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Abstract: Now a days, lLithium-ion batteries are the most used to power electronic devices and electric
vehicles. Lithium-based electrochemical accumulators have better energy density and reliability than any other
energy storage method. To use a battery effectively, it is necessary to understand its operation, its dynamics
and to know the parameters that can affect its performance. In this study, we propose a model of a lithium-ion
battery, the parameters of tlus model are identified by a Levenberg-Marquardt nonlinear algorithm. The
parameter output 15 a lookup-table of element values that depends on the state of charge of the battery. A
pulses discharge test 1s performed on a commercial 16 Ah lithium-ion battery in order to identify the parameters
and validate the model, results are presented and validated.
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INTRODUCTION

Due to techmological progress and the rapid
evolution of mobile systems, many habits are changing.
The individual demands more and more portable
applications. This new trend creates a strong demand for
power supply that must be as efficient as possible
whether in terms of reliability, charging time or discharge
time and especially, the volume occupied. With respect to
all these points, the lithium-ion battery appears to be the
most suitable solution. After the bad start of lithium metal
batteries in the early mineties, lithium-ion batteries, known
as the safest batteries, quickly recovered the delay.
Today, this technology is competitive with high-demand
areas such as military and space applications.

In owr new area, the storage and conversion of
energy 15 a major challenge because the world’s oil
reserves will not be able to meet the needs of humanity for
a long time. Hence, the interest of doing research to
find new sources of energy less polluting and which
respect our enwvironment which 1s changing in a rather fast
way.

One of the key components of the new generation of
vehicles aimed at reducing emissions and conserving
energy 1s the storage battery. The function of a storage
battery in an application may vary. For example, in the
case of the automotive industry, the storage battery may
be the main source of power as the case of an electric
vehicle or a secondary source used i conjunction with

another power source such as the electric engine and the
combustion engine in the case of a hybrid electric vehicle
(Luetal., 2013; Fotouhi et al., 201 7).

A Li-ion battery consists of several cells
connected in series and in parallel depending on the
voltage and the requirements of the device. Three
different types of Li-1on battery cells are commonly used:
cylindrical, prismatic and polymer, used m laptops, tablets
and phones. Tn addition, lithium is the lightest metal.
Lithium ion batteries are widely used in the notebook
industry, cell phones and embedded systems because of
their high energy density. Moreover, this type of storage
battery has a good performance at high temperature and
low self-discharge especially as they have no memory
effect. The first accumulator batteries of this kind had
relatively short lifetimes.

The first generation of rechargeable lithium
batteries used a lithium anode in its metallic form. This
technology has however, been abandoned because of the
difficulty of reconstituting the anode during successive
recharges. This once damaged could accidentally reach its
melting point (180°C) and come into contact with the
cathode which produced a violent reaction and the
emission of hot gases. Abandoned for more than 10
years, lithium metal could make a comeback in a few
years, if current research to find a solution to the security
problem is successful.

To overcome the problems encountered in
lithium metal batteries, the radical solution of abandoning
lithium in metallic form at the level of the anode has been
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adopted in favor of an insertion compound. Graphite
appears as the best candidate for this role. Indeed, the
carbon insertion properties have been demonstrated up to
a Lithium 1on for 6 Carbon atoms (LiC;). During the first
insertion of lithium into the graphite, a part is totally
consumed wreversibly. This phenomenon is due to the
decomposition of the electrolyte and the formation of a
passivating film on the Surface of the Electrode (SEI film).
Unlike the metal lithium anode, this phenomenon is
essential for the good operation of the cell. SEI prevents
the reduction of the electrolyte by retaining 1.i" ions in the
carbon. However, this layer must be sufficiently porous to
allow the Li" ions to pass during charge/discharge cycles.
This passivation layer may have disadvantages, since, it
increases the internal resistance of the element which
causes a drop m voltage during use. SEI is not a major
problem but it will become a problem at the end of cell life,
reducing its ability to restore or accept 1ons (Bartlett ef af.,
2017; Gao et al., 2002).

MATERIALS AND METHODS

Lithium battery models

Simple model of a battery: The simplest and most
common model consists of an ideal voltage source V,
(no-load voltage) m series with an internal resistor. V, 1is
the terminal voltage at the terminals of the accumulator
(Haong et al, 2011; Yao et al, 2013; Laadiss1 et al,
2016) (Fig. 1).

In this simple model R, and V, are considered
constant. This model does not take into account the
variation of the internal resistance of the accumulator as
a function of the state of charge or the temperature. This
model can be applied if we can neglect the dependence of
the parameters of the state of charge and the temperature
(Lietal, 2017, Menard ef al., 2010, Shen and L1, 2017).

