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Abstract: The portfolio management 1s a very important problem 1n the econometric field. In this research, we
propose a new model by adding a new constraint to the Markowitz’s Models to avoid the investigation into
the assets of a negative return. Because of its effectiveness, continuous hopfield network 1s used to solve the
proposed models. In this regard, we construct an original energy function that makes a compromise between
the nisk, profit and cardality constraints. To ensure the equilibrium pomnt feasibility, the parameters of the
energy function are chosen based on a consistence mathematical results; Tn addition, the slop of the activation
functions is chosen such that the behavior of each neuron is almost leaner. We compare our method to several
other ones, basing on real financial data. The proposed method produces the best solutions.
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INTRODUCTION

The portfolic management is a very important
problem in econometric science he gives the answer to the
mvestor for his must difficult question, how allocate his
capital between many actives. The first model was the
Markowitz Model or mean-variance model by Markowitz
(1952). He was the pioneer of the first rigorous treatment
of the mvestor’s dilemma and lhis objective was to reach
a lower level risk with an expected return. Jarrow (1988)
mtroduces a general equilibrium mode between the level
risk and the portfolio return by the mean-variance
efficient frontier. The Markowitz Model uses the
variance formula of each assets return as a risk measure
and the mean of return tocalculate the profitt, hence, his
name. Indeed, the problem was solved with many
methods, deterministic (Tha et al., 2009a, b) and
approached one (Sefiane and Benbouziane, 2012,
Zarranezhad et al., 2015). In this research, we propose a
new model by adding a new constraint to the mean-
variance model to avoid the investing m the assets of a
negative return given its effectiveness. Continuous
Hopfield network is used in this research to solve the
proposed model. In this regard, we construct an original
energy function that makes a compromise between the
risk, profit and cardinality constramts. To ensure the
equilibrium point feasibility, the parameters of the energy
function are chosen based on a mathematical consistency

result; In addition, the slop of the activation functions 1s
chosen such that the behavior of each neuron 1s almost
leaner.

The Continuous Hopfield Neural network (CHN) was
proposed by Hopfield and Tank (1985) to solve
combinatorial problems; Some researchers have treated
the Quadratic Knapsack Problem (QKP) (Yao, 1988,
Tatsumi et al., 2002). Within these studies, the feasibility
of the equilibrium pomts of the CHN camot for the
general case, be assured; Moreover, the solutions
obtained are often not good enough. To avoid this
problem, a general methodology was proposed to solve
the Generalized Quadratic Knapsack Problem (GOQKP)
(Talavan and Yanez, 2006). Since, the differential equation
which characterizes the dynamics of the CHN is
analytically hard to solve, many researchers used the
famous Euler method. Recently, the CHN was used to
solve the travelling salesmen problem (Takeda and
Goodman, 1986; Talavan and Yanez, 2002), the
constraint satisfaction problem (Ettaouil and Logman,
2008) and the placement of the electronic circuits problem
(Ettaowil et al., 2009).

MATERIALS AND METHODS
Continuous Hopfield Network (CHN): Hopfield and

Tank presented the Continuous Hopfield Networks (CHN)
to solve several optimization problems including the
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Traveling Salesman Problem (TSP), analog to digital
conversion, signal processing problems and linear
programming problems (Hopfield and Tank, 1985). This
approach was applied, later to different problems,

especially, object recogmtion, graph recognition,
graph coloring problems, constraint satisfaction
problems, economic dispatch problems, portfolio

problems and image restoration (Ettaouil and Logman,
2008; Ettaouil et al., 2009; Fernandez and Gomez, 2007
Toudar et al., 2015).

The Continuous Hopfield Networks (CHN) consist of
interconnected neurons with a smooth sigmoid activation
function usually a hyperbolic tangent. The differential
equation which governs the dynamics of the (CHN) is:

du=

dt

(1)

u .
= +TvH"
T

where, T, 1, u and v are respectively, the connections
weight matrix, the biais vector, the neurons state vector
and the outputs vector calculated from the state using the
hyperbolic tangent.

