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Abstract: In this study, the Mathematical model of dengue disease with two serotype of standard incidence
rate 18 developed by taking in to account an impact of dengue vaccination, ie., vaccination rate,
vaccine efficacy and vaccine wanes. The developed model named dengue-vaccine model is based on
Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model paying attention to a latent period after
infection before becoming infectious. The mathematical analyze revealed that the model exhibit the phenomenon
of backward bifurcation where the stable diseases free equilibrium coexists with a stable endemic equilibrium.
And the backward bifurcation i1s removed when the disease-induced death rate is zero. To validate the
developed model, the real data of dengue outbreak m Thailand 2013 15 employed to study and verify the model
efficiency. Tt shows that three vaccination parameters values of vaccination rate (£), vaccine efficacy (g) and
waning rate of vaccine (w), respectively are critically important in controlling the transmission of dengue with
two serotypes. The comparing results demonstrated that the predicted data produced by the developed
dengue-vaccine model fit well to the actual data. These demonstrated that the developed model can be used

as a suitable tool for predicting the dengue transmission in Thailand.
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INTRODUCTION

A viral mosquite-borne infection, known as dengue
has become a major mternational public health concern in
recent years. It 18 cause of illness leading to death with
more than 50 million dengue fever cases per year in the
tropical and subtropical regions (Kautner et al., 1997,
Halstead, 2007) and 400 million dengue infection cases
year in the world (Bhatt et al., 2013). Although, the fifth
strain of the dengue virus has been discovered (Normile,
2013), there are four the dengue serotypes closely
coexisting in many endemic areas (Gubler, 1995;
Gibbons et al., 2007), 1.e.,, DEN 1, DEN 2, DEN 3 and DEN
4. Infection with one serotype provides life-long immunity
to that serotype (WHO., 2015) but only temporary partial
mnmunity to the other three serotypes (WHO., 2015;
Dejnirattisan et al, 2010). Reinfection with a different
serotype of patients is called secondary infection leading
to increase at the risk of Dengue Hemorrhagic Fever
(DHF) and Dengue Shock Syndrome (DSS3). The multiple
serotype of dengue virus can result in more sever disease
(DHF) (Gubler, 1998) and facilitating infectivity.

Nowadays, the efficacious dengue vaccme for the
secondary mfection which has been registered and
evaluated in clinical trials is CYD-TDV (Chimeric Yellow
Fever Dengue Tetravalent Dengue Vaccine) (CDC., 2019;
WHO ., 2019). The vaccine includes of 3-doses which each
dose 1s apart spaced 6 months. After 3-dose of
vaccination, the epidemic of dengue disease will be
reduced and 1t can reduce high disease severity leading to
death of the infected human. The point that is the control
of mfected population can inhibit the spread of dengue
disease. No patient means no common source of epidemic,
consequently, the dengue disease can be controlled by
controlling the mfection of population. The results by
Halstead (2007) pomnt out that a dengue vaccine,
Dengvaxia, seems to induce dengue infection-enhancing
Antibodies (ADE). Thus, the dengue vaccination plays a
crucial role in the epidemic of dengue disease with two
serotypes.

