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Abstract: Fault movement across a fault 1s preceded by accumulation of stress near it over a considerable
period of time. When this stress exceeds the total cohesive and frictional forces across the fault, a movement
which may be sudden or creeping, across it set in. In this study, a creeping movement across a very long,
buried, strike-slip fault mclined to the free surface and of finite width 1s considered in an 1sotropic,
homogeneous, visco-elastic medium of Burger’s rtheology type. A mathematical model for such fault movement
is developed during the period when there is no fault movement and also for the aseismic period which is

restored after the sudden movement. The analytical expressions of displacement, stresses and strains for both
the period are determined by the use of Green’s function technique and correspondence principle. Finally, these
displacement, stresses and strains are numerically computed with suitable values of the model parameters and
the results thus obtained are presented graphically. Such theoretical models may be used for obtaining greater

insight into the earthquake processes in seismically active regions.

Key words: Strike-slip fault, visco-elastic medium of Burger’s rheology, Green’s fimction technique,
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INTRODUCTION

Recently there has been a growing interest in the use
of static or quasistatic displacement, stresses and strains
for the investigation of earthquake phenomena. Model of
dynamic processes leading to an earthquake 1s one of the
main concerns of seismologists and geological engineers.
Tt is found that two consecutive major earthquakes in the
seismically active region are usually separated by a long
aseismic period during which slow and contiuous
aseismic surface movements are observed with the
help of soplusticated measuring instruments like
strainmeter, tilt meter, etc. Since, the aseismic period is
almost static (quasi-static), the occurrence of foreshocks
and aftershocks are neglected Such aseismic surface
movements indicate that slow aseismic change i stress
and strain are occurring in the region which may
eventually lead to sudden or creeping movements across
the seismic faults. These faults may be strike-slip or
dip-slip type, finite or long, surface breaking or buried
situating in the region. To understand the mechanism of
earthquake processes it 1s necessary to develop
mathematical models to study the small ground
deformation observed during the aseismic period in the
seismically active regions.

Literature review: A pioneering work invelving static
ground deformation in elastic media was initiated by
Steketee (1958a, b), Chinnery and Dushan (1972),
Chinnery (1961, 1964) and Maruyama (1964, 1966).
Andrews (1974), Turcotte and Spence (1974) and Rybicki
(1971) did remarkable research m analysing the
strike-slip
movement of the fault in the elastic medium. Later
some theoretical models have been developed by
Rybicki (1971), Mukhopadhyay and Mukherji (1979),
Mukhopadhyay et al. (1980), Sen et al. (1993}, Sen and
Debnath (2012) and Savage (1975).

Ghosh et al. (1992), Segall (2010) and Sen and
Debnath (2013) did wonderful works in analysing the
displacement, stresses and strains in the layered medium.
Sen et al (2012) and Debnath and Sen (2014), discussed
about long interacting strike-slip faults in the viscoelastic
half space. There after a model for a fimte strike-slip fault
under tectonic forces was developed by Debnath and Sen
(2015).

In most of the cases elastic or viscoelastic half
space of maxwell type and standard lLinear solid or
layered medium were considered to represent the
lithosphere-asthenosphere system. To the best of our
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knowledge, no theoretical model has still been developed
in the viscoelastic half space of four element (Burger’s
element) type to represent earthquake faults. The
research work of Hu et al. (2016) and observations in the
seismically active regions during aseismic period suggest
that Burger’s type viscoelastic material may be a suitable
representation of the lithosphere-asthenosphere system.
In this study, we represent the lithosphere-asthenosphere
system in the viscoelastic medium of Burger’s rheology
type and a strike-slip fault inclined to the free surface
at a certain depth from the free surface is situated in the
half-space. The movement of the fault taken to be
creeping in nature and the tectonic force that, we have
considered in our calculation i3 linearly mcreasing
function of time.

