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Abstract: The proportional-integral-derivative controller is widely employed in process industries due to its
simplicity, reliability and ability to achieve major control objectives. The Internal Model Control (IMC) design
1s a top-notch techmque used for tuning these controllers for Single Input Single Output (SISO) systems with
dead-time. Filter constant, A 1s a very mmportant concept in the IMC design and proper estimation of the
constant is fundamental. The following text studies the effect of varying the filter constant A from its ideal value
to extreme values and understands the system behaviour for the differing filter constants for first order plus
dead time model representing blending process. [t was observed that improper estimation of A lead to unstable
systems, large overshoots and lughly oscillatory response which are completely undesirable in any control
process. The inferences have been achieved with the aid of time domain analysis using MATLAB.
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INTRODUCTION differential equations (continuous domam) or

difference equations (discrete domain). Using

Blending systems are very common n process
industries such as o1l and gas, waste water treatment,
paper, food, pharmaceutical, chemical and many more
(Smuts, 2011). The real time industrial processes are
highly non-linear in nature and exhibit dead time
(Smith and Corripio, 2006). This dead time occurs
majorly due to the following factors (Bequette, 2002):

¢  External factors such as transportation lag due
to long pipelines or large travel distances

* Internal factors such as non linearities of the
final control element, 1.e., blunt use of
conventional actuator sizing for valves and
excessive tuning of the controller

*  Uncertainties like noisy data, erroneous
assumptions of mmportant parameters and
mcorrect modelling of the systems

Presence of dead time element complicates the
analysis and design of control systems and makes
satisfactory control more difficult as the performance
might endure mstability, high sensitivity to
parametric uncertainties and poor disturbance
rejection (Altmann, 2005). Any industnial process is
mathematically represented in the form of nonlinear

analytical methods such as state space analysis,
mnitial-final value theorems, etc., to solve these
equations become a challenge with the increasing
non lmearities, orders of the transfer functions and
dead time (Smuts, 2011). The FOPDT Model is often
an equitable approximation to such process
behaviours as it has the efficacy for controller tuning
rules and can be used as a computationally surrogate
medel in simulations for training and optimization
(Korsane et al., 2014). Higher order mdustrial
processes can be modelled as FOPDT as the
simulations become much easier (Juneja et af., 2010).
The FOPDT Model has the continuous transfer
function (Eq. 1) (Bequette, 2002):

Bo o (1)
T,+1

Where:

K, = Process gain

T = Process time constant

6 = Process dead time

A Proportional Integral Derivative controller (PTD
controller) 1s a control loop feedback mechamsm
used 1n industrial control systems to lower the degree
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of deviation (error) of the process variable from the
set-point (Babu and Swarnalatha, 2017). The PID
controller has three principal control effects. The
Proportional (P) action when used alone always
exhibits some offset to the system. To mimmise the
offset, one can tune the system by changing the
proportional gain, however, beyond a certain limit,
the response becomes heavily oscillatory and
unstable. In addition, one can never completely
eliminate offset by using P controller alone. With the
mntegral action n picture, the offset can be completely
eliminated as 1t gets mtegrated till it becomes null.
However, this happens at the cost of increased
process settling time and occuwrence of more
oscillations. With the Derivative (D) action in
addition to the P-I action, the oscillations can be
dampened and smoothened out. This reduces the
settling time thereby speeding up the response and
stabilizing the system (Korsane et al, 2014).
However, the derivative action is also known to
amplify noise present in the system as it takes the
derivative of the error (de/dt) and causes faster wear
and tear of the equipment. Thus, industrial processes
with high measurement noise tend to avoid PID
controllers (Shahrokhi and Zomorrodi, 2013). The
measurement noise in a system arises from the
sensors in the transducers (Bequette, 2002). If the
sensor accuracy 15 the problem, then the entire
automation becomes a failure (Altmann, 2005). In the
following text, a PID controller is used where the
overall controller output is the sum of the
contributions from the above mentioned three
actions. The three adjustable PTD parameters are
controller gain K, mtegral time T; and derivative time
T, (Phu et al., 2017). The transfer function of PID

controller in parallel form is (Eq. 2) (Bequette, 2002):