Thevenin model (first order): This model shown in Fig. 2
is often used. Tt consists of an ideal source U,, an
mternal Resistance R,, a Capacitor C ywhich represents
the polarization of the metal plates of the accumulator and
an over-voltage Resistor R, which 1s due to the contact of
the plates with the electrolyte. In this model, all elements
of the equivalent circuit are assumed to be constant and
different in charge and discharge. But in reality these
parameters also vary depending on the state of charge
and the discharge rate:
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Fig. 2: Thevenin model (first order)

Thevenin model (second order): This model is represented
by the following diagram: This model is characterized by
the following Eq. 3-5:

duU u
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The model above, gives the evolution of the voltage
(U,) the transient response related to the phenomenon of
the double layer of electric polarization and the dynamic
polanzation. The two networks (R,,, C,., Ry, C,) make the
assembly react to two different time constants, T, (fast)
and T, (slow), It consists of an ideal source U, of open
circuit voltage, Ohmic Resistance R, and two polarization
Resistors, R, and R, which successively represent the
resistance of the electrochemical polarization and the
concentration polarization resistance and two Capacitors
C,. and C, which respectively, represent the
electrochemical  polarization  capacity and the
concentration capacity.

In the context of the development of estimation
parameter algorithms and the necessary simulations,
modeling by equivalent electrical circuits has been
chosen, thanks to their precision and ability to reproduce
the phenomena that dominate the operation of
accumulators as well as to describe the dynamic behavior
of the battery.

The most used model 1s Thevenin first order Fig. 2,
thanks to the simplicity of implementation, this simplicity
has the price of the reduction of precision because the
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elements of the model are considered constant which is
not true in reality as they vary depending on the state of
charge, the temperature and the charging and discharging
cycle.

To solve the problem of precision, the second order
model of Theverun, Fig. 3 was chosen this model which
brings to the evolution of the voltage 1, the transient
response related to the phenomenon of the double layer
of electric polarization and dynamic polarization. The two
networks (B, R, R, C... R,., C,,) make the set react to two
different time constants, T, (fast) and t,, (slow).

In thus study, we considered that the components of
this model only depend on the state of charge, we
neglected the effect of the temperature and the cycle of
charge and discharge.

Tomodel the variation of the battery components (E,_,
R R,.. Co. R, C,o) according to the SOC, we used under
MATLAB, look-up tables which correspond to each value
of SOC, given values of (E_, R, R, C,, R, C,). A step of
0.05 (5%) was considered for SOC variation.

Due to the dependency of the parameters to the state
of charge, the use of Simscape Library resistors and
capacity for the model is not optimal, new components
need to be created that model this dependency which 1s
possible using the Simscape language that allows us
to create any component (electrical, mechanical, hydraulic,
...,) which can vary in a non-linear way and also depend
on one or more nput variables which 1s our case.
Using the Simscape language, the model given in Fig. 4
has been realized, the components of which wvary
according to the SOC which is the output of the block that
models the open-circuit voltage of which the Columbus
count method was used. Metric to calculate the state of
charge which 15 in tum ijected mto the blocks of
resistances and capabilities.

Using the Simscape language we have realized the
model given in Fig. 4, the components vary according to
the SOC which is the output of the block which models
the voltage in open circuit, we used the method of
counting Columbus to compute the state of charge which
1s iyected into the blocks of resistors and capacitors.

Tt is this model that, we use during all simulations
under MATLAB, now, we must identify the internal
parameters of this model.

Parameters identification: The Levenberg-Marquardt
algorithm was chosen for parameters identification,
thanks to its high performance and its simplicity of
implementation (Yu et al., 2017; Zhang et al, 2017;
Lei et al., 2017, Huang et al., 2017).

The Levenberg-Marquardt algorithm 1s similar to one
of the least-squares nonlinear algorithms that seeks to
mimimize the function 6. The principle of this algorithm 1s
as follows:

Algorithm 1; Least-squares nonlinear algorithm:
Input: F differentiable function, x; starting point, €0 precision required
Output: an approximation of the solution of the least squares problem

Min r(x)) = 3 33 (2r(i) - Zest (1) = Y £ (x) )
i=1 i=1
1: K=0
2:  As long as stop criterion is not reached:
a: Calculation of a search direction, calculate a

solution of d,

TF(x, ) TF(x, )+ AL = - IF(x, ) F(x,) ®
b: et = xtdy
c Update of the A parameter
d: k=k+1

3: Return

The parameter A>0 can be chosen fixed or
heunistically adjusted: increased or decreased by a

factor depending on the quality of the step
proposed.
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Fig. 3: Thevenin model (second order)
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Fig. 4: Second order Thevenin Model with variable components
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Fig. 5. Battery discharge curve; a) Voltage discharge
curve and b) Current discharge pulse

Experimental data: First, we will use the discharge curve
to extract the open circuit voltage U, as well as an
approximation of the values of the internal Resistance of
the battery (R,) i order to mmpose them on the
Levenberg-Marquardt  algorithm to mimnimize the
identification time.

A commercial Lithium-ion battery (3.8 V, 16 Ah),
having an state of charge of 100% is
completely discharged with current pulses of value

-C/2 (-8A). This discharge is decomposed in several

initial

intervals, each interval consists of a duration of
application of the current 1s equal to 6 min, followed by a
relaxation time which lasts 1 h. This relaxation time allows
the convergence of the voltage of the battery to the value
of OCV corresponding to the current state of charge of
the battery.

