Tournal of Engineering and Applied Sciences 14 (3): 785-788, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Validation and Availability Techniques for Computer Faults

Zena Hussain Fahad, Ansam Ahmed Alwan and Zena Tariq Nayyef
Department of Computer Science, Dijlah University, Baghdad, Iraq

Abstract: Users are not concerned with the computer faults but they need the computer working in a correct
mode. Specially, in critical circumstances. Fault Computing (FC) plays a important role, especially, since, early
507s. This area opens a wide aspect to be researched area, this study mvolves varieties of categorizations of
techniques towards the effort to make system fault tolerant, modeling and testing helping with system
development and bench-marking to evaluate and compare systems. The concept, modeling and methodology
of fault tolerant computing are very much controversial to software while they are considered fairly mature for
hardware. Often refer to real-time critical system embedded systems. Faculty tolerant computing far from strictly
application the system development and operational process in the above area.

Key words:Fault and their manifestation, system fault response stages, validation and availability techniques,

FC, techniques, application

INTRODUCTION

A number of modern trends such as harsh
climate, novice users, larger and more complicated
systems and down costs have runming interest in
making general-target computer systems fault tolerant and
the primary aim of fault tolerance are avert down time and
the ensure comrect operation even in the existence of
faults or more applicable, high availability long life, put
back maintenance, high-performance computing and
critical computations. System performanc, minimally
declare to be the number of results per umt time times the
unnterrupted length of time of correct processing, should
not be nisk. In real systems, however, price-influence
trade-offs must be make, fault tolerance features will incur
some costs in hardware in performance and both
(Mittal and Agarwal, 2015).

Fault features basic allow the computer keep
precisely with the presence of imperfections. These
systems are usually, classified as either highly assurances
or highly available validation and availability techniques
for computer fault as a function of time is the modality
probability that the system has survived the interval [0, t],
given that it was operational at time t = 0. Highly reliable
systems are used m positions in which repair cannot take
place, (e.g., spacecraft) or in which the computer
performing a critical function for which even the small
amount of time lost due to patches cannot be tolerated,
(e.g., flight control computers). Availability 1s the intuitive
sense of reliability. A system is available if it is able to
perform its intended function at the moment the function
1srequired. Formally, the availability of a system as a

function of time is the probability that the system is
operational at the mstant of time, t. If the linit of this
function exists as t goes to infinity, it expresses the
expected fraction of time that the system is available to
perform useful computation (Perry ef al., 2005).

Availability 1s a frequently used as a figure of merit in
systems for which service can be delayed or denied for
short periods without serious consequence. For a
system 1in which downtime costs tens of thousands of
dollars/min, (e.g., airline reservation system) an mcrease
of only 1% vailability makes a substantial difference. In
general, highly available system are easier to build
than highly reliable systems because of the more
stringent requirements imposed by the reliability
definition (Yin et af., 2003).

Fault techniques and architecture found their way in
mamnstream computer design when computers began to be
used m situation which failure could endanger lLife or
property or could foment significant economic loss.
Examples of fault systems can be found many now a days
for mstance, August, Parallel, Tandem, AT and T3B20D,
stratus and intel 432 are some well know fault tolerant
systems (Castro and Liskov, 2002).

Faults and their manifestation: To realize how a
system fails 13 absolutely necessary before design a
fault-tolerant system. Basically, start from
physical failure and then logical faults appears and

failures

then system errors are results. Usually, the definitions
include m this propagation process are as follow (Eliaz,
2002):

Corresponding Author: 7Zena Hussain Fahad, Department of Computer Science, Dijlah University, Baghdad, Iraq

J. Eng. Applied Sci., 14 (3): 785-788, 2019

Failure: physical change in hardware. Fault; incorrect
state hardware or software resulting from failure of
components, physical intervention from the environment,
operator error or improper design. Error; appearance of a
fault within a program or data structure. The error may
occur some distance from the fault site.

