table represents the selected solutions. The
probabilities for selection are computed for Roulette subsequent tables contain the solutions after crossover
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and mutation. Then the solutions obtained are converted
into feasible solutions. This is done by calculating the
Euclidean distance between the infeasible solution and
two nearest solutions of that sclution. The infeasible
solution 1s mapped into the solution having least
Euclidean distance.

CONCLUSION

Activity graph and sequence graph show test paths
which are bemg optimized using Genetic algorithm.
Genetic algorithm 15 heuristic based search method by
exploring good multidimensional search by maintaining an
optimized population, random actions consisting of the
combination regarding iterative search steps.
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