A pointu®is called an equilibrium point of the system
(Eq. 1) 1f for an mput vector v’, v° satisfies u(t) = u° for
some t,>0. Hopfield proved that the symmetry of matrix T
with zero diagonal are sufficient conditions for existence
of equilibrium peint (Hopfield, 1984). The Continuous
Hopfield Networks (CHN) will solve combinatorial
problems that have an energy function taking the
following form:

E(v) -%VtTv—(ib )t v (2)

For a given combinatorial optimization problem with
S variables and m linear constraints, the energy function
can be assumed as:

E(v) (3)

E°(v)+E*(v)vveH

Equation 3 is the Hamming hypercube such that:
¢ Ef(v)is directly proportional to the objective function
Ef(v) is a quadratic function that ensure the
feasibility of the solution obtained by the CHN

From now on, we denote by the Hamming hypercube,
the Hamming hypercube comners set and H.{veH /Rv = b}
the feasible solutions set where Rv = b the constraint
system of the problem under study.

The portfolio modeling: T.et us say that, an investor with
a capital desire to invest in a number of financial assets.
Then the mvestor 1s faced with a decision to make, how to
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allocate capital among active. Portfolio management
allows us to provide an answer to this question from the
various corner (or objective); it may be to choose between
many actives to reach the lower risk possible for a fixed
return or to achieve the lugher retumn for a fixed risk level.
Therefore, the two fundamental dimensions of a financial
investiment are the return and risk.

Profitability

Return of financial assets: Let p, be the price of a
financial asset at time t, n be the number of active and m
the number de period. Several formula were used measure
profitability appreciation (or depreciation) on the value of
a financial asset or a portfolio of financial assets between
two successive moments (Aftalion, 2004).

Simple or arithmetic profitability:

(4

If financial flows D,,, such as a dividend is received
between t and t+1 this formula becomes:

_ Pr+1 'Pr +Dr+1
P

t

(5)

Logarithmic profitability: We called logarithmic
profitability observed m [t, t+1] the value defined by:

Py
Pt
If financial flows D,,, such as a dividend is received
between t and t+1, this formula becomes:
t+1 +Dt+1

)

Portfolio return: Basing on these formulas, we define the
anticipate profitability as the weighted mean of the
possible return. It 15 caleulated by:

(6)

I, =In

L, = In i )

R= 2111: B (8)
Where:
x,1=1,..,n= Ponderation of active i
s = The mean return of the active i
Calculate by:
_ 1 m 9
L= ;Zt= 1rt1 ( )
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Generally, the profitability of the portfolio is
calculated by using the anticipate profitability formula.
View its simplicity, the simple profitability is used to
evaluate each asset.

Risk: The risk 1s taking into account the uncertainty. The
reel return can by different to the anticipated profitability,
this is the difference apprehended by the risk.

Variance: The variance is a classic measure of risk
Markowitz 1s the first one to use the variance like a
measure of risk by Markowitz (1952) and the first measure
of risk. The varance formula 1s given by:

T 2
Zt:1(rit_“'1) (10)
Where:

I = The mean return of asset i
T = The number of observations

In addition, the covariance between two assets 1 and
118 given by:

5, = E[ (x4 )(5)] = T T (mw () (A1

Using the variance like a measure of risk have so
much advantage, the principal advantage 1s his simplicity,
using the variance-covariance matrix lit as construct a
quadratic program model who 1s convex to calculate the
efficient portfolio.

This model has mconvement to the first one, she
supposes that the return has a normal distribution what is
unusually realizable. The next one is the insensitivity of
the model as the difference between gains and losses;
The model penalizes the same way the wastes and gains.
Every gain that is too far from the average is removed.
Markowitz proposed the semi-variance to overcome the
defect of the MV Model.

Semi-variance: The semi-variance is a downside risk
measure, proposed by Markowitz (1995), concentrate
essentially about the wastes, it takes into account only
the gaps that are below a target for this specific reason,
we recommend that the returns follow a non-Gaussian
distribution. The semi-variance of asset I's retuns with
respect to Benchmark B 1s given by:

Y= E[Min(rl-B, 0)1 = %Zr:l[Mn(rlt—B, o) (12
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Where:

r, = The return of asset 1

1, = The return of asset11int time

B = Any Benchmark return chosen by the mvestor

The semi-covariance is more difficult the define,
(Hogan and Warren, 1974) define it as:

Efw = E[(rl—rf ymin{x-r;, 0)} (13)

where, the superscript HW indicates that this is a
definition proposed by Hogan and Warren. However, this
defimition has two drawbacks: the benchmark return is
limited to the risk-free rate and canmot be tailored to any
desired benchmark.