G.(s)= K, (I+ #+Td*s) )
Where:
K. = Controller gain
T, = Integral time
T, = Derivative time

Internal model control 1s a model based control
technique developed by Garcia and Morari (1982)
which provides an appropriate trade-off between
robustness and performance of the system and
accounts for model uncertainty and disturbences.
The basis of IMC is pole-zero cancellation with
controller zeros being used to cancel process poles
and Q parameterization structure (Fig. 1). This
enables IMC with good set point tracking ability,
optimum compensation for disturbance and
parametric uncertainty (Morari and Zafiriou, 1989). It
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Fig. 2: Rearranged IMC structure
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can be employed for Single Imput Single Output
(STS0) processes, Multi Input Multi Output (MIMO)
systems, continuous and discrete designs, unstable
open loop systems, systems with feed-forward
control, feedback control and so forth (Rao et al.,
2015).

The filter constant A also known as closed time
constant T, is a very important concept in IMC and
proper design of the filter is fundamental. The
optimum filter constant reduces process variability
and aids in achieving a non-oscillatory loop with
desired dynamics of the process (Rivera et al., 1986).
The rivera guidelines for determiming A are used
(Eq. 3 and 4) (Rivera et al., 1986):

&>0.8 3)
o

A=0.1T 4

The value of A is obtained using the above
criteria for proper tuning of the controller parameters
(Juneja et al., 2010). The process dynamics are
identified from the response by fitting an appropriate
transfer function model to the results (Kala et af.,
2014):

Where:

r(s) = Setpoint

I’ (s) = Modified set point = 1(s)-d"(s)

u(s) = Manipulated nput

g,(s) = Process

g, (s) = Process model

d(s) = Disturbance

d’ (s) = Estimated disturbance

y(s) = vy’ (8) y(s) = Measured process output
q (s) = Internal model controller
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Fig. 5: Block diagram representing standard IMC
structure

Figure 1 shows the Q-parameterization structure.
It consists of the IMC controller g(s) and mternal
process model g’ (s) (Fig. 2-4). From Fig. 5, the
feedback controller is given by Eq. 5:

q(s)
__ A (5)
S P

The IMC controller in Fig. 2 13 given by Eq. &

g.(s)
A0 6)
=g (e
MATERIALS AND METHODS

Fourth order transfer function (Eq. 7) mimicking
Blending  processes has  been
experimentation. The response of the transfer

used for

function is given in Fig. &:

G(s)= ! N
(10s+1)(0.1s+1)X0.055+1)

Using the two point method of approximation,
the first order plus dead time model is obtained

(Eq. 8):
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Fig. 6: Response of 4th order transfer function
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Fig. 7. Response of 4th order transfer function and
dead time approximation
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Fig. & Response for a step unit using IMC techmque
for 4th order blending process

Table 1: Tuning formulae for TIMC tuning of PID controller
Tuning technique K. T T
IMC tp+0.50p/kp (A+0.58p)  tp+0.50p Tp.Gp/2rptep

Table 2: Tuning parameters of the PID controller
Tuning Proportional Tntegrating

Derivative

method gain K, time T; (sec) time T; (sec)
IMC¢A=1.1) 6.3134 10.575 0.5437
115
[~ 3
P(s)= (8)
10s+1

Equation 7 and 8 are simulated in MATLAB
Fig. 7 shows the response of the 4th order transfer
unction model and FOPDT Model (Skogestad, 2003).
From Fig. 7 both the transfer function graphs and the
FOPDT graphs are approximately the same, therefore,
the approximation done using two-point method is
correct (Hussain ef al., 2014). Table 1 shows the IMC
formulations used to obtain the numeric values 1n
Table 2.

