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Abstract: The first step in the mobile mampulator control 15 to know mn detail its configuration it means to
analyze the main elements distribution that represent the mechanism such as: joints, wheels, motors, sensors,
among others. When defining the configurations, the degrees of freedom that must be considered for the

design of the controllers are determined. Therefore, in the present research the algorithms of control of a mobile

manipulator of 8 degrees of freedom constituted by a marmpulator of 5 degrees of freedom are designed of which

four are controllable, besides a mobile platform of 6 wheels of which four are addressable.

Key words: Arm manipulator, articulated pair, degrees of freedom, dynamic, flatness differential controller,

generalized coordinates, servosystem controller, sliding modes controller

INTRODUCTION

Mobile manipulators are defined by the joining of a
manipulator arm and a mobile platform. The mampulator
arm 18 characterized by a jont of a set of rigid bodies
connected to each other using articulations. This union
results in a relative movement of the different components
producing a consequence of displacements of the final
link of the kinematic chain (Lopez, 2009). On the other
hand, a mobile platform is a mechanical structure
equipped with a locomotion system capable of navigation
through a certain working environment, endowed with
autonomy for its displacement with loads. Their
applications can be varied and are always related to risk
tasks harmful consequences for human health in areas
such as, agriculture, transporting of dangerous cargoes
or exploration tasks with unmarmed aerial vehicles.

For the control of this mechanism it is required the
kinematic and dynamic models that define the movements
of the system. The kinematic model relates the space of
articular trajectories to the cartesian space located on the
final link. Besides, it is defined as the basis of the
dynamic studies for the force calculation required to
produce movement in the system (Yague, 2013; Batz,
2003).

In mobile robots, it is necessary to understand the
kinematic behavior to design mechanism to inspection
tasks, besides the possibility to make control laws that
allows improve its operation (Craige, 1989). Furthermore,
the dynamic of a mechanism is used to analyze the forces

required to cause movement in other words, the torque to
manipulate the position and velocity variables in the
hybrid platform.

MATERIALS AND METHODS

Mobile manipulator scheme: To develop this research, it
15 used the scheme in Fig. 1 that shows the structure of
the mobile platform. It 1s necessary to consider for the
design of the controller the mobile platform and the
manipulator mechanism is decoupled where by the frame
of reference and manipulator movement is considered at
the beginning of the kinematic chain but no as the set of
global coordinates of the hybrid platform. Besides, the
second derivatives of signals generated mn the algorithm
must be saturates due to the jerk or over acceleration
effects.

Manipulator control: In Fig. 2, the manipulator structure
1s defined where 1t 1s specified the joint configuration for
a mampulator with four DOF. It should be noted that in
this system the masses are locates on the center of each

link.

Inverse dynamic of manipulators: When the mampulator
configuration is specified it is used the lagrange
formulation of the Eq. 1 which determine the system
dynamics with the ain to calculate and controller the
required pair in each jomnt in terms of their masses,
lengths, inertial and viscous frictions (Ogata, 2003 ):
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Fig. 2: Five DOF manipulator arm
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For easy in the controller calculus the system is
expressed as shown in Eq. 2 that determines the operation
of the system in terms of the pair of the joints:
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Direct dynamic: The direct dynamic model shows the
temporal evolutions of articular coordinates as well as
their derivatives as a function of the forces and pairs
involved. To obtain it, it 15 used the inverse model
of Eq. 2 to which cramer’s rule 1s applied and the
substitutions of nmull cofactors. For the management of the
matrices 1n the calculation of the determmants 1t 1s used
Eq. 3. Therefore, in solving cramer’s rule 1t 1s
obtained Hq. 4-7:
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This model allows to obtain the current position
output of the mechanism used to be compared with the
error signal data of the system. This signal 1s taken as the

