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Abstract: Design guidelines for solar panels regarding the environmental parameter’s influence over the solar
panel power output are limited. This study proposes an output power percentage reduction model for predicting
the effect of environmental parameters (ambient temperature, wind speed, relative humidity, dust accumulation
and rain amount) using Particle Swarm Optimization (PSO). The PSO technique prevents an exhaustive
traditional trial-and-error procedure for obtaining the set of the unknown coefficients of the proposed model.
A total of 244 databases were collected from the literatire and divided mnto two parts. The first set which
comprises 194 data sets were used to build the proposed model while 50 datasets as the second set were used
in the verification process. Three performance measures, namely mean absolute, mean absolute percentage and
root mean square errors were used in the proposed model to ensure the accuracy of the study. The design
procedure and accuracy of the proposed model are illustrated and analyzed via. simulation tests in MATLAB
Software. The results show the applicability of the PSO techmque to solve the solar energy problems. This
technique can be adopted as an effective tool to explore the optimal solutions for the growth of the power
reduction of solar panels with the different environmental parameters and provided a design guideline for solar
panel site.
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INTRODUCTION

Fossil fuel which 1s a non-renewable energy source
is decreasing globally and has a negative effect on the
enviromment. This issue requires seeking alternative
renewable sources such as wind Photovoltaic (PV),
geothermal energy and sea tide. Among these sources, PV
power is a common and established technology that is
becoming widely used. PV power 1s one of the potential
candidates for green energy which has received
considerable attention and the PV system directly
converts solar radiation into electricity through the PV
effect (Zhang et al., 2015; Shi et al., 2015; Koad ef al,,
2017; Sawant and Bhattar, 2016, Anagnostos ef al,
2017).

Evaluation of PV technology performances can be
done based on operating efficiency (Mam and Pillai, 2010,
Tzivamdis et al., 2015) while the PV system under the
operation of real climatic conditions must be a known

receiver of visible solar radiation (Mekhilef et af., 2012).
Environmental and climatic conditions have a strong
effect on the PV performance (Gupta et al., 2015).
Therefore,
conditions, ncluding dust accumulation, precipitation,

studies on environmental and climatic
wind velocity, relative humidity, ambient temperature and
other parameters are specific and relevant to the locality
of the PV installation (Darwish et al., 2013; El-Azab and
Amin, 2015) (Table 1).

Darwish et al. (2013) reviewed the effect of some
environmental parameters with dust on the PV
performance. Relative humidity on the performance of the
PV was studied by Kazem et af. (2012). Relative humidity
increases the adhesion force that cormects dust particles
to a surface (Paudyal and Shakya, 2016). Shima et al.
(2015) found that PV output power is affected by the
ambient temperature, 1.e., clean and cool PV results in lugh
power generation and efficiency. Mejia ef al. (2014)s
study the performance of PV during the dry seasons
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Table 1: List of symbols

Svmbols  Quantity
T, Ambient Temperature
D.. Dust accurnulation
RH Relative Hurnidity
R Rain amount
N Number of particles in swarm
w Inertia Weight factor used to balance the global exploration and
local exploitation
Vﬁ'; Velocity of particle j at iteration t
thg) gth components for the position of particle at iteration t
M Number of components for the v; and x; vectors
t Number of iterations (generations)
i, Cy Cognitive and social acceleration factors, respectively
“acceleration coefficients”
T, Ty Random variables uniformly distributed within range (0, 1)

pbest Best position found by the ith particle (personal best)

ghest Best position found by swarm (global best, best of personal best)
¥ Actual output value

v Predicted output value

period in which 29.76% efficiency reduction is observed
but there was a slight immprovement due to dew drops at
morning. Soiling is the phenomenon of depositing dust
on a surface during exposure to the environment. This
phenomenon is considered as a major critical issue for PV
that causes a decrease in the efficiency of the solar power
system (Catelani ef al., 2013). The deposition rate
depends on the season (Chaichan et al, 2015). In an
experiment conducted by Goossens and Kerschaever
(1999) indicated that high wind speeds promote dust
accumulation on the surfaces. Meanwhile, Mam and
Pillai (2010) reported that dust-related degradation in PV
performance is worse in the tropical regions where arrays
are mstalled with lower tilt angles. Even though there are
extensive studies about these parameters but there is no
real model that can help to identify the relationship
between power reduction and aforementioned
parameters. Thus this study attempts to establish a novel