Permanent; describes a failure, fault or error that 1s
continuous and constant. In hardware, permanent failure
reflects in irrevocable physical change. The word “hard”
1s used nteractively with the word permanent. Intermittent
explain a fault or error that is only from time to time
present due to unsteady hardware or varying hardware or
software states, (e.g., as a function of load or activity).
Transient. describes a fault or error resulting from
temporary environmental conditions. The word “soft” 1s
used interchangeably with transient.

Transient faults and mtermittent faults are the major
source of system error. The distinguish between these
two types of faults are ability of repair. Consider transient

faults considered not repairable and intermittent ones
as repairable. The mamfestations of transient and
intermittent faults and of incorrect hardware or
software design are much more difficult of determine than
permanent (Castro and Liskov, 1999).

System fault response stages: Table 1 shows the detail of
the ten system fault response stages and give each stage
a detailed explanation and some more points that need to
pay attention.

Validation and availability techniques: Two approaches
to increasing system reliability are fault avoidance and
fault. Fault avoidance results from conservative design
practices such as the use of high-reliability parts.
Through the goal of fault avoidances is to reduce the
likelihood of failure, even after the most careful
application of fault-avoidance techmques, failures will
occur eventually owing to defects in the system. In
comparison to this approach, fault tolerance appears

Table 1: System fault response stages

Namne of fault response stages

Explanation

Extra mention

Fault confinement

Fault detection

Fault masking

Retry

diagnosis

Reconfiguration

Recovery

Limit the scope of fault affection into local area
or protect other areas of the system from getting
contaminated by this fault

Locate the fault. Multiple techniques have been
developed and applied for fault detection. They

can be basically classified into off-line fault detection.
With the off- line detection, the device is unable to
perform any finction during test, while for the on-line
detection, the operation can keep going on while tests
and the consequent work are being applied

Also called static redundancy, fault making techniques
hide the effects of failures through the means that
redundant information outweighs the incorrect
information. Majority voting is an example

of fault masking

In some cases, a second attermnpt to a operation is
effective enough especially for those transient faults
which cause no physical damage. Retry can be applied
more than once and then when certain number is
arrived, systermn need to go through diagnosis, detection

Diagnosis stage becomes necessary when detection
could not provide fault location and other

fault information

If a gut is detected and a permanent failure located,
the system may be able to reconfigure its components
to replace the failed component or to isolate it from
the rest of the system. The component may be
replaced by backup spares. Alternatively, it may be
switched off and the system capability degraded ad
called graceful degradation

After detection and maybe reconfiguration, the
eftects of errors must be eliminated. Normalty,

the system operation is back up to some point

in its processing that preceded the fault detection
and operation recommences from this point.

This form of recovery, often called rollback, usually,
entails strategies using backup files, check

pointing and journaling

This technique may be applied in both hardware and
software, For instance, it can be achieved by liberal

use of fault detection circuits, consistency checks before
performing a function (“mutual suspicion’™ and multiple
requests/confirmations before performing a function
Thus, off-line detection assures integrity before and
possibly at intervals during operation but not during

the entire time of operation while on-line techniques
have to guarantee system integrity all through the
arbitrary period that passes by before detection occurs

is called fault latency

In its pure from, masking provides no detection.
However, marty fault-masking techniques can be extended
to provide on-line detection as well. Otherwise, off-line
detection techniques are needed to discover failures

It may appear that “retry” should be attempted after
recovery is affected. But many times an operation that
failed will execute correctly if it is tried again immediately.
For instance, a transient emror may prevent a successfiil
operation but an immediate retry will succeed, since, the
transient will have died away a few moments later

Refer to the article of “Diagnosis™ listed also in this course
web page for more detail

Graceful degradation is one of the dynamic redundancy
technigues

In recovery, error latency becomes an important issue
because the rollback must go far enocugh to avoid effects of
undetected errors that occurred before the detected one