667



J. Eng. Applied Sci., 14 (3): 666-674, 2019

Angy Out 1

du/ du/
g rindEd

d/dtl Sat 2

=

Interpreted

”
MATLAB Fen|
G

|l /sedt %
@ Int 1 K,

[+ L + »| B4DOF_R HP|
—— _
G B e S N % £l
R K. v Ié
g =
Torques L
Fig. 3: Sliding mode controller scheme
mput parameter of the controller to calculate the &= 4,4 (11
control signal to be considered for each joint of the
maripulator. . .
P LY@ q) . Gla)  Bl@ K, ke (12
Sliding mode controller: The physical principle for the M(g) Mig = M{g) Mg
sliding mode control consists m taking the trajectories of
the system in a sliding surface gnd forcing them to ev.olve 1, = V(gq, §4+G (qrHB@+M(q) [q‘d “‘Kvé“‘kpe} (13)
over this surface, so, the dynamic controller 1s determinate
by the equations that defne the previous surface in the
state space 1n Eq.. 8 and 9 .(Ev.angelista, 2012). It 1s o =dd_qu+TN+V(q,fD - G(‘D+ B(g) K, e+ e
necessary to consider that &=é(t)=de(t)/dt the same M{q) M({Q M(q) M(q) !
meamning for the generalize coordinates: (14)
o = é+k, etk fedt (8) Lsgn(o), o(x)<0 as)
=
" 0, a(x)=0
&= é+k é+k e @)
Vg, QrGQB@M@[4, K srke |t
When de sliding surface is defined, it is important to =4 v [ : ! } AR
ensure the existence of the shiding mode which exist if ) ) @ (16)
near the surface there are vectors of tangent or velocity Vigq) ., Gl@  B(@ TK,érk e
that point in the direction of the sliding surface. When Migq) = M{q) Miq) f
certain conditions are satisfied, the state “slides™ on said
surface, remaining insensitive to variations in the system o ) T, )
parameters and external disturbances which constitutes G = qd'[qd +Kve+kpeJ—M (@ +R etke a7
the fimdamental characteristic for its application in the
control systems as shown in Fig. 3 (Naranjo, 1991).
To develop the controller, it starts with Eq. 1 which < _ T (18)
describes the dynamics of the manipulator which the joint M(q)
variable § 1s shown in Eq. 10:
1
_ . V@Qd, 6@ B 10 Lsgn(e)= o (19)
Miq) Mg ~ Mg Miq)
. . = 20
Then, Eq. 11-23 shows the solution of equations M(q).Lsgn(c) = 1, (20)
necessary to obtain the control signal of Eq. 24 where, &
of Eq. 12 is equal to O: T= 1, T, (21)
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Differential flatness controller: When performing control
over nonlinear dynamical systems such as the
manipulator arm, there are drawbacks such as
uncertainties in the estimation of faults in the behavior of
the mechanism, so, in some cases for the development of
controllers 1t 15 used the algebraic-differential approach
(Chumacero, 2010).

This methodology based on concepts of
differential algebra which allows the menagement of
differential equations in a systematic way, proposing the
implementation of the property of differential flatness. The
notions of the controllers based on tlis property
correspond to prepare a flight plan that consists of the
offline generation of a trajectory and the associated
control actions for that trajectory based on the knowledge
of the system model (Antritter, 2008). For the development
of thecontroller the first thing to do will be the definition
of the plane outputs that constitute the system, described
in Eq. 25:

i
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-
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Then the dynamic model of the mampulator of Eq. 1
1s taken up and a new system 1s proposed in terms of the
previously defined flat outputs as observed in Eq. 26
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The controller based on flatness difference must be
complemented with the implementation of a shiding mode
controller, so, the sliding surface 1s defined in terms of the
flat outputs of the dynamic model as shown in Eq. 27:

F=9,, =Fk,(FF)k, (F -F)+li‘(F* F)dt (27)