model to calculate power reduction based on
environmental parameters that named: ambient
temperature, wind speed, relative humidity, dust

accurnulation and rain amount , to help the designers who
wait from 5-10 years for adequate design efforts
(Josephs, 1976), rabidly and randomly variation of
parameters during the day and estimates how much
Power Percentage Reduction (PPR) of the PV panel
according to the variation in these parameters also,
depend on the experimental data for sites already
established (Touati et al., 2013).

The PSO can be a useful tool to generate the PPR
model where the key issue related to the optimization
techniques m obtaining values for a set of parameters that
maximize or minimize objective functions subject to certain
constraints (Rardin, 1998; Bergh, 2001). An optimization
technique developed as a PSO is described by Hibbit
(2005). The development of PSO is mspired by the

flocking behavior of birds. Similar to Genetic Algorithm
(GA) (Imran et al., 2017), PSO 1s established depending on
a population that is initialized randomly. PSO is a heuristic
global optimization method that has attracted the
attention of many researchers (Pousinho et al., 2011;
Hussein, 2016) which 1s applied to solve contimuous and
discrete optimization problems (Ethaib et al., 2016). This
method 15 currently the most commonly used optimization
technique (Zhang et «l., 2015, Khare and Rangnekar,
2013; Pambudi et af, 2017). The mult-objective
optimization problem can be solved through the PSO
simulation (Chen et al., 2014a, b). Mansur and Alwis
(1984) developed a technique for the reliability-based
design of composite structures. The PSO technique is
substantially more efficient than the other soft computing
tools and this techmque requires only a few function
evaluations that will lead to an improved or similar quality
of output (Ashour and Rishi, 2000). Previously, the PSO
technique was applied in many studies and applications
in engineering fields (Hanoon et al, 2017; Biao et al.,
2014). Moreover, PSO is a heuristic global optimization
method. Therefore, this method has attracted the attention
of many researchers and is currently one of the most
commonly used optimization techniques (Khare and
Rangnekar, 2013; Vijayalekshmy et al., 2016).

Many researchers are fascinated by the use of PSO
for various optimization problems in different fields.
Specifically in renewable energy, PSO has been
successfully applied to solve numerous and diverse
optimization problems (Chen et af, 2014a, b;
Balasankar et af., 2017, Mohandes, 2012; Sharafi and
ELMekkawy, 2014; Tabet et al., 2014).

Thus, the main objective of the current study is to
develop a model for PPR in a solar panel system using the
PSO technique. Also, this study aims to find a new design
guide for selecting a suitable site for the power plant
establishment and the procedure will minimize the time
consumed for the design process.

The applications of this technique in renewable
energy remain limited despite the extensive research on
the optimization techniques in modern solar plants such
as in the aeronautical, automotive, civil engineering and
mechanical industries. The renewable energy optimization
does not merely comprise tracking systems or cost
reduction. Renewable energy optimization techniques can
be used to mvestigate the effect of environmental
parameters on the performance of the power plant.

Despite the extensive studies on the environmental
parameter’s behavior on the power output of the solar
power plant, assessing the power plant output with the
different environmental parameters remains difficult to
understand because of the rabid and random parameter
variation.
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The present study shows the capability of the PSO
technique to assess the PPR of the PV with the different
environmental parameters. Also, this study will aid
designers in determimng the appropriate site for the solar
model.

MATERIALS AND METHODS

Solar energy is the future of alternative energy and
the use of solar energy increases the efficiency of the
solar power system. The most important factors that affect
its efficiency are the environmental conditions for a solar
power system excitation site where each site is different
from the other. The output energy reduction of the solar
panel 1s studied through experimental testing results.
Therefore, this study investigates the prediction of the
PPR through the PSO technique.