Recently, a Mathematical model called epidemic
model has been generally employed as an mmportant tool
for understanding communicable diseases epidemiology,
taking to great development for epidemic disease control,
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predicting the potential of the epidemic disease
transmission. For the dengue disease, many mathematical
models have been studied and developed by many
researchers with the sigmficantly different aspects for
great advance in representing of dengue behavior. To
achieve that some researchers have tried to mcorporate
various factors focusing on several effects, e.g., patient
age, sequence of nfection, dengue serotype, incidence
rate, immunity, vaccination and so forth. However, it may
become too much m mathematical difficulty m the
modeling formulation and determination of its parameters.
For dengue vaccine efficiency in preventing the mfection,
an influence of vaccination on dengue model has been
investigated by several researchers during the recent
decade. Garba et al. (2008) have extended the model
mcorporate an imperfect vaccine agamst the strain of
dengue. The results shown that an imperfect vaccine
mfluences on the efficiency of dengue disease control in
a community if the vaccine coverage and vaccine efficacy
are high enough A set of sunulations with different
efficacy and different ways of distributing the vaccine
being a useful tool for reducing disease spread within the
community have presented by Rodrigues et al. (2014).
Likewise, the dengue model with two-serotype has been
extended by developing an age structured model and
with vaccmated mdividuals age 9-45 years i dengue
endemic countries following the WHO recommendation
(Agwar ef al, 2011). Nevertheless, the model have
been assumed that persons of any age will benefit
from vaccmation (e.g., high rates of decreasing
hospitalizations) when they have experienced at least one
dengue infection for seropositive individuals only.
Whereas vaccination of seronegative individuals
increases the risk of vaccine disease enhancement and
hospitalization. Moreover, vaccine efficacy in prevention
for hospitalized dengue cases have been estumated
by using available Thospitalized dengue data
(Stollenwerk et al, 2012, Mateus et al., 2013). The
parameter was obtained by matching the last 5 years the
dengue data for Chiang Mai Thailand. The results
indicated that reserving vaccine for seropositive persons
should provide a high level of protection whereas
indiscriminately vaccinating could increase the number of
hospitalizations on the population level. Similarly,
Aguiar et al. (2016a, b) have estimated vaccine efficacy
via. Bayesian’s approach by using the trial data of public
available vaccine. As a result of an age structured model
analysis, a significant reduction of hospitalizations have
found only when the vaccine is provided to seropositive
individuals. However, although these studies have given
great contributions in the dengue transmission, some
aspects are still inadequate for modelling the dengue
transmission. For instance, Most of those dengue models

are based on the Susceptible-Infected-Recovered (SIR)
epidemic model which ignores a latent period. It is
incubation period before the hosts become infectious and
very important because of the unpredictable climate
change nowadays. Likewise, the occurring of bacloward
bifurcation phenomenon m dengue model playing a
crucial role for disease control and transmission has not
been investigated in some of them.

In this study, the two-serotype dengue model is
developed by based on Susceptible-Exposed-Infected-
Recovered (SEIR) epidemic model taking in to account the
incubation m the transmission process. Since, it 1s more
realistic than the SIR model as a result of life cycle
consideration of the dengue disease. Then the model is
extended to include vaccine factors 1.e., vaccination rate,
vaccine efficacy and vaccine wanes. The impact of
vaccination is also studied by using sensitivity analysis.
Moreover, the backward bifurcation phenomenon relating
to the stability of the developed model is investigated as
well. The developed model 1s validated by applying to the
real data of dengue outbreak in Thailand 2013. Set of
vaccine parameters significantly controlling  the
transmission of dengue with two serotypes is also
identified as a useful tool for predicting dengue
transmission in Thailand.

MATERIALS AND METHODS

Model formulation: The dengue disease can spread to
humans by bite of Aedes mosquitoes. Two populations
are considered as human population and mosquito
population, respectively. It i3 known that once a person
is infected and recovers from one serotype, lifelong
immunity to that serotype is conferred while it may also
confer temporary cross immunity to the other serotypes.
However, it 1s postulated that ndividuals with secondary
infection are more infectious than during their first
infection and they have at greater risk of developing a
severe form of the disease. This study, thus, aims to
formulate the dengue vaccine model with two serotypes
for study the impact of vaccine on the dynamics of the
dengue. The dengue vaccine model based on assuming a
homogenous mixture of both human and mosquito
populations, so that, each mosquito bite 1s as likely to
transmit the virus to humans regardless of the type of the
virus 18 formulated under the following assumptions:

Human population: Consider the transmission of dengue
in the primary and secondary infections, the total
human population at time t denoted by N(t), represented
by a state flow diagram in Fig. 1 is divided into
thirteen sub-populations: Susceptible Human (S4(t))
who is susceptible to both serotypes, i.e., serotype-T and
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Fig. 1: Human population divided into thirteen sub-populations

serotype-II, vaccinated human (Py(t)) who are vaccinated
agamst the dengue fever, the population in primary
mfection consisting of exposed human with serotype-l
(E(t)), infected human with serotype-i, (1 (f) and
recovered human from the first infection with serotype-T
(Ryg(t)), for i =1, 2, the population in secondary infection
when the first infection was caused by serotype-i,
consisting of exposed human for second time exposed
with serotype-] when the first mfection was caused by
serotype-I, (Ey(t)), infected human for second time
mnfected with serotype-) when the first infection was
caused by serotype-1 (L (t) for 1#j, 1 j = 1, 2 and
recoverad human population who recovers from infection
with both serotypes (R, (t)). Therefore, the total human
population, N,(t) 1s given by Eq. 1:

2

Ny (t) =8, (t)+P, (t)+Z(EHi ()41 (1) Ry (t))

i=1

(B (6, (£) R (1)

1
1

(1)

+

2
1=1

=1
#1

Susceptible individuals are generated by birth or by
unmigration at a rate I and by vaccinated individuals

who lose immunity acquired by preventive vaccine due to
vaccine wane at the rate w. This population is reduced
through vaccination (moving to vaccinated class Py) at a
rate, infection (moving to exposed class by infected
dengue with serotype-i (E;;) at arate @, 1 = 1, 2 and natural
death at a rate pg.

The vaccinated human population is increased with
the vaccination of susceptible at a rate. Since, dengue
vaccine 18 developed in clinical development, dengue
vaccine would be imperfect. It is assumed that vaccmated
individuals acquire via effective contact with an infectious
mosquito at the rate ¢.(1-€) where, O<e<1 is the vaccine
efficacy and ¢, 1 =1, 2 are the force of infection of humans
with serotype-i, given by Eq. 2:

_ bRl (2)

(P1N

Hwac

where, B(i = 1 or 1= 2) is the transmission probability from
an mnfected mosquite with serotype-1 to a susceptible
human. The vaccinated class 1s reduced by the mfection
with serotype-i (moving to the class of exposed with
serotype-i (Hy;) at the rate @,(i-€), natural death at the rate
Ky and waning of vaccine-based immunity at the rate w.

9874



J. Eng. Applied Sci., 14 (24): 9872-9883, 2019

Table 1: Estimated parameter values used in the models (Eq. ) and (5)

Parameters  Descriptions Value (range) References
IIy Recruitment rate of human, 1/day 55
1Ty Recruitment rate of mosquito, 1/day 16000
Ny Natural death rate of hurman, 1/day 0.0143 (0.0133-0.0154)
i Natural death rate of mosquito, 1/day 0.0714 (0.0714-0.1667)
B Disease-induced death rate for infected hurman with serotype-i, 1/day 0.0005
o Rate at which an infected human with serotype-become infectious, 1/day 0.2 (0.1-0.25)
i Recovery rate from serotype-, 1/day 0.1667 (0.1667-0.3333)
Oyi Rate at which an infected mosquito with serotype- become infectious, 1/day 0.1 (0.0833-0.1250)
Ay Temporary cross-immunity with serotype 0.01 (0-1)
hatts Modification parameters with serotype 0.3 (0-1)
[sh Transtission probability rate from infected mosquito with serotype-i 0.75 (0.1-0.75)
to susceptible human, 1/day
Pwi Transmission probability rate from infected human with serotype-i 0.75 (0.1-0.75)
to susceptible human, 1/day
b Biting rate, 1/day 0.5
g Vaccine efficacy 0.5 Asgsurmed
I3 Vaccination rate 0.5 Asgsurmed
w Waning rate of vaccine 0.3 Asgsumed
Mosquito population: For mosquito population, due to life Human population:
cycle of Aedes aegypti is short (approximated one
and a-half to 3 weeks), 1t 1s assumed that once a mosquito ds
Lo . ) . ! H 5 TP, E (I E.F"MH ) H
is infected with one serotype it never recovers from the
mfection and it cannot be re-infected with a difference E (1-¢)P, —(wH)R
. . TP E)Ey oty By
serotype (Garba et al., 2008), so that, secondary infection =
may take place only m human population. The total dE,,
i ) : =S, — @, (1-¢)P; —(o;tuy )E
mosquito population at time t, therefore, denoted by dt 08~ @ (1-€)Py —(0+Hy ) Ey
N{t) is split into five sub-populations: susceptible dr,.