It 1s usually the case that %> ™=% " This second
characteristic is particularly limiting, since that the
semi-covariance matrix is usually asymmetric. Moreover,
it is not clear how to interpret the contribution of assets
1 and j the nisk of portfolio. Estrada (2000, 2006) have
defined the semicovariance between assets I and j with
respect to Benchmark B as:

>~ E[Min{r-B,0). Min(x-B,0] |-
(14)
%ZTzl[Mn(rm-B, 0). Minr, B, 0)

According to Estrada, this defimtion can be tailored
to any desired B and generates a symmetric and
exogenous semicovariance matrix. Usually, the risk of the
portfolio using the semivariance is defined by:

2 1T . 2 15
5,157 [mn(r, B0 09
Where:
R, = Theretumns of portfolio
& = Semivariance
The problem in this formula is that the

semicovariance matrix 1s endogenous that 1s a change in
weights affects the periods m which the portfolio
underperforms the benchmark which in turn affects the
elements of the semicovariance matrix.

However, Estrada (2015) proposed to a heunstic
makes it possible to solve all mean-semivariance problems
with the same well-known closed-form solutions widely
used to solve mean-variance problems. More precisely,
the semivariance of a portfolio with respect to a
Benchmark B can be approximated with the expression:

Z:;ZJBﬁ Z?:lZ?:lXiXJZUB (16)
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This expression yields a symmetric and exogenous
semivariance matrik, according to Fstrada can be used
i the same way the covariance matrix used in the
mean-variance problems.

Quadratic programming for the portfolio problem: The
mean-variance model 13 the first model m the modem
theory of portfolio by Markowitz (1952). He reflects the
choice of the investor, the Markowitz Model tries to share
the richness among assets with reducing the level risk of
the portfolio. The following model is the mean-variance
efficient frontier (JTarrow, 1988) an equilibrium mode of the
Markowitz Model.

Min hzn: i XIXJGIJ-(I—K)

1=11=1

n
DX,
1=1

n

>x =1

=

X, =0

(17)

i=1..n

where, the first term of the Eq. 17 represents the
risk of the portfolio using the variance measure. The
second term is the profitability of the portfolio using the
anticipate one. The A is the aversion parameter to risk like
0O<A<1. When A = 1 correspond to the mnvestor a purely
risk-averse (minimizing the total variance associated to the
portfolio regardless of the mean returns and the
optimal solution will typically consist of several assets).
The 4 = 0 correspond to the one who has no fear of taking
the risk (maximising the portfolio return without
considering the risk and the optimal solution will be
formed only by the asset with the greatest return). Or Any
value of A mnside the interval [0, 1] represents a trade-off
between the return and the risk of the portfolio.

The constraint Eq. 18 is the affection constraint, to
ashore that the investment doesn’t exceed 100% of
mvested capital. The constramt Eq. 19 15 expressing the
positivity of the variables. Or x, 1 = 1
ponderation of active i at risk forming the portfolio.

, .., N 18 a

To avoid the mvesting in the assets of a negative
return, we add a new constraint to the Markowitz Model.
To this end, we define the set 1 as follow:

1= {the asset i\t <0} (18)
In this sense, the proposed constraint is given by:
>.x=0 (19)
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The new model that minimizing the risk and
maximizing the retuwn and avoid the mvesting in the
assets of a negative return the mean-variance rational
model 15 as follows:

Min hzn: Zn: XIXJGU—(I—K)

1=11=1

n
2IX
1=1

s.C
(PM}1 & (20)
>x =1
i=1
>x =0
iel
xz01=lL..n (21)

What for the modsel selection using the semivariance
as a measure of risk is the same as the Model (PM), just
replace the variance formula by semi-variance formula to
get the mean-semivariance rational model. To resume the
portfolio problem selection under the downside risk is
solved by the same way thin the mean-variance rational
model:

Min hi ixliZqB-(l-}\.)

1=11=1

n
DI,
1=1

s C
(PM){ = (22)
>x =1
i=1
2% =0
1]
x=z01i=1.,n (23)

To solve this model via. enumerative methods, we
can use different types of relaxations as Lagrangian
relaxation, semidefinite relaxation or convex quadratic
relaxation (Billionnet and Soutif, 2004; Goemans, 1997).
Nevertheless, these methods are very slow. As it’s will
knowing, the continuous Hopfield networks is a fast
neural network method that is why we use it, in the
coming sections to solve the proposed model.