PSO technique

PSO concept: The PSO technique 1s a population-based
search algorithm with each individual referred to as a
particle and represents a candidate solution. Each particle
m the PSO flies through the search space with an
adaptable velocity that is dynamically modified based on
its own and other particle flying experience. In the PSO,
each particle aims to improve by imitating the traits of its
successful peers. The particle has the capability to
remember the best position in the search space that the
particle has visited previously. The position matching to
the best fitness is known as pbest and the overall best out
of all the swarms in the population is called gbest. Two
characteristics, namely, position and velocity are assumed
to be associated with each particle. The particle moves
around to different places in the design space and
remembers the best position (in terms of the objective
function value or food source) that the particle has
determined. The communication of information ocecurs
between particles with regard to good positions in the
space. The particle’s individual velocities and positions
are adjusted accordingly based on the information. For
example this study considers the behavior of birds mn a
flock. Each bird has a limited intelligence independently
and therefore behaves in accordance with the following

outlined rules:

¢ The bird aims to not come considerably closer to the
other birds

¢  The bird flies toward the average direction of the
other birds

¢ The bird attempts to adjust the average position
between the other birds with minimum spaces in the

flock

. Social part

pbest;

t+1

LD

et e NN |

Momentun  Current motion
part influence

Fig. 1: Description of velocity and position updates in
PSO for a 2-dimensional parameter space

The development of the PSO is done based on the
following model: If the target (food) 1s found by one bird
that 13 a maximum of the objective function this bird
immediately transfers the information to other birds.
With least delay, all other birds will move to the target
(food).

Each bird has its own mdependent thinking and
previous memory or experience. Therefore, randomly
search is simulated in the design space for the
determination of the maximum value of the objective
(fitness) function. The birds are able to locate their target
(food) over many iterations. The following formulas show
that changed the position and velocity of each particle
can be computed using the current velocity and the
distances from the to the (Mier, 1984; Kratzig and Polling,
2004; Hibbit et al., 2005):

(1) _

VJ:E

wvi +o1 (pbestj’g—xf; )+02r2 (gbestg-ng;) (1

(1) (8 4 (D) 2
Xieg _XJ,g+VJ,g ( )

withj=1,2,3,...,nandg=1,23, ..., m:

»  The jth particle position in the swarm 1s illustrated by
d-dimensional vector X, = (X, . X, X, 5 .-, X )

»  The jth particle velocity m the swarm 1s indicated by
another vector v, = (v, . V, 2, Vi 5, ... ¥, 4)

¢ The best last location of the jth particle is presented
by pbest, = (pbest, ,, pbest, ,, .., pbest, )

»  The best position determined by the swarm 15 called
global best (1.e., best of personal best) and presented

by ghest, = (gbest, |, gbest. ,, .., ghest, ))

In PSO search space each particle flies with velocity
based on its previous best solution and the best previous
solution of its assemblage. Figure 1 shows particle
velocity and location updates for 2D parameter space. The
velocity consists of three main vectors shown in Fig. 1.
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Reset PSO parameters: ¢, 2 and w
T: max. iteration
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Fig. 2: Flowchart of PSO of proposed PPR Model

Vectors are momentum or nertia, cognitive or memory and
social or swarm. The momentum or inertia element of the
vector is based on particle velocity in the previous time
step. This component provides the trend for particle
persistence in its current path. The cognitive component
or memory 1s derived from the best particle position
during each iteration. This component attracts particles to
1ts better position in its former space solution. In the final
vector, a social element or swarm, the particles are
attracted towards the best position in the swarm.
Figure 2 shows the computational flow chart of the PSO
algorithm used in the present study. The accurate
selection of the PSO parameters has a marked effect on
the performance of the algorithm. The neighborhood size
is also required for the local best algorithm. For the PSO
unplementation, several parameters need to be carefully
selected for its efficient performance. The parameters
include swarm size, initial mnertia weights (w) and stopping
criteria. Other parameters are cognitive and social
acceleration factors which are denoted as ¢, and c,,
respectively.

The weighting of the stochastic acceleration terms
are represented by the two constants, namely, ¢, and ¢,
that pull each particle toward the pbest and ghest
positions. Low values will allow the particles to depart

Calculate the objective
function

(

v
(Obtained minimum objective functiorﬂ

v -

Obtained the optimum values for F1,
and 6

v

End

from the target position in space before being pulled back.
However, high values result in an abrupt movement
toward (or past) the target regions. The suitable selection
of mertia weight (w) provides a balance between the
global and local explorations thereby requiring limited
iteration on average to determine a sufficiently, optimal
solution. As originally developed, w often decreases
linearly from approximately 0.9-0.4 during a run (Mier,
1984).