1488



J. Eng. Applied Sci., 14 (5): 1486-1492, 2019

Table 3: Time domain characteristics

Tuning method Overshoot My (%)  Settling time T, (sec)

Rising time T, (sec)

Peak time T, (sec) Amplitudeatpeak time

IMC(A=11) 2.577 13.02

3.249 3302 1.18

Table 4: Time domain characteristics with varving lambda

Lambdal  Proportional gain K, Peak time T, (sec) Amplitude at T,  Rise time T, (sec) Settling time T, (sec)  Overshoot Mp (%0)
0.1 15.6667 Unstable Unstable Unstable Unstable 234.365
0.5 9.8372 3.291 1.596 2019 19.3 60.484
0.7 82941 3.292 1.347 2.850 186 34.459
0.9 71694 3.298 1.67 3.040 17.8 15.698
1.1 46.3134 3.302 1.18 3.249 13 2.577
1.5 5.0960 5 1.36 3.248 33 0.483
1.7 4.6484 5.3 1.41 3.25 356 0.485
2.2 3.8110 5.6 1.41 3.254 38 0.495
3.5 2.5951 Unstable Unstable Unstable Unstable 244.873
4.5 2.0870 Unstable Unstable Unstable Unstable 254.850
PID controller tuning: Table 2 gives the parameters 20C
for tuning the PID obtained using the IMC 1§8
. . . 1
formulations (Table 1). Figure 8 gives the response of L 5
. . . =1
the system with controller parameters obtained using Z 0
the IMCformulations in MATLAB (Table 2). Table 3 £ =0
gives the time domain characteristics of the response -100
obtained in Fig. 8 With 4 = 1.1, the system has a :;gg
minimal percentage overshoot of 2.577%, settling 0 5 10 15 20 25 30 35 40 45 S0
Time (sec)

time of 13.02 sec, nise time 3.249 sec and peak time of
3.302 sec. Table 3 shows the optimum readings for
the FOPDT Model.

IMC study by changing lambda: The filter constant is
now varied from its ideal value of 1.1 and time domain
analysis has been done. The following Table 4 shows
the numerical figures for the responses observed by
varying the filter constant for a step mput wit set
point at 1, integrating time 10.575 sec and derivative
time 0.543735 sec. Note that the responses and the
time domain characteristics have been observed for
over a time period of 50 sec.

RESULTS AND DISCUSSION

At A = 0.1 which 15 an extremely low value
compared to 1.1 which is obtained using the Rivera
criteria for choosing the filter constant (Eq. 3 and 4),
unstable system response with infinitely increasing
oscillations 1s observed. The following Fig. 9 shows
the response.

The following wvalue of lambda that is
lambda = 0.5, Fig. 10 shows severe overshoots at the
mitial stages of the response the response shoots up
to 1.6 amplitude for the set point of 1 as well as takes
19 sec to settle down.

Lambda = 0.9 i3 a very close value to 1.1,
however, more optunum results are obtained for the
ideal wvalue. Response with filter constant = 0.9
(Fig. 9 and 10) takes more time to settle down to the

Fig. 9: System response with filter constant = 0.1
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Fig. 10: System response with filter constant = 0.5
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Fig. 11: System response with filter constant = 0.9
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desired set point of 1 that is the settling time is 17.8
sec whereas for filter constant 1.1 is 13 sec. In
addition, the percentage amplitude and amplitude at
peak time are also more (Table 4). With increasing
lambda values, the settling time also increases. Here,
for lambda = 2.2 (Fig. 12), the settling time is 38.2 sec,
almost three times the ideal settling time 13 sec. In
addition the am. At lambda = 3.5 (Fig. 13) we observe

1489



J. Eng. Applied Sci., 14 (5): 1486-1492, 2019

15
210
2

é—

< 05
0.0

0O 5 10 15 20 25 30 35 40 45 50
Time (sec)

Fig. 12: System response with filter constant = 2.2
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Fig. 13: System response with filter constant = 3.5
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Fig. 14: Peak time versus lambda characteristics

system mstability which continues, hereafter. For the
FOPDT Model used for experimentation, the ideal
value of lambda used 1s 1.1 and this value 1s used as
a standard to compare the time domain characteristics
obtained for other lambda. Using the rivera criteria for
selection of proper filter constant, it is mandatory
that the lambda be >0.8%process dead time and
simultaneously be <0.1*process time constant. The
process dead time and process time constant are
calculated using the two point method of
approximation and their values are 1.15 and 10 sec,
respectively, 0.8%1.15=0.92.