Continuous Hopfield network for the portfolio problem:
In this part, we propose a new continuous Hopfield
network to solve the Markowitz Model for portfolio
problem. This approach must make a compromise between
the objective function and the constraint.

Energy function: To solve the (PM) via. the CHN, we
propose the following energy function:
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[Tanh (x)+1]/2

T=024 |

10

-10£ x £10

Fig. 1: The slope activation function for slope values (0.5, 0.4, 0.3, 0.24, 0.1 and 0.08)

_ Acn 2 o .
E(x) = 0&521: lzj:1Xixj6u'5(1'7\‘)21:1rlxi+ 24)
2 2
B () o, )
Where:
T =0,., 1) el" (25)
1 =0,...8,) 0 (26)
Such that:
s 1 ifiel (27)
10 else
1= {i%i is an asset such that r, <0} (28)

«, P, P P, b, are the penalty parameters. The gradient
function of the function E is:

VE(x) = adQx-(1-L)ar+, TH3, (T =0+, T+, T,(7ix)

(29)
The bias are given by the vector:
I = -VE(0) = a(1-A)r-B, T, 7, (30)
On the other hand, we have:
VAE(X) = aAQ+B, TT +¢, T, T (31)

Then, the weight matrix is:

T = -ahQB, 11,1, T, (32)

The weight matrix and the bias vector depend on the
penalty parameters to ensure the feasibility of the
equilibrium point, we use a mathematical method to select
an adequate weight and bias.

Activation function: As the portfolio problem looks for
continuous values, the activation function must be
chosen such that every value in [0, 1T* has the same
probability to be taken Figure 1 gives the plot of the
function f(x) = Arctanh (Tx) for several values of the slope
T under [a, b]. The best slop 1s the one over spending to:

»  Almost leaner plot
¢ Almost surjective f under [a, b]

In our case, we must, first, determine the set [a, b]"
that contains every possible values of the neuron states
noted U,. As it known, the state U, 1s given by U, = T, x+1,
where, T, is the vector line 1 of matrix T. in this sense, U,
verify the follow equality:

Z?:lMin(O, T,)+,<U < Z?:lmax(o, T, )+, (33)
Let T and Z be two instants defend by:

U= Min{3"_ Min(0, T, }+1,} (34

And:
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U =Max{}" Max(0,T, )+1i} (35)
In this sense, we have:

Voefl,...n}U<U U (36)

1

As {18 an increasing function, we have:

1

e {L..njf(U)=£(U,)= (U] (37

Consequently, the parameters a and b are given by the
formulas:

a=f(U)and b=f(U] (38)

Basmng on the parameters a and b, we chose the slope
of the activation function such that this latter is almost
leaner and subjective from its start set to the interval
[a, b]. By domg this, the activation function doesn’t
favourites any asset.

Parameter setting: As we want to minimize the quantity:
%(1—7\.)){t Qx-hrtx) (39)

The parameter ¢ must be strict positive o>0. If
for some x; have exist a neuron i in 1 such as x>0. Then, E,
(x) = 8E (x)/dx; must decrease E,(x)<e (eeR"™. Therefore, the
sufficient condition 1s:

(1)) q,-0hr tB, 70,5, 10,8 [1)<e  (40)

Such that, ¢*>0 and B,<0. Or the sufficient free
condition is:

a(l—k)%-akyﬁﬁq)ﬁq)z |Tl<e (41)
Such that:

¢1>0;§g=m2?:1%;;=mg (42)

Finally, any solution of the coming system:

=0
a0

(8)4B,., and ¢, (43)
,=0

o 1-A) Z Q-0hr+B, +, +0, | < £

Leads to afeasible portfolio: Forthe second Model (PM’),
the mean-semivariance rational model, we construct a
similar contmuous Hopfield network by replacing the
variance formula by the Fstrada semivariance one. By
doing this, only the weight matrix is changed.

RESULTS AND DISCUSSION

To show out the effect of the chosen risk measure,
we solve the proposed model two time in the first one, we
use the variance as risk measure in the second one, the
semivariance 1s required as risk measure of the portfolios.
As these measures have a symmetric form, the symmetric
of the Hopfield weight matrix is symmetric too
consequently, the stability of the proposed neural
network 13 ensured (Hopfield and Tank, 1985). In addition,
we consider the mean return is the mean objective.