Performance measures: Three statistical performance
measures, hamely RMSE, MAE and MAPE were used to
evaluate the prediction accuracy of the proposed models.
Equations 3-5 showed the formulas for each of the
performance measures enumerated These performance
measures are:

Root Mean Square Error (RMSE): To determine the
square error of the prediction compared with the actual
values, RMSE is a frequently used performance measure
that 1s computed to obtamn the square root of the
summation value. Thus, the average distance of a data
pomt from the fitted line measured along a vertical line 1s
called RMSE. In other words, the difference between the
values predicted by the model and the actual observed
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Description

Details

Number of particles (N)

Dimension of particles (D)
Tnertia weight (w)

Vectors containing the lower and upper
bounds of the n design variables,
respectively, -, x”

Cognitive and social parameters

A typical range is 10-40 while for some difficulty or special problems the number can be increased to the

range of 50-100

Tt is determined by the problem to be optimized
Usually is set to a value <1 and for faster convergence, w = 0.7 is considered (Lavanya and Udgata, 2011)

Tt can also be updated during iterations

They are determined by the problem to be optimized. Different ranges for different dimensions of the particles can

be applied in general

Usually C, = C, = 1.494 (Lavanya and Udgata, 2011) or other values can also be used provided that 0<C +C 54

Table 3: PO convergence parameters

Description

Details

Maximum nurber of iterations
(T, Tor the temmination criterion

Number of iterations for which the relative improvement of the
objective function satisfies the convergence check. Minimum relative
improvement of the value of the objective function

Determined by the complexity of the problem to be optimized in conjunction with
other PSO parameters (D, N

iterations

If the relative improvement of the objective function over the last number of

(including the current iteration) is less or equal to the minimum relative

improvement, convergence has been achieved

values from the system is RMSE measurements.
With tlus statistical performance measure, the
undesirable large differences can be identified
efficiently. The formula is presented in Eq. 3:
1 33& 2
RMSE = | ¥ (y- (3)
S

Where
vy = Actual value
v = Predicted value

NS = Number of data samples

Mean Absolute Error (MAE): MAE is frequently used to
measure the accuracy of continuous variables. This
statistical performance measure tests the closeness

between eventual outcome and the forecast. In this case,
the errors between the predicted and actual value are
measured and the mean of the magnitude is computed

thereby disregarding the direction of errors. Equation 4
shows the mathematical formula for MAE:

1
MAE ‘ﬁE

i=1

Mean Absolute Percentage

NE
,

vy )

Error (MAPE): MAPE

measures the accuracy of the model. This is very useful

and 1mportant measure because it gives the size of the
error in terms of percentage. Tt also comes with the added

advantage of interpretability and scale-independency.
MAPE can be evaluated using Eq. 5

1

MAPE = —

NE

)

1=1

)

¥

Convergence criteria: Looking at the iterative nature of
the PSO search, the optimization procedure can be
stopped by applying convergence criteria. In PSO
algorithm, two most prominent and widely adopted
convergence criteria are used. The first criterion is the
maximum number of iterations while the second one is the
minimum error needed for calculating the optimum value
of the objective function. The maximum number of
iterations 1s applied based on the difficulty of the
optimization issues whereas the second criterion assumes
previous knowledge of the global optimum value. In a
situation where the optinum value 1s known a prior, it 1s
possible to test or fine tune the algorithm in mathematical
problems. However, this does not apply to optimal
structural process problems where optimization is not
previously known. A list of the main PSO parameters is
given m Table 2 while Table 3 hsts and clarifies the
convergence parameters of the PSO utilized in the current
study.