MATERIALS AND METHODS

Formulation: A two-dimensional theoretical model with a
long vertical buried strike-slip fault F of width D is taken
in the lithosphere-asthenosphere system consisting of a
viscoelastic half-space of Burger’s rheology type. To
represent this, we introduce a rectangular cartesian
coordinate system (y,-y;) with y; = 0 as the plane free
surface, vy, axis pointing downwards, so that, the
viscoelastic half-space can be described by y,>0. Let d be
the depth of the upper edge of the fault below the free
surface. Suppose (y,-v;) and (§£-£) indicate the
coordinates of observational points and dislocation
source. We introduce new coordinates (£,-£;) as shown
in Fig. la, so that (£-£) can be associated (£, -, by
the relation £, = £ £, = £, sin B-(E;-d)cos Band £, = £,
cos O+(E,-d) sin 0. Thus, the fault is given by F: (£, = 0,
0<E, <D). The length of the fault is assumed to be very
long compared to its width D, so that, the components of
displacement (1, v, w), stresses T; and strain B, 1, j = 1, 2,
3 are independent of y, and are functions of y,, y, and
time t only and they separate out into two distinet and
mutually independent groups-one group containing the
components u (T, Tp;), (E;;, E;;) associated with the
strike-slip movement and the other group containing the
remaining components associated with a possible dip-slip
movement of the fault. We here consider the strike-slip
movement across the fault. The Burger’'s Model which
the combination of the Kelvin-Voigt and the
Maxwell type material as shown in Fig. 1b gives a
deriving time-dependent
solutions for displacement, stresses and strains.

is

comprehensive model for

Constitutive equations: The constitutive laws provide the
relation between stress and strain possibly including time
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Fig. 1: a) Section of the model by the plane £, = 0 and b)
Burger’s Model
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derivatives. We here consider strike-slip movement across
the fault when the medium is in aseismic state (t = 0) for
which the displacement u, stresses T,,, T, and strams E,,,
E,; are present. The stress-strain relations for Burger’s
rheology model of viscoelastic material are taken as
follows (Segall, 2010):

a : ] 9
T tPy a(rlz )erz ?(112 ) = 2q1 &(Eu ) +2q2 ?( EIZ )(1)
0 : 0 2’ (2)
T3P E(TB) P, ?(TIB) =12q, E(E13)+2qz ?(EIB)
Where:
P :m+'ﬂ_z+ﬂ, :nmz:ql =M 42 S
My My My Mk, K,
Where:
My, M, = The respective effective viscosities
M 4, = The respective effective rigidities of the

materials

Stress equation of motion: For the small deformations, if
the inertial forces are very small, so that, the acceleration
can be taken to be negligible and if there are no body
forces acting in the system during our consideration,
then, the quasistatic equilibrium equation is:
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d d
E(T12)+§3('513) =0 (3)
where (~eo<y, <00, y;2 0, 120):
Boundary conditions: For the Fault F:
T (¥ Yo 1) T =T (O)(1HRE). K20y
as |y, —eo(y, 2 0,12 0)
T13(Y27Y3: t)ZOOHy3:0,(y2|%oo,t20) (5)
Also:
T, >0asy, %m,(y2|—)m,t20) (6)

where, T_(t) is the shear stress of maintained by tectonic
forces far away from the fault which may or may not vary
with time but is taken to be independent of y,. In our case,
we assume that T_(t) = 1.(0) (1+Kt), K=0 is a increasing
function of time.

Initial conditions: We assume the time t from a
suitable instant when the model is in an aseismic state and
there is no seismic disturbance in it. Let, u =1, at the time
t=0andu,=3d/Gtu=0attime t = 0. We also, assume that:

0
T, = (T1z)o= g(TIZ ) =07, = (Tm)O:

timet =0and E,, =(E,)0, E,;, =(E;;)0 at time t =0

0
E(TB) =0at

(u) ahsence of fault movement uU

iz

9,
(TIZ ) ahsence of fault movement

L
q,

t
1o St
q;

T;)0
(TIE) abseace of fault movement ( 1‘;)
1
(EIZ ) abseace of fault movement 7(E12 )D +
2
2
1Y) (0) T ER at +K t—+—2 1-t-e
2 q qQ qs 2 q
1
(EIE) absence of fault movement E(EIZ )n
Where:
(Pl'A) (p1+A) 2 .
= = A= -4 2
I, ) A 27, > (Pl Pz)

(pl_erZ )e

1t

-4

2z

967

o

[(pl-erl )errlt'(pfpzrz )errzt}

X

The above initial values satisfy all the relations given
inEq. 1-6.

Solution: Differentiating (1) partially with respect to y,
and (2) with respect to y,, then adding and finally using
the relation (3) and initial condition, we get:

V*U =0 where U = uv-u, )

Taking Laplace transform of the resulting equation
with respect to time t, we get:

ViU =0 where U = ﬁ—E (8)

8
s is the Laplace transform variable.