We have useda real financial data from the database
Yahoo finance. Our data mncludes three portfolios, each
one ncluded 20 active over 20 periods our study will
cover the period from 29 September, 2014-17 February,
2015 in weekly.

Mean-variance rational model: In this section, we will
solve the problem of selection of the portfolio using
variance risk measure and then we draw a comparison
between the CHN and Genetic algorithm to evaluate the
performance of our approach.

The result of our approach for the mean-variance
Model (MP) is reported in Table 1. In this sense, the CHN
1s tumed many times staring from different mmtial solutions
then, the best solutions are taken. It should be noted that
the results are presented in terms of percentage.

In Table 1, the sign P,(1 = 1, ..., 6) refers to the
obtained portfolio, R: his risk (portfolio P, risk), MR: his
Mean Return (portfolio P, mean return or profitability) and
the vector (ACA.P, ..., TEF.MC) is the assets abbreviated
names as in Yahoo finance site web.

As we can remark at T difference between level risks
of each presented portfolio, nevertheless, this difference
is representative at a big budget (billion).

In the portfolio problem, solutions that form the
efficient frontier are mathematically incomparable,
including the solutions shown i Table 1 i such case, 1t
is essential to know what investor face us. Indeed, it is
important to remember that several investor typesexists,
well the must knowing 15 as follow:

s Only considering the level risk

¢ Only considering the return result

»  Be satisfied with a compromise between the risk level
and the return
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Table 1: Optimals portfolios

AC  BNP OR. CA. RNO. VIE EN. KER. GLE DIE. UCE. YOOX. BFE. ADS. [IFX. MUV2 KBC. ENL AURS. TEF.
Percentage APA A B EFA  PA Pa  PA B B BR ER Jil NI DE DE DE BR MI Pa WC R ME
P, 89 2355 3123 0 a o 014 a 0 a 0 0 a a 0 0 0 0 3699 a 00257 099
P, 641 2005 34 0 a 0 509 a 0 a 0 0 a a 0 0 0 0 34.00 a 00288 104
E, 0 167 238 0 0 0 1465 0 o 0 o 0 o o 0 1265 0 0 2800 O 00276 111
P, 0 5.85 28 0 a 0 2800 O 0 a 0 0 a 10.15 0 0 0 0 2800 a 00285 122
E, 0 185 30 o 0 0 3000 0 o 0 o 0 o o 205 0 o 0 3000 O 00282 1.27
P, 0 7.93 3996 0 o] 0 3611 O 0 o] 0 0 o] o] 0 0 0 0 46.00 o] 00312 132
0.015
| # CHN solution
0014 e Efficient frontier
0.013
£
S 0.012
2]
§ 0011 .t
s L. r
| ]
0.01! o o’
e
0.009| .
. ..l
0.008|
2 3 4 5 6 7 K
. x10°
Rizk
Fig. 2: Mean-varance efficient frontier
x10°
12
+ CHN solution
1 — Efficient frontier
c .
5 .
10
2 )
§o
s
8
.
.
7
6
2 3 4 5 46
) x10
Risk

Fig. 3: Mean-semivariance efficient frontier

As explained 1n the previous paragraph, we can draw
the efficient frontiers basing on the obtained results using
the proposed continuous Hopfield network. In this regard,
we have generated many solutions of each risk averse
parameter values from the interval [0, 1], the Fig. 2
represent the efficient frontier.

The red line in Fig. 3 1s the constructed shape of the
mean-variance rational model efficient front or the blue
points are the obtained solutions for each time
simulation.

From the Fig. 2 for low-risk levels, corresponding to
high values of the risk aversion parameter A, we obtain an
adequate representation. Whereas for low values of A
when the objective function converges to the mean
return, regardless of the risk, the obtained solutions are
not enough good to trace a complete efficient frontier.

This phenomenon can be explained basing of the
behavior of the risk aversion parameter A, Indeed when A
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converge to zero, the energy fumetion formula becomes a
leaner equation, consequently, the proposed function for
the portfolio problem via continuous Hopfield network is
no morean adequate energy function.