The following highlights show how the PSO
algorithm can be implemented to search for the optimum
PPR of PV:

Algorithm 1; PSO algorithm:

Step 1: The initialization of the swarm of each particle is done by the
assignment of a random position in the problem hyperspace

Step 2: The objective function of the proposed PPR for each particle is
evaluated

Step 3: The comparison of objective function value of each individual
particle with its pbest. Tf the current value is better than the pbest value this
value is set as the pbest and the current particle position, ¥i is set as pbest
Step 4: The best objective function for each particle is identified. The value
of its objective function is determined to be gbest and its position is pbest
Step 5: The velocities and positions of all the particles are updated based on
Eq. 1and 2

Step 6: Steps 2-5 are repeated until one of the convergence criteria (i.e., the
maximurn number of iterations or a sufficiently good objective function value
is reached) are met
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Fig. 3: a, b) Experimental setup data collection (Paudyal and Shakya, 2016)

Fig. 4: Data collection techniques (Paudyal and Shakya, 2016)

Experimental data: For the purpose of the analysis, the
database was divided mto two sets, i1.e., traimng and
verification set and testing set. The testing set was not
seen during model development, rather it usage was
restricted to model testing after traimng. In order to
ensure database division 13 consistent, different types of
combinations of the training and testing sets were
considered. In that case, the minimum, maximum, mean
and standard deviation of the power percentage
reduction values should be consistent amongst the
training and the testing datasets. A total of 244
experimental data from various published studies
(Paudyal and Shakya, 2016, Elmimr ef al., 2006) were
collected to establish the database of the proposed
model. Out of the 244 data sets, 194 data which
represent 80% are considered for training process while
the remaining 20%, 1.e., 50 data were used for verification
of the PPR.

Frank and Todeschini, proposed that for a model to
be acceptable, a mimmimum ratio of 3 for the number of
datasets records over the number of input variables is
needed. Furthermore, the researchers recommended the
use of ratio values higher then five. For the current
study, this ratio for the traimng set was 194/5 = 38.8.
Looking at the ratio, the ratio exceeded the suggested
value. The factors selected as inputs for training in this
study are ambient temperatire, wind speed, relative
humidity, dust accumulation and rain amount. Figure 3-5
shows the geometrical details of the case studies. The
database was compiled in a patterned format. Each pattern
comprises an vector  that
environmental parameters of PV and an output vector
that contains the corresponding PPR. Table 4 provides
the range, standard deviation
values of all basic design parameters used mn the
database.

mput contams  the

mean, median and
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Fig. 5:a, b) Wooden frames covered by glass samples
exposed to environment (Elminir ef al., 2006)

Table 4: Range of PPR parameters for PV used in database

Factors Min Max Mean SD
Ambient Temperature (T.) 8.93 26.16 19.55 4.82
Wind speed (W) 0.5 4 1.497 0.871
Relative Humidity (RF) 3028 77.04 58.12 8.60
Dust accumulation (D, ,.) 0.148 9.896 3.799 2,456
Rain amount (Ryy) 0 67.046 8.193 12.403

Objective function: A good agreement was attained
between the experimentally, measured PPRs that were
accounted for via. the final model obtamed from
PSO. The proposed model was simulated using a
MATLAB code to optimize the PPR Model for
the PV. The proposed medel to be optinized i1s
as follows:

P

red

F+F,T +ED, +F,R_ +F logRH+F,logW, (6)

Where:

P.: = The Predicted PPR
T, = Ambient Temperature
= Dust accurnulation
R,. = Ram amount

RH = Relative Humidity
W, = Wind speed

F,-F; = Unknown coefficients

The use of PSO is to primarily optimize the PPR
Model by searching for an optimum set of coefficients
from within the solution space. Accordingly, the
difference between the measured PPR of the PV and that
calculated using the final form of the optimized equations
1s mirmmal.

The objective function for each PSO Model was
constructed agreement
experimentally measured data and the predicted output of
the model. Furthermore, the convergence of a particular
model was determined based on terminating the search
process but this happened when a set of coefficients was
achieved that minimize the objective function.

to measure the between

RESULTS AND DISCUSSION

Three PSO Models were adopted to optinize the
PPR that corresponded to the three different performance
measures. These models have been proposed to analyze
the effects of the performance measures and the number
of particles in a swarm on the results of the PSO
Model.

The primary task of the objective function in a PSO
technique 1s to mimmize the variance between the
predicted and measured PPR. By defimtion, PSO provides
models that are capable of assessing the maximum PPR
with the experimental results.