mosquito, (3,(t)) exposed mosquito with serotype-1 (E,(t))
and infected mosquite with serotype-i (1,(t)), so that,
Eq 3
2
N, (1) =8, ()+ 2 (E, ()+1, (1)) 3)

1=1

The susceptible mosquite population is increased by
birth at a constant rate II;. This population is decreased
by the infection with serotype-i (moving to the class of
exposed with serotype-1 (E,;) at the rate ¢; and natural
death at the rate p.,. The force of infection of mosquito
with serotype-1 (@) are given by Eq. 4:

bBVi (T]Hi (Evi +E]1 )+Il-h JrIHji ) (4)
N

Py =

Hirac

Fori=j,i,j=1, 2 where B is the transmission probability
from infected human with serotype-1 to a susceptible
mosquito and the parameter n€(0, 1) accounts for the
reduction in transmissibility with serotype-i of exposed
human relative to infected human. The model of human
population with vaccination, therefore can be described
by the following system of nonlinear differential

equations:

- = CTlE:H1 - (Y1 +81 +MH)IH

dR
d—tH‘:’YllHl 7(}\‘1(p1+MH)R
at :}\‘j(p]RHti(G]-i_MH)EHu
dI,,
% = GJEHU 7(’Y_| +6_| +“"H)IH1J

Z

2
H22
¥ vy — Ry,
1

1=1 =

Mosquito population:

ds g
= I, - Zq’msv = apSe,
E(p'\h v 1+4 V1=‘ (6)
dl,,,
dj[/ = 0yEy — U1y,
where K, = o;tuy K= vi0#py Kiy= oytpy The

systems (Eq. 5) and (6) are called dengue vaccine model.
The compartmental model which shows the mode of
transmission of dengue between the two interacting
populations 1s depicted m Fig. 1. Equation 5 and 6 1s
called dengue-vaccine model. All parameters and state
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variables of dengue-vaccine model are assumed to be
positive. Using similar approach in Table 1, the dynamical
behaviors of the systems (Eq. 5) and (6) are studied in the
positive invariant set  Eq. 7:

Q=0 00, CRY <R (7
Where:

Sis By B Ly Ry By T I
Ql — { H H HI HI HI Hi1z Hiz = %LB:NHVEE <H}
EHZ’ IHZD RHZB EHZI’ IHZID RHZZ H

IT
Q, = {(va P e Iv2)€ gﬁ:Nv = “_V}
v

Equilibrium and stability: This section demonstrates the
acquisition of the threshold value called the basic
reproductive number to present the condition for the
existence of positive equilibria. Stabilities of equilibria of
the model are analyzed for understanding the dynamics of
the dengue vaccine mvestigated  the
phenomenon of backward bifurcation

model and

Local stability of disease-free equilibrium: The
dengue-vaccine model has a Disease-Free Equilibrium
(DFE), P°,.. given by Eq. 8:

o — SID'I’ PI'DI’ ElD'Il’ IlD'Il’ RID'II’ EID'IIZ’ IID'IIZ’
wac ] ] 0 ] 0 0 0 1]
EHZ’ IHZ’ RHZ’ SV’ EVI’ IVI’ EVZ’ IVZ
HH((D+“H) HHé (8)

_ MH((DJFFSJFMH),MH(CD”LE_'J“MH),

0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0

v

Similarly as described m Theorem 2.2, by using the next
generation (Carr, 1981), the reproduction number of
dengue-vaccine model is given by:

RVSE :maX{Rvazl’RvaA:Z} (9)

where, R,.., and R, are the vaccine-induced reproduction
numbers for serotype-l and serotype-Il, respectively,
given by Eq. 10:

k _ [TbBRop (o)) (g
[LWKK K, (o+Eu,)

Hence, using theorem 2.2 of van den Driessche and
Watmought (2002), the following lemma is established.

Lemma 1: The DFE, given in Eq. 8, of the system (Eq. 5)
and (6) is Locally Asymptotically Stable (LLAS) in £
whenever R, <1 and unstable if R,_>1. The threshold
quantity, R, represents the average number of
secondary cases that one case can produce if introduced
into a human community where a fraction of the
susceptible population has been vaccmated. Lemma 1
verifies that if R <1, vaccination has a positive umnpact
on disease control by decreasing dengue prevalence
because of the DFE is LAS.