This fact will be remforced mn the comingsection
when we compare the Genetic algorithm and CHN results.
Table 2 represents a comparison between the CHN and
GA solutions for the model PM in which mean return level
1s fixed. From the Table 2, we remark that the proposed
continuous Hopfield network gives the lowest risk values.
So, it 18 recommended to use our method to solve the
problem under study for A=0.5.

In otherwise, we fix the rsk value and we
compare the obtained results by CHN and GA for the
mean return. Table 3 represents a comparison of
different solutions obtained for a low-risk aversion
parameter.
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O Variance risk
O Semivariance risk

0.0119

0.0003893
0.0003377 |
0.0116 1 0.0003857
0.0003323 1
0.0111 A 0.0003993]
s 0.0002838]
=3
2 0.0003068 ]
g 00109 0002886 I
[
= 0.0005203]
0.0104 0.0003173]
0.0003522
0.0099 0.0003114 ]
0.0005798 1
0.0096 - ] 0.00035711 : : .
0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
Risk

Fig. 4: Graph compsaring the semivariance and variance

Table 2: Comparison mean return result between CHN and GA for a fixed

level risk

Risk Mean return

CHN AG CHN AG
0.000297 0.000351 0.0099
0.000288 0.000300 0.0104
0.000276 0.000399 0.0111
0.000285 0.000328 0.0122
0.000282 0.000323 0.0127
0.000312 0.000534 0.0132

We can see that for a lixed risk, a lewder risk aversion
parameter A, the GA perform better that CHN. As
conscience, we can compare, experimentally, the genetic
algorithm and the continucus Hopfield network on the
portfolio problem but it well be important to use both CHN
and GA to solve this problem:

Genetic algorithm for A€[0, 0.5 ]
Continuous Hopfield network for Ae[0, 5, 1]

Mean-semivariance rational model: In this study, we
solve the portfolio selection problem using the Estrada
semi-variance (Estrada, 2002, 2006) as risk measure via.
our approach using deferent value = of A. In this regard,
we compare the systems (mean-variance, CHN) and
(Estrada mean-semivariance, CHN). The obtained
solutions are presented m terms of efficient frontier Fig. 3.

The red line in Fig. 3 1s the constructed shape of the
mean-semivariance rational modelefficient front or the
blue points are the obtained solutionsfor each time
simulation.

From the Fig. 3, we can observe the shape of the
obtained efficient frontier. We can say that the obtained
shape Simulates the expected shape as known in the
literature. On the other hand, Table 4 gives an example of
an efficient portfolio produced by the proposed
continuous Hopfield network.
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Table 3: Comparison risk result between CHN and GA for a fixed return
Mean return Risk

CHN

0.0101
0.0105
0.0107
0.0085
0.0110
0.0003

AG
0.0162
0.0138
0.0145
0.0134
0.0152
0.0140

CHN AG
0.000586
0.000508
0.000663
0.000625
0.000707

0.000527

Table 4: Example of efficient portfolio
Assets
ACAPA
BN.PA
OR.PA
CAPA
RNO.PA
VIE.PA
EN.PA
KER.PA
GLEPA
DIE.BR
UCB.BR
YOOX ML
BPE.MI
ADS.DE
IFX.DE
MUV2.DE
KBC.BR
ENILMI
AURS.PA
TEE.MC

X; (%0)

In owr knowledge, it the first time that the Estrada
semivariance and the continuous Hopfield network are
used in the literature to solve the portfolio selection
problem. To point out to the effectiveness of this strategy
results we compare its performance to mean-variance
and CHN one (Fig. 4). To this end, we fix the return.

Figure 4 illustrated the said comparison the system
(Estrada mean-semivariance, CHN (Estrada, 2002,
2006), produces a decision with the smallest risk in
compressing with one produced by the system
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(mean-variance, CHN). From the Fig. 3 and 4, we can say
that the mean-semivariance rational model has proved his
efficiencies.

CONCLUSION

In this research, we have completed the Markowitz
Model by adding a new constraint. These latter permits to
select, only, the assets with a positive return. Due to the
effectiveness of the neural network tools, we have used
the continuous Hopfield network to solve the obtained
model by proposing an original energy function with an
adequate parameter that ensures the equilibrium point
feasibility. The proposed system produces a portfolio
with no negative return. Moreover, the representation of
the return bythe risk level for several values of A, leads to
an acceptable efficient frontier, especially when the
mean-semivariance 1s used as a risk measure.
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