5,

With the auxiliary control 9. the integral
compensator is combined with the attractive control and
the sliding surface of Eq. 8 but in tlus case the error 1s

represented as E = ¥ -F
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From the above it is derived from awxiliary
sliding with the
design as shown in Eq. 29, considering that o
0:

surface to continue controller
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After obtaming the control Eq. 32, it proceeds with
the calculation of the error dynamics as shown in Eg. 33
and 34:

M(Q)F+V (g, QFFG (QHB@) = V(g,QF+G(q)+B(G) g 3)
M (q)[ﬁ +K, B+ k E+k [Edt+Lsgn(E+k E+k, [Edi)

0= qd—q+Kvé+kpe+Lsgn(é+kve+kpJ'edt) (34)

To develop the manipulator controller of four DOF
are proposed as comtrol constants k, in Eq. 35 k, in
Eq. 36 and I = 30:

1200 0 0O 0
0 90 0 0
k = (35)
£ 0 0 1500 0O
0 0 0 10000
9% 0 0 0
0 70 0 0O
k, = (36)
0 0 120 0
0 0 0 100
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Fig. 4: Diffrential flatness controller scheme
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Fig. 5: Brushless motor scheme T = IR

For the simulation of the system is proposed the
schematic of Fig. 4 which presents the layout of the
controller as well as the model of the marnipulator
described in BADOF R. In addition as noted the control
signal must be saturated at the output due to the torque
limit stipulated by the actuators in the mechanism
joints.

Mobile platform controller: For the calculation of the
controller 1t 1s obtained the mathematical models of the
traction motors of the mobile platform. For this it is
purposed a brushless DC motor with permanent
magnet brushes as shown m Fig. 5 (Shao, 2003;
Becerra-Vargas et al., 2014).

To get the model, it defines the mechanical time
counter of the system according to Eq. 37 and the electric
time constant with Eq. 38:

f-y RI2R (37)
KEKm KeKm
=yl I (38)
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So, the phase effectis considered Eq. 41 which allows
defining the final mechanical time constant to be used in
the mathematical model:

T(3R)

(K, BIK, “h

m

K,

There is also the respective, relationship between
this voltage constant and the mechanical constant
determined by K, = K, 0.0605. Fmally, it 1s obtained
the transfer function that models all parameters of
the brushless DC motor in Eq. 42:

1
Kttt

e m

£

1
s+——
T T

m

Gis)= (42)

s+ —

(t,)

e

For this control is implemented a motor with
specifications that are shown in Table 1, finally to obtain
Eq. 47, characteristic of this type of motors (Delgado and
Bolanos, 2013):
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Table 1: Brushless golden motor specifications

Parameters Units Values

R, G 1.05

L. H 1.95x10°

I kg.m? 8.5x10°

B N.m.sec/rad 0

T sec 13.5%10°

T, sec 1.85%10°
G(s) = 1312800 (43)

 $14540, 54055+40040

For the design of a servosystem controller, the
transfer function representation of Eq. 43 must be
changed by the representation in state spaces as
shown in Eq. 44 for tlus, the system state variables
in Eq. 45 as well as their equations in difference in
Eq. 46 are defined:

(44)
y = Cx+Du
x=[x o] (45)
W=0
o= —iot—#w-% ! (46)
T, T,T k.t,T

From the above it is obtained Eq. 47 for the system
matrix A , Eq. 48 for the input matrix B and Eq. 49 for the
output matrix C:

0 1 . .
A= 1 1= “47)
; —— || 40040 -540.5405
Tmte TE -
o 0
pe| 1 _{ } (48)
1312800
kETm‘E97
c=[1 0] (49)

Servosystem controller: The servosystem controller is
presented as a control in which all the system information
1s used to calculate the mampulated mput. In addition, it
is implemented when in real systems it is not possible to
have access to all the variables but that can be estimated
using an observer (Goodwin and Sang, 1989). For the
calculation of a controller by servosystem is considered
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a linear system defined by Eq. 44 which represents the

mathematical model of the mechanism in state
variables.