Displacement, stresses and strains in the absence of any
fault movement: The displacement, stresses and strains
are all continuous throughout the system and all the
equations and boundary conditions given in Eq. 1-6 are
valid. The exact solutions for the displacement, stresses
and strains can be found by taking Laplace transform of
Eq. 1-6 with respect to time t which can be solved as given
i the study. If t.(t) does not have a significant
change over the period of time we are considering, then it
will be reasonable to take t_(t) = constant. On taking
inverse Laplace transform, the solutions are obtained

sl
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and p,, p, are same as given in Eq. 1 and 2. Now, 77, =
The stress across the fault:
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where (t7,), = (t,,), s1n 0-(t,,), cos 0.

From the above solution, we find that for the Fault F,
T°j; increases gradually with time and finally tends to T.(t)
7.{0) (1+Kt) sin 0 but we assume that the
geological condition as well as the characteristic of the
Fault F 1s such that it starts creeping when the magmtude
of stress 1’|, reaches some critical value t.(say)<t_(t) sin
6. We consider different inclination 8 = /6, /4, 7/3, /2.
It is noted that, the smaller values of 6 are not considerate

sin 0, 1e.,

due to the fact that such situations are not occurs in
reality. Here, we consider t, = 170 bar, i.e., 17 x10° N/m*
(Pascal) and it is found in Fig. 2 that t,/, reaches the value
170 bar after time T = 114 years for 6 = /3.

2 2
u=u,+ L. (O) [t-q{l-e q‘tJ+K[t+q{1-t-e qlt}rpl {t—q{l-e q‘tJ}er [l-t-e WN] Y2
q, 9, 9. 2 q q; 9. 9. q;
T,,)0 T.(0 5 .
(112) = %[(Pl'l)zli)erm'(pfpzrz )eth}+|:Tw (t)' }E ) |:(P1'P2r1 )e lt'(pfpzrz )e 2@]*‘

(),

(1) = 2mA

[( Pi-P:1 )e-rlt'(p1 “Pily )e-r2t :| +
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H(t1)w3 (YZ7 YB)

Displacement, stresses and strain after the
commencement of the fault movement: Weassume that
after a time t = T, the accumulated stress t°, (which is the
maimn driving force for the strike-slip motion of the Fault F)
near F exceeds the critical level 1, and the fault starts
creeping due to which the accumulated stress will release
at least to some extent. We leave out this short period of
time during and immediately after creeping movement and
consider the model after the restoration of the aseismic
state which happens when the seismic disturbances near
the fault gradually disappear. For t>T, all the basic Eq. 1-8
remain valid and are continuous everywhere except for the
Fault F across which the displacement component u has
a discontinuity which characterizes the creeping fault
movement given by:

where, [u]y 15 the discontinuity in displacement across F
and H(t,)) is the Heaviside unit step function. The
solutions for displacement (Wagw fafr movenenss S{TESSES
(T 12 Dater it emowemmont> CT13) ater fantt smovemnens) A0 STrAINS (B3 )upor e
movements (Be13)aler it movemens) QUIINE  this aseismic period
restored after major seismic event are derived from
Eq. 17-22 as given mn this study and the final solutions can
be represented in the following forms:

g, =00<g <

[U]F = U(tl)f(a;)H(tl) acToss F{D,tl =t-T=0

u= (u)absencs of Ealt movement +(u)aﬁer fault movement
T = (112 )ahssnce of fault movement +(TIZ )aﬁsr Fault movement
T” = (TH )absen:e of fault movement +(Tl3 )a&er fanlt movement (1 0)
EIZ = (E12 )absence of fault movement +(E12 )a&er fanlt movement
By =(Ey )abssnce of fault movement H(Ey, )aﬁer fault movement
For the U(t)) = Vt, where, V 1s constant creep

velocity, we have the final solution as:

(q1 -4, ) (1_e-rlt1 )_

I

(ql 'qzrz) (1_e-r1t1 )

I
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where, /-y, are given in the Appendix. Tt has been
observed that the displacement, strains and stresses are
unique and will remam bounded everywhere in the model
mcluding the upper and lower edges of the fault. The
conditions for bounded stresses and strains are that the
function f(£”.), £*(£°,) are continuous in 0<£’,<D and either
(£7,) is continuous in 0<£’,<D or £ ”(£’,) is continuous
in 0<E7,<D, except for a finite number of points of finite
discontinuity in 0<€,<D or f7(£,) is continuous in
0<E’,<D and there exists real constants m<l and n<l
such that £°,° £°(£°,™)-0 or to a finite limit as £°,-0"0 and
that (D-£7,)" £°(£°,)-0 or to a finite limit as £°,-D°0 and
f(D)=0={(D), (0)=0.