Therefore, 1deally lambda value should be =0.92,
hence, the value chosen, here 15 1.1 and good results
have been obtained (Table 4). The minimum 2.577%
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Fig. 15: Rise time versus lambda characteristics
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Fig. 16: Settling time versus lambda characteristics

Overshoot, minimum peak time of 3.202 sec for the
minimum amplitude at peak time of 1.18 and
minimum settling time of 13 sec is observed.
The followmng Fig. 14 shows the trend of peak time
with increasing filter constant. Till the ideal value
of 1.1, we observe a minimal peak time of 3.2 sec,
however, after 1.1 values, the peak time mcrease.
Note that the unstable cases havent been mvolved
for observing the time domain characterics trends for
peak time, rise time and settling time. Figure 15and 16
shows the trend of rise time with increasing values of
filter constant. The rise time doesn’t show significant
variations with varying filter constant Fig. 16.

A significant observation is made in the trend
of settling time with increasing filter constant. The
least settling time 13 13 sec and observed for the
ideal value 1.1 only. For all the other values (with
stable responses) the settling time 1s more than 13
sec. The settling time shows a decreasing trend as
lambda approaches its ideal value, a minimum 13 sec
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Fig. 17: @) Percentage overshoot versus lambda

characteristics for stable and unstable
responses and b) Percentage overshoot
versus lambda characteristics for stable

TesSpOoIses

settling time 15 achieved at 1.1 and hereafter the trend
only goes higher. The settling time after the ideal
value of 1.1 only keeps increasing and the maximum
value of 38 sec to settle down is observed at
lambda = 2.2, Figure 17
observations graphically. The unstable responses are
observed for very low lambda values (here, 0.1) and
very high values (3.5). For these unstable responses

shows the above

the percentage overshoot are large in the ranges
of  200-260%. Figure 17a shows the trend of
percentage overshoot with mcreasmg lambda for
both stable and unstable Stable
respenses have been observed in the range of 0.5-2.2
lambda. Figure 17b shows the trend of percentage
overshoot with lambda for stable
responses only. It 1s very evident from the trend that
the overshoot decreases with the increasing lambda.

responses.

increasing

Even after the ideal value of 1.1, the overshoot
decreases which is very fundamental to a good

process control. Minimum % overshoot is 0.495% for
lambda = 2.2. However, looking at the other trend of
settling time, we observe the settling time is
maximum for lambda = 2.2 that 1s 38 sec. Hence, at
lambda = 1.1, optimum results are obtained with
respect to all the parameters peak tune, settling
toumne, rise tume and percentage overshoot.

CONCLUSION

Real time mdustrial processes possess dead time
inherently due to many reasons and the presence of
dead time 1s highly undesirable in the process as it
makes difficult and
challenging. A 4th order blending process was
approximated as first order plus dead time model

the centrel much more

using the two point method of approximation and this
model was used for all the experimentation purpose.
Internal model control tumng technique was
implemented using a conventional PID controller to
the above FOPDT Model. Filter constant, A defines
the IMC design and proper estimation of the
constant 1s fundamental. Ideal value of lambda using
the rivera criteria was calculated as 1.1 and was used
as a standard to compare the trends with varying
values of lambda ranging from 0.1-4.5. It was
observed that improper estimation of A that is very
low wvalue (0.1) and very high value (3.5) lead to
unstable

systems, large overshoots and highly

oscillatory response which are completely
undesirable m any control process. In the range of
0.5-2.2, large settling time was a direct observation
and decreasing percentage overshoot. Hence, it 1s
very important to design the IMC using a proper
value of lambda. Only an appropriate value of
lambda/filter constant will aid in reducing process
variability and effect of disturbances in an active

systermn.
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