For the design of the controller in discrete time the
discretization of the matrices must be develop by means
of Eq. 50 and 51 to finally obtain a representation

described by Eq. 52:

G =™ (50)
t
H= {jem dtJB (51)
o
x =Gx+Hu (52)
y = Cx+Du

For the above, it is obtained the representation in

|

state variables of the system mn Eq. 53

-41.6851
0.96238

0.399633
0.001041
0.001041 (53)

{0.000000939}
C=[0 1312800

Then, for the calculation of the state feedback
the

implemented but since, this controller will have an

control  constants, Ackermann method 1s
integrator inside its structure that ensures a steady
state error of zero the matrices G and H must be

expanded according to Eq. 54:

[ 0.2995 4767430

G=| 0.0019 0.9431 0
[1563.1092 1238112.2068 1 (54)
0.0011906

H =1 0.0000014
| 1.8653294

For the development of the Ackermann method
the desired polynomial must be obtained in discrete
time as observed m Eq. 55 and 56, determmed by a
desired settling time of 0.05 and a maximum on
impulse of 0.9. To finally, match the magnitudes of
each power with the characteristic polynomial of the
model and thus, determine the control variables for each
element:
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4= o™

(55)
<z=Tw,
Z = rejim (56)
Pd = (zre-jim) (z—re+jim)(z-e'1mw“) (57)
7 =1-1.250657"+0.422827" - (58)

0.008082z7+0.0000392"

Then, the values of z for the matrix G and 2" are
replaced by an identity matrix of the same order of G of
which we get @(G) as shown m Eg. 59. From this

equation, the states feedback control values are
obtained by Eq. 60:
®(G)=G"+a, G+, ..., +a,G+a,] (59)
k=0 0,..01]inv(m_ )o(G) (60)

Finally, it is said that ¢(G) bases its operation on
dead scillations, so, for the calculation of observer
variables, Eq. 61 1s implemented:

(61)

Once the equations for the calculation of a
servosystem controller have been completed, the control
variables for the position mechanism are defined by
Eq. 62, determined by a desired set-up time of 0.05 anda
maximum on pulse of 0.9:

k =[598.96475 294515.1647 0.050977]

k=1 10{ 0.85099 }

0.010374
RESULTS AND DISCUSSION

(62)

Manipulator results: In order to verify the correct
operation of the previously designed controller, the
values of Fig. 6 which represent the angular paths of each
joint are taken as desired positions of the system.
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Knowing the desired trajectories of the system, proceed
with the verification of the controller. Which the
Fig. 7-10, 1t observed the blue signal that
determines the desired condition of each joint and the

describes the behavior of the
manipulator under the behavior of the signal generated by

1s
violet signal that
the controller.

Mobile platform results: To verify the correct operation
of the controller a random path defined by the blue signal

of Fig. 11 and its respective, behavior after the control
signal is applied in the red path.
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CONCLUSION

From the obtained results it 1s observed that, for the
manipulator, the control of differential flatness with
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sliding modes stabilizes slowly and with oscillations in the
first instants of time because the control signal directly
affects the behaviors of the inertia matrix of the system
but not the error signal generated by the difference
between the desired signal and the system error signal.
After the control signal can stabilize the two signals, 1t 1s
responsible for carrying the system on the desired path
without oscillations for what 1s left of the trajectory.

While, for the mobile platform, the control by
servosystem, oversees following the reference mn speed
without oscillations and with rapid changes in the motors
that comprise it.
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NOMENCLATURE

Derivative of error

Derivative of Flat outlets
Double derivative of error
Double derivative of flat outlets
Flat outlets

Electrical motor constant

@

Error

Generalize coordinates

Generalize coordinates of acceleration
Generalize coordinates of velocity
Gravitational forces vector

Inductor

Inertial Matrices

Input matrix

Mechanical motor constant

Output matrix

Resistance

System matrix

Vector of centrifugal and coriolis forces
Vector friction forces
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