RESULTS AND DISCUSSION

Numerical computations: The numerical solutions for
displacement, stresses and strains are computed by
assigming suitable values of model parameters (Cathles 111
1975: Ald and Richards, 1980) and considering the recent
studies on rheological behaviour of the crust and upper
mantle by Karato (2010) and Clift ez al. (2002):

W, = 3.5x10" N/m’(Pascal)
p, = 310" N/m’(Pascal)

M, = 3.5%10" Pas

M, = 3x10" Pas

T.(t) = 200x1 0° N/m* (Pascal)
D =5x10"m

{T,,), = 20 10° N/m’ (Pascal)
(T2, = 20 10° N/m* (Pascal)
7.(0) = 20 10° N/m* (Pascal)
K=109

V = Constant creep velocity = 0, 0.01, 0.02, 0.03 m
0=mn/2, n/3, /4, T/6

We take f(y,) as given as (Ghosh et al., 1992):

?

Which satisfies all the conditions for bounded stress
and strain. We have computed displacement, stresses
and strains taking above value of the parameters with
new time origin t, = t-T, where, T = 114 years using
MATLAB.

g,
3

N 188 58
f(aj) _(13DZ +2D

9,
q,

—n‘H(tl)wz(yz, ¥,)

969

1€ q—‘t

el

2z

1t-e q—‘t
q:

bt
q; 9z (1)

First, we consider the rate of change of surface
displacement per year due to fault creep with v, on the
free surface y; = 0 and d = 0, taking constant creep
velocity V = 0.02 m/year with this assumption, Fig. 3a is
almost same as obtained by Sen et al. (1993) with out the
magnitude of displacement. Figure 3a shows that
nature of displacement depends significantly on the
inclination of the fault to the horizontal. However,
some similarities are found for the faults of different
inclination.

The maximum magnitude of the rate of change of
surface displacement due to the fault creep is attained
near the fault for both y,>0 and y,<0. This rate of change
of surface displacement decreases rapidly as we move

0.251

ot

2
x10*
AT d=2m ‘\
0.10 : . | |
-2 1 0 r '
v x10*

Fig. 3a: Rate of change of displacement due to creeping
fault movement with y, for various inclination of
the fault and b) Displacement after creeping
movement with vy, for different depth from the free
swface y; =0
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away from the fault on the free surface and for |y,|-, it
becomes very small and tending to zero. This rate of
change of surface displacement has opposite for y,»0 and
¥<0.

It 18 found from Fig. 3a that for y,=0, the rate of
surface displacement increases as 0 decreases and this
rate for 8 = /6 is about 0.15 m and when 6 = /2 . it is
about 0.1 m. However, for y,<0, the opposite scenario
occurs. For 8 = /2 this rate is anti-symmetrical with
respect to y, = 0. But for 8#1/2 there is no such anti
symmetric.

In Fig. 3b, it has been shown that the displacement
not only varies with the various inclination of the fault
which is shown in Fig. 3a but also, depends on depth d
from the free surface y, = 0. With the values of 8 = 1/3
and creep velocity 0.02 m, this displacement 13 maximum

near the fault for d = 0 and as d increases this

970

displacement becomes negligible. Tf, we move far away
from the fault this displacement vanishes which is true
from geophysical observational fact.

Figuwre 4a shows the rate of accumulation/release
(per year) of the surface shear strain E,, due to the fault
creep near the fault (y; = 0) and away from the fault for
different mclmation with d = 5 km and V = 0.02 m. It 1s
found that, the accumulation/release of the surface shear
strain B, depend on various angle but this effect falls off
rapidly as we move far away from the fault trace on the
free surface. For 0=m/2, the surface shear stram E,,
accumulation due to the creep is greatest near the fault
trace and is symmetric. For 6 = 1/2, this effect is not
symmetrical about the fault trace and maximum rate of
accurnulation/release of the surface shear stram E,, occurs
a little away from the fault trace. The maximum rate of
release of surface shear strain increases as 6 increases.
The effect of the fault creep on the surface shear strain
depends significantly on the inclination of the fault to the
horizontal.