The PSO algorithm updates its process until either
an appropriate ghbest 13 completed or the pre-defined
number of maximurn iterations 1s reached. The number of
iterations 1s fixed at 1,000 because the variances mn the
objective functions become constant after 400-700
iterations as shown mn Fig. 6. The swarm size was varied
to analyze the particle number that provided the best
performance for convergence and processing time. In the
current study, 10-50 particles were used to investigate the
effect of the particle number on the accuracy of the
proposed model. Figuer 6 shows that the swarm sizes
of 10-50 for MAE, MAPE and RMSE, effectively estimate
between the predicted and measured PPR. Figuer 6 also
shows the vanation of the performance measure
values of the objective function for the different particle
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Table 5: Parameters used in PO algorithm model setting
Objective function

Factors RMSE MAE MAPE

F1 3.3800 4.7511 1.1425

F2 -0.3614 -0.09%9¢ -0.0440
F3 1.8282 2.3781 2.5343

F4 -0.0306 -0.0424 -0.0394
Fs 2.6928 1.1053 1.5191

F6 -1.1938 -2.9290 -2.7262
Iteration 1000.0 1000.0 1000.0

Upper bound 5.0000 5.0000 5.0000

Lower bound -5.0000 -5.0000 -5.0000
Swarm size 20.0 20.0 20,0

populations. Figuer 6 shows that the 20 swarms provide
the best solution for the PSO algorithm because they
achieve the minimum objective function of approximately
1.78 for MAE, 0.33 for RMSE and 0.133 for MAPE. For the
other swarms, 10 swarms exlubit high errors while 30-50
swarms are more time-consuming than 20 swarms.
Table 5 presents the optimum values of the coefficient
factors that are suggested in the proposed model for the
different performance measures. Bland and Altman

(2007), Tgelstrom et al. (2013) and Stralen et al. (2008)
analysis is used to study the agreement between the
models and to find which objective fimetion (MAE, RMSE
and MAPE) is suitable for the proposed PPR Model. The
advantage of Bland-Altman plot also has shown the
variation in the results and it is a scatter plot. In the
Bland-Altman plot, the mean +1.96 and -1.96 SD are
shown in the graph 7, namely, the “limits of agreement™.
Based on the limits of agreement, the range of values can
be easily identified as either large or small. A refers to the
measured value; B is the predicted value and Standard
Deviation (SD) of the differences. From this plot,
estimating the level of (methodical) difference, scattering
the values and showing whether a relation between the
measured and predicted error exists 1s much easier. Figuer
7 shows, a reasonable agreement occurs between the
different testing methods. The data distributed between
the limits of agreement is 96.4% for MAE and RMSE
(Fig. 7a and c) and 93.8% for MAPE (Fig. 7b).

Therefore, the MAE and RMSE showed a lugh level
of accuracy for the measured PPR with the MAPE Model.
Where m 1s the mean of the differences between the
predicted PPR and measured; m -1.96 SD and m +1.96 SD
are the upper and lower limits of the interval of the
agreement, respectively.

The results show demonstrates that the statistical
analysis of the PPR predicted by the proposed model
matches the experimental results well. The RMSE, MAE
and MAPE result in mean = 1.03, SD = 0.164 and
COV=0159;mean=1.01, SD=0.157 and COV =0.155and
mean = 1.03, 3D = 0.164 and COV = 0.158, respectively.
These results indicate that the proposed model is
generally reliable.

The mean value of the MAE Model 1s considered
very close to 1.0 (i.e., 1.01). The coefficient of the variation
obtained from the results for MAE (1.e., 0.155) mdicated
good accuracy and consistency of the values obtained.
This result was sufficient to consider the proposed model
properly to assess the PPR of the PV under different
environmental parameters. Moreover, further research is
necessary to increase the accuracy of the proposed model
considering the wide range of parameters. Figuer 8 shows
a comparison of the model predictions with the experiment
performed for the three models of the aforementioned
performance measures.