786

J. Eng. Applied Sci., 14 (3)

Table 1: Continue

2 785-788, 2019

Name of fault response stages Explanation

Extra mention

Restart

This might be possible in the case too much

information is damaged by an error or if the

systemn is not designed for recovery. A

hot™

restart of fault t, a resumption of all operations
from the point of fault detection is possible
onty it the occurred damage is not recoverable.
A “warm” restart implies that only some of the
processes can be resumned without lose A “cold”
restart corresponded to a complete reload of the

sy stem with no processes surviving
Repair
either off-line or on-line
Reintegration

Replace the damaged component. It can be

After all, the repaired the device or module is

reintegrated into the system. And specially, for
on-line repair, this has to be done without

delay systern operation

Table 2: Taxonomy of reliability techniques

Region Technique

Fault avoidance
Fault detection

Environment modification qualitychanges component integration level
Duplication error detection codes(¢ M-of-N codes, parity, checksums, arithmetic codes, cyclic

codes self-checking and fail-safe logic watchdog timers and time-outs consistency and capability checks

Static redundancy/masking redundancy

logic, coded-state machines)

Dynarnic redundancy

NMR/voting error correcting codes (Hamming SEC/DED, Other codes) Masking logic (interwoven

Reconfigurable duplication reconfigurable backup sparing graceful degradation reconfiguration recovery

much better as fault tolerance approaches the system
design with the assumptions that defects very much likely
surface any way during system operational stage, so that,
the design 1s oriented towards making the system keep
operating correctly with the presence of defects.
Redundancy is very classic technique used in both fault
avoidance and fault tolerance approaches. With the
redundancy technique a system could highly likely pass
the ten fault response stages listed above (Sari and
Alkaya, 2015). Table 2 will give a very clear graphical
description of the reliability techniques. And there are
some other useful fault techniques such as hardware
redundancy, programming, graceful
degradation, etc.

n-version

Available tools and metrics: Fault Injection 1s one of the
well know techniques/metrics to help measure system
fault tolerant capability (Yin et al., 2003).

Relationship to other topics

Fault injection: As mentioned above, fault mjection is a
very useful technique used for measuring system fault
capability. Tt works together with tests generation tools
which generate faults to be injected into the system and
by measuring the coverage of the faults system able to
tolerate, we could get the idea of this particular system
capability, fault tolerance.

Software: Validation and availability techniques for
computer Fault. software reliability 1s getting more and
more attention to the researchers working in the FC area

787

as it appears to be the vast majority of the cause of
system defects. Although, fault tolerant techniques
existent so far seem working reasonably well to mnsure
hardware, they are validation not of same effect when
applied to world of software. Hardware has the experience
of ware-out as a function of time while software never
done so. Software reliability has been shown to face the
big obstacle of complexity 1ssue.

Software testing: This is the necessary approach for
software validation as testing is always an important tool
towards system fault capability. As no testing method can
explore the population space thoroughly, especially, for
software for software testing case due to the prevalent
complexity issue, software testing 1s often considered as
an ‘art’ in this fault tolerance research field (Nandi et af.,
2013; Kim and Somani, 2002; Oh and McCluskey, 2001).

RESULTS AND DISCUSSION

Experiment: There are two examples to explants the
computer fault tolerance: computer system running a
program to control the temperature of a boiler by
calculating the firing rate of the burner for the boiler. The
Fault: If a bit in memory becomes struck at one, that is a
fault. If the memory fault effects the operation of the
program m such a way that the computer system outputs
cause the boiler temperature to rise out of the normal
zone, that is a computer system failure and a fault in the
overall boiler system. If there is a gauge showing the

J. Eng. Applied Sci., 14 (3): 785-788, 2019

temperature of the boiler and its needle moves into the
“yellow” zone (abnormal but acceptable), that is a
symptom of the system fault. If the boiler explodes
because of the faulty firing calculation, thatis a
(catastrophic) system failure.