Figure 4b shows that the rate of shear strain E
accumulation/release with different depth after the fault
movement fory,=1km,d=1kmand 0 =7/2, V=001 m.
It 1s found that there 1s a sharp accumulation of the rate of
shear strain from free surface upto the depth of 0.14 m
(approx). As the depth increases, there is a decrease in the
rate of shear strain accurnulation upto 0.18 m (approx). As
the depth increases further, the rate of shear strain release
upto the depth 0.4 m (approx) and this shear strain release
decreases as we move upto the depth 0.7 m (approx)
beyond which the rate of shear strain approaches to zero.
This events 1s true from real observational fact. The order
of release of shear strain is 10° which is conformity with
the observational fact in the seismically active regions.

In Fig. 5a, the accumulation of surface share strain
under the action of T.(t) against time has been plotted. We
find that shear strain in the absence of fault movement E ,
first slowly decreases, thereafter it increases rapidly with
the initial (E,,), = 0 and attain a value of 15x10” on average
which 1s in near conformity with the observational value
during the aseismic period. Figure 5b shows variation of
release of 17, with time for various constant creep
velocity per year near mid point of the fault for a fixed
inclination 6 = /3, taking y; =0, d = Skmand y, = 5 km.
It is found from Fig. 2, there is a steady accumulation of
shear stress 17, near the fault with gradually decreasing
rate of accumulation but after the commencement of the
fault creep at time T = 114 years, the accumulated stress
starts to release. This rate of release of shear stress near
the mid point of the fault £”,, = 0, £°;, = D/2 due to the
creeping movement 1s affected by the creep velocities V.
For sufficiently large creep velocities, there 13 a gradual
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Fig. 5: a) Strain before fault movement and b) Shear stress
1", after creeping movement with time near the mid
point of the fault

release of shear stress near the fault after fault creep
instead of accumulation, this feature is observed from the
geophysical perspective.

CONCLUSION

In this model of the lithosphere-asthenosphere
system represented by Burger’s rheology type material
with long inclined, plane strike-slip fault, our study
provides overview of some physical phenomena due to
the creeping fault movement. Then, the model 1s validated
by numerical results which are computed by using
suitable values of the model parameters. The nature of the
displacement, stresses and strains are analysed by
considering their graphical representation. The movement
of fault causes stress accumulation/release near the fault
which essentially depends on not only on various

971

inclination of the fault and creep velocity but also on the
different depth from the free surface and observational
point in the medium.

Appendix: Using constitutive Eq. 1 and 2, stress equation
of motion (Eq. 3) and mmtial conditions, the governing
equation can be written as:

VU =0 where U= u-u, (12)

Taking the Laplace transform of Eq. 9, then the above
equation in the transform domain is:

V0 = 0 where U = 12 (13)

8

Taking the Laplace transform of all constitutive
equation and boundary conditions:

9y,
l+pls+p252

s+q,8°
o (p1+p25)(1:12 )0+(q1 & )

B 1"'1315""132SZ

(14)

dy
l+p;s+p,s’

(Ch +qzs) 0

2z

where, p,, ., 4, ¢, are given by Eq. 1 and 2 and similar
other equation for T,;. Also, we have the boundary
conditions m transform domain as:

- 1 K
T (Y2= Y3=S)_>Tm(0)(;+s—2} as (15)
.| = == (y, 20, t20)
And on the free surface, y, = O:
E(yz, ¥, 5) =0, (-oosly, <oo, £ 2 0) (16)
Also:
7, >0as y; = oo(|y,| e, t20) (17)

where, 7 - J‘D“ t,edt, s being Laplace transform variable. We
solve the governing Laplace’s equation with the
boundary conditions Eq. 4-6 and 15-17. To solve the
boundary value problem, it is customary to assume that u

has the form:
_ u
u(Yz: Y3) = :U+AY2 By,

where, A, B are constants. Using the mitial and boundary
conditions and then taking the inverse Laplace transform,
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the solution before any fault movement which is given by
Eq. 9. After the fault movement, an additional uniform
dislocation condition which characterise the creeping
movement across F given by:

[u]F :U(tl)f(ﬁlj)H(tl) across F (1g)
(& =0, 0<E <D, t, =t-T>0)

where, [u]; is the discontinuity in displacement across
I

lim u, (19)

[u]F = llim u-&%r

0<E <D
L0+ ( éB )
and H(t,) is the Heaviside unit step function. Taking
Laplace transform of Eq. 18, then:

[u] =U(s)e(8) (20)

All the basic equations initial and boundary
conditions are same after the fault movement. The only
modified boundary condition is:

T_lz(Y2= Y3)_)O aS‘Yz‘_)Ooa(}G ZO,tZO)

We solved the resulting boundary value problem by
modified Green's function method developed by
Maruyama (1964, 1966) and Rybicki (1971) and
correspondence principle. Let, Q(y,-y;) be observational
point in the medium and P(£,-£;) be dislocation point on
the Fault F, then, we have:

9(Q) = [W(P)G(P,G) (21)

where, G(P, Q) = G, (P, Q) d5;-G; (P, Q) d&; and G(P, Q),
G5(P, Q) are given by:
1

=

G,(P.G)= y;§2+y12\/;§2}=G13(P=G)_
1y £, LY £,

zn{ R VE }L“(yz-%z)ﬂ(yﬁag)z

M’ :(y2_§2)2+(y3+§3)2

The two coordinate axes (£-£) and (£,-£".)
connected by the relation £, = £°, &, = £7, sin 0+£7, cos 0,
£, =d-£’, cos B4L, sin B, so that, on the fault £°, = 0 and
0<Z’,<D. From Eq. 20 and 21, one can write:
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y,sind-(y,-d)cos6 N

R O v e -
U(Q)* M J-D yZSiHe+(y3+d)COSG (aj)dé3,
—_ Mz

U(S)wl(ypya)

L =(y,%; cos) +{(y3-d)£, sinb)* =
2228y, cos B+(y3-d)sin € |+y?+(y, <)’
M* = (yz—égcos 8)2 +((y3+d)+§‘3sine)2 =
£y -28, [YZCOS -(y,+d)sin e]+y§ +(y3+d)2

Taking mwverse laplace transform with respect to time
t=tT, WQ)tesatmmanee = V2T Py, y2) H(t,). The
creep velocity across F is given by 3/0t(w) = V(t,) f(E",)
where, V(t,) = dU(t,)/dt, which 1s assume to be fimte for all
t,=0. Tf, we assume Ult,) = Vt, where, V is constant creep
velocity, then:

u(Q) after fault movement = %wl (y,.y,)H(t,)) (22)
n

Where:
) ¥, sin@—(éj-d)cose_i_
2 Ya) = 5 )dE.
W1(YZ Y3) -[u yzsin9+(y3+d)cose (E_':s) az
MZ

Tt is to be noted thatu=0fort, =t-T<0. From the
Eq. 14, 21 and assuming displacement, stress and strain to
be zero for t, = t-T <0, thus:

v +q,8
_Y _(ates) W, (¥, ¥s)

on s{lipsips)

12

Taking inverse Laplace transform, we get:

(t,,) after fault movement = LH(tl W,

27A (23)

) (ql 'flzli ) (1_e-r1t1 )_ (q1 4,1 ) (1_e-r2tl )

L

(YZ: ¥a

1

Where:
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_ow,

o,
| £25in6:22, () { y-(y:4) 62y, () ocsO
L4

U, (¥ o)

J,1(e)

(56122 (3 1) - {yy ) Jsin® 2y, (v 1d)oosd)| |
M &

+

(&

Similarly one can obtain:

(’c13 )after fault movement = LH(tl )\u3

2nA
(le )}

24
(q1 4.5 ) 2

(Y2>YB)|: :

Where:

(l_e—rltl )_ (ql 4,1, )

I

N,

oy~ (5

7&,‘32 sin 0-2E.y, +( yi-{y, -d)2 ) cos 642y, (y,-d)sin GJ
L i

Wa(Y2> Y3) =

:&,32 cos 8-2§;y2+(y§-(y3+d)2 )cos 8-2y,(y; +d)sin8}
M4

d;

Using the relation between displacement field and
strain field, we can obtam strains as follows:

(E,, ) after fault movement = %H(tl)mz (v;¥3) (25)

(E,,) after fault movement = %H(tl)m3 (v, ¥3) (26)
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