The efficiency of the proposed model is shown
Fig. 8 which is optimized via. in the PSO Model of the PV
using the PPR results of the 194 environmental parameters
collected from the published studies. The performance of
the proposed model for RMSE, MAE and MAPE is

1525



15

10

Difference
o

'
o

-10

-15

Difference
o &~ o r o R

KN
N

KN
(2]

=
a1

10

Difference
& o o

KN
o

N
o

Fig. 7: Bland-Altman plot of relation between measured and predicted PPR: a) Mean absolute error; b) Mean absolute

J. Eng. Applied Sci., 14 (5): 1518-1531, 2019

@

Bias Lower limit

==== Upper limit

4
A

3 8 13 18 23 28

(b) MAE
3
3 ' Y
3
3 A

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
© MAPE

] F

] A

4 6 8 10 12 14 16 18 20 22 24 26 28 30

RMSE

percentage error and ¢) Root mean square error

llustrated in this Fig. 8.

ratio of the experimental to the predicted PPR for all PV in
the database. The model provided by MAE is considered
as a better-estimated model compared with MAPE; the

former 1s slightly different

Moreover, Fig. 8 mndicates the standard deviation and ceefficient of variation of 1.01,
0.26 and 0.264, respectively and shows the output
quantities predicted by the proposed model. The results

from the latter with an average, results of the proposed model.
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Fig. 8: Comparison between experimental and predicted PPR of proposed model: a) Mean absolute error (R* = 0.8952);
b) Mean absolute percentage error (R’ = 0.8922) and ¢) Root mean square errer (R* = 0.8911)

Parametric study: The evaluation of the environmental
parameters for a new solar power plant requires a large
survey data set. Therefore, the site should be as close as

possible to the load center to minimize the power
transmission losses. A case study was conducted to
evaluate the ability of the proposed model to assess the
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speed: a) Dust accumulation (y = 2.3781x+5.612, R* =
Rain amount (y = -0.0424x+7.4371, R’ = 1); d) Relativ
{y =-2.929In (x +8.8313R* = 1)

effect of the various parameters on the PPR. Figuer 9a
shows the effect of the dust accumulation on the PPR in
which an increase m PPR the dust
accumulation amount according to a linear relation
(Chaichan et al., 2015; Klugmann-Radziemska, 2015).
Figuer 9a, b decrease in the PPR increases the
ambient temperature (Inman et al, 2016). Figuer 9¢
shows, a decrease m PPR increases the rain amount
according to a linear relation (Weber et al, 2014).
According tothe logarithmic relation between the PPR
and relative humidity, Fig. 9d shows an mcrease in PPR
with an increase in relative humidity (Mekhilef er al.,

ncreases

15

1); b) Ambient temperature (v = -0.0996x+7.5979, R* =1}, ¢
e humidity (t=1.105In (x)+4.5087, R* = 1) and e)Wind speed

2012; Elbreki et al., 2016) while Fig. Se provides a decrease
in the PPR with an increase in wind speed (Sayyah et al.,
2014).

Proposed model verification: The verification of the built
PSO Model was done with 50 experimental data records.
This set of data was not used for the construction and
optimization of the model. The PSO Model showed a mean
of 1.005, an SD of 0.090 and a CoV of 8.98%. This result
indicates that this model shows a better interconnection
between the experimental and predicted PPR values. Thus,
the proposed P3O Model can efficiently estimate the
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PPR values for the PSO Model (R* = 0.9182)

values of PPR for the various environmental parameters
values. For high accuracy, the CoV values should be less
than 10%. While CoV value between 10% and 20%
indicate a good prediction and values ranging between
20% and 30% indicate low accuracy. Lastly, CoV values
above 30% show a sigmficantly, lower precision value.
Figuer 10 presents the predicted PPR values as per the
PSO Model.

CONCLUSION

This study used the PSO techmique to propose a
model for PPR in a solar panel. The results of the model
show the applicability of the PSO techmique to assess the
solar energy problems, minimal influence on the
processing time and convergence of the PSO algorithm
where this technique can be adopted as an effective tool
to explore the optimal solutions for the growth of the PPR
of the PV with the different environmental parameters
such as ambient temperature, dust accumulation, rain
amount, relative humidity and wind speed which have a
significant effect on the predicted PPR of the PV. This
model minimized time consumption in the design process
and provides a guideline for selecting the suitable site for
the power plant with the consideration of the
envirommental parameters. In this model, three
performance measures, namely, MAE, MAPE and RMSE
were analyzed and the result provided a high accuracy of
MAE according to it.
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