Fault in the memory could be: Chip used might not have
been mamufactured to specification (a manufacturing
fault). The hardware design may have caused too much
power to be applied to the chip (a system design fault).
The chip design may be prone to such faults (a chip
design fault). A field engineer may have inadvertently
shorted performing preventive
maintenance (a maintenance fault).

two lmes while

CONCLUSION

In this study, we have introduced basic fault
concepts, techniques and tools to achieve this special
system feature and also give a description of the core
1ssue, fault, its maenifestation and behavior. In general
fault tolerance computing is considered as a study of
faults/failures as mastering of faults/failures behavior 1s
the reasonable starting point of stopping their effects as
any system defect and all those technique and tools are
developed toward how to probe this behavior and further
how to stop the propagation. As most of the techniques
and tools are generated initially for coping with hardware
defects or more effective when applied to hardware world,
software fault still has not been that relatively mature in
comparison with hardware. And software fault research
has drawn more and more focus now a days as the
majority of system defects are shown to be software
defects.

REFERENCES

Castro, M. and B. Liskov, 1999. A correctness proof fora
practical byzantine-fault-tolerant replication
algorithm. MSc Thesis, MIT Computer Science and
Artificial Imtelligence Laboratory, Cambridge,
Massachusetts, USA.

Castro, M. and B. Liskov, 2002. Practical byzantine fault
tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20: 398-461 .

788

Eliaz, K., 2002. Fault tolerant implementation. Rev. Econ.
Stud., 69: 589-610.

Kim, S. and A K. Somani, 2002. Soft emror sensitivity
characterization for microprocessor dependability
enhancement strategy. Proceedings of the 2002
International Conference on Dependable Systems
and Networks (DSN’02), Tune 23-26, 2002, IEEE,
Washington, DC, USA_, TSBN:0-7695-1101-5, pp: 416-
425,

Mittal, D. and N. Agarwal, 2015. A review paper on fault
tolerance in cloud computing. Proceedings of the 2nd
International Conference on Computing for
Sustainable Global Development (INDIACom’™15),
March 11-13, 2015, IEEE, New Delhy, India, ISBN:978-
9-3805-4415-1, pp: 31-34.

Nandi, B.B., H.S. Paul, A. Banerjee and S.C. Ghosh, 2013.
Fault tolerance as a service. Proceedings of the 2013
IEEE 6th International Conference on Cloud
Computing (CLOUD’13), June 28-July 3, 2013, IEEE,
SantaClara, California, USA., ISBN:978-0-7695-5028-2,
pp: 446-453.

Oh, N. and E.J. McCluskey, 2001. Low energy error
detection technique using procedure call duplication.
Proceedings of the 2001 International Symposium on
Dependable Systems and Networks (SDN"01), July 1-
4, 2001, DSN Publisher, Goteborg, Sweden, pp: B56-
B57.

Penry, D.A., M. Vachharajani and D.I. August, 2005.
Rapid development of flexible wvalidated
processor model. Proceedings of the 2005
Workshop on Modeling, Benchmarking and
Simulation (MoBS*05), Tune 5, 2005, Madison,
Wisconsin, pp: 1-21.

Sari, A. and M. Akkaya, 2015. Fault tolerance mechamsms
in distributed systems. Intl. J. Commun. Netw. Syst.
Sci., 8: 471-482.

Yin, J., IP. Martin, A. Venkataramam, L. Alvisi and
M. Dahlin, 2003. Separating agreement from
execution for byzantine fault tolerant services.
Proceedings of the 19th ACM Symposiuum on
Operating Systems Principles (SOSP’03), October
19-22, 2003, ACM, Bolton Landing, New York,
USA., ISBN:1-58113-757-5, pp: 253-267.

a

	785-788_Page_1
	785-788_Page_2
	785-788_Page_3
	785-788_Page_4