Values of voltages, currents and times are recorded
throughout the battery discharge process. These values
will be used later as data for the parameter identification
method.

Open circuit voltage approximation: The open circuit
voltage which corresponds to each state of charge at
each mterval 1s the last voltage measured before the
application of a new current pulse. In other words, it
15 the voltage that reaches the battery at the end of
the relaxation phase. The following Fig. 5 shows the
open-circuit voltage values U, of each mterval on the
voltage curve during the discharge.

Approximation of Ry: In this study, we are looking for an
approximation of the values of the internal resistance R,
of the battery. When applying the current, the battery
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Fig. 7: Voltage drop for all intervals

voltage has an instantaneous drop due to R, negative in
the case of discharge (current <0) (Fig. 6). This fall
disappears in the relaxation phase because of the absence
of the current. By detecting this voltage difference, R; 1s
obtained by dividing the voltage by the value of the
applied current.

To calculate this voltage drop, we use, under
MATLAB, the voltage gradient vector shown in Fig. 7.
The negative and positive voltage peaks represent this
instantaneous voltage variation at the beginning and at
the end of the current pulse interval.

The value of the voltage drop obtained will be
divided by the value of the current applied and we obtain
an approximation of the resistance R, which corresponds
to the value of SOC in this interval.

By carrying out the same study on all the intervals,
we deduce an approximation of the wvalue of R
corresponding to each interval (5% of state of
charge).

RESULTS AND DISCUSSION
The parameter identification (B, R, R, C,, R, C,.)

was performed using the optimization MATLAB tool
(Control and estimation tools manager) in which is
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integrated the TLevenberg-Marquardt algorithm: The
interface (Control and estimation tools manager) takes as
parameters:

¢ The discharge current

*  Voltage at the battery terminals during discharge

¢ The capacity of the battery

¢ The mitial values of the lock-up tables of E.,, Ry, R,.,

Coa By G

This algorithm gives as output parameters the new
identified values of (E,, R, R, C,.. R, C,) such that the
model best reproduces the dynamics of the battery.

The voltage variation across the battery as well as
the discharge current values are obtained by discharge
and charge tests by pulses on a commercial power battery
of 16 Ah and rated voltage 3.8 V. As part of this
procedure, the battery was fully charged, then subjected
to 10-C/2 discharge pulses interspersed with a resting
phase of one hour until the cell was completely
discharged. Then, the battery was charged with 10 C/2
charging pulses interspersed with a one-hour resting
phase until the battery was fully charged.

The initial values of the lock-up tables of R, C, R,
C,. are taken intuitively. The results obtained are as
follows in Fig. 8:

At the beginning of the identification the response of
our model and the experimental data of the battery are
different which is normal because the initial parameters are
chosen intwtively and as the identification progresses,
these values change in order to make the estimated
curve (response of our model) similar to that of the
battery.

Identification result: Note from Fig. 9 that the two
responses (estimated and measured) are similar with an
error <0.5% which means that the set of parameters that
minimize the term 6 are those found by the identification
process. The variation of the parameters (B, R, R, C,.,
R... C,.) 1s given by Fig. 10:

As shown in the figures, the values of the internal
parameters of the battery vary according to the State of
Charge (SOC), Fig. 10 shows the variation of internal
Resistances (R;), we note that at the beginning of the
discharge (area between 100% and 85% of the state of
charge) the value of R, increases, to simulate the voltage
drop seen at the output of the battery. During the same
phase the values of the Capacitances C,, and C,, vary to
sinulate the exponential decay of the voltage, Fig. 10 also
show that from 0% of the SOC up to 15%, we notice that
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Fig. 8 Measured vs. estimated response
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Fig. 9. Measured vs. estunated response after parameters
dentification

the values of the Resistances (R; R,. R,) change
dramatically which verifies the sudden voltage drop at the
output of the battery.

Validation of the model: An equivalent electrical circuit
has been used to model the battery, the internal
parameters of this model have been identified using the
Levenberg-Marquardt algorithm.

For the validation of these parameters, the model 1s
discharged by a succession of current pulses of amplitude
-12 A in order to compare its response to that of the
commercial battery for the same discharge current profile:
discharge by a sequence of amplitude pulses -12 A

According to the two graphs Fig. 11 the responses of
the model and that of the actual battery are almost similar
which implies that the parameters obtained by the
identification, model well the behavior of our battery in
the transient and permanent regime which validates the
parameters found and the model chosen.
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Fig. 11: Measured vs. estimated response for -12 A pulses
CONCLUSION

After having specified the different phenomena that
take place within the lithium-ion battery an equivalent
electrical model has been established using the Simscape
MATLAB language. At the model level, the parameters
are considered variable just according to the state of
charge n order to simplify the study. The parameters of
the chosen model were 1dentified by the least-squares

**Levenberg-Marquardt algorithm. The model chosen
and the parameters obtained were validated by different
discharge current profiles by comparing the response of
the model with that of the actual battery studied.
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