The concept of reproductive number, R;, mtroduced
by van den Driessche and Watmought is defined in
epidemiological modelling as the average number of
infected individuals produced by one infected individual
introduced completely 1 a population susceptible. Thus,
if Ry<1, the disease dies out and if R;>1, the disease
spreads in the population and goes to an endemic level.
For a disease that confers immunity in which the
susceptible population 1s vaccinated it has
demonstrated that under certain parameter conditions
there is a dependence of the reproduction mumber on the
vaccination rate. In such a case, the reproduction ratio,
R.,,. which is the basic reproduction ratio Ry modified by
vaccination, must be reduced below one m order to
ensure that the disease dies out If there is no vaccination,
then R,.. = R, Therefore, R, the basic reproductive
number under vaccination is the number of secondary
cases caused by one priunary case introduced mto a
population in which a proportion of vaccinated humans.

been

Positive equilibria and backward bifurcation: Let:

ek E *¥ *x wE wE wE *¥ *¥
o SH:‘ PH > EHI:‘ IH1> RHI:‘ EH12> IH12> EHZ:‘ IHZ:‘ }11)

wac o *r *r *r s *r
R, En  To Ro S Er1

Hzl» “H21°

*K wE *k

E,.1

Hz> W1 TVl TV2r TVl

Be an arbitrary positive endemic equilibrium at
steady-state. Further, let:

o= (12

NHvac

Be the force of infection of human with serotype-i at
steady-state and:

wk

™ B'\h b(ﬂm (E:;J'_EHp )+I:1 +I’;—;) (13)
Py = N

Hvac

Be the force of mfection of mosquito with serotype-1 at
steady-state, respectively, for i, j = 1, 2, i#]j. Setting all
derivative n Eq. 5 and 6 equal to zero and solving for the
state variables at steady-state, yield Eq. 14:
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HH(icpf*(l—e)w
{i@*(ls)ﬂﬂﬂlﬁ ]{i(ﬂ“% }ﬁi{icﬂ“ (1-¢) mH]

1=1 1=1

o E_,S: w W ( H (1_8)13:)
PH ] W E El—h - K1
Z(Pi (1) -+,

i=l

v OBy pe Wy e M@ Ry . OEy

" K. o _}\‘J(p.l“-‘rMH T K, e Kin
R:22 — Y1I:21+V21:12
g
(a4
Sy =5 11"
X0ty
1=1
By - ulle (15)
K, {Zwiﬁ wv]
i=1
e HVG\h(p:;
IV1 - 3
MVKS[E@Z +qu
1=1

Substituting the expressions (Eq. 14 and 15) into
(Eq. 12 and 13) yield the fixed point problem:

- ¢1(<p1w,(pi*) 16
o, (@ 0))
Where:

¢,

S bR.IT, G, @,
Ole .0, )=— e
(0747) N Kbty (00,6, iy )
M08, (MuKors 0, A o+ -
+ C31 i 1
. H Vi nH1 1+2 (k(p Jr,_LH)KK . (p

(p\h =

N (k(p ﬂ_LH)KKKKK

Hwac
k=] (040 ) (1) rorry (0 07 ) +

£ (o +o) ) (1 &)y |
For 1#], 1, 7 = 1, 2. Thus, the positive endemic

equilibria of the dengue vaccine model (Eq. 5) and (6) can
be obtained by solving the fixed points problem (Hq. 16)

for positive fixed points ¢, and ¢,” and then substitute
them into expression (Eq. 14 and 15). Analysis of the
positive endemic equilibria are summarized mn the
following lemma.

Lemma 2: The dengue vaccine model has: (1) serotype-I
boundary equilibrium whenever R, ;<1<R,,.,, denoted by
Eq. 17

. _(S:,p;*,E:D 1;"1,[{’,‘;1,0 0, 0} a7

0,000,080, ENL T, 0,0

Wiz TVl

And  serotype-IT  boundary
R,.;<1<R,,,, denoted by:

equilibrium  whenever

vacl

. ST, P, 0,0,0,0,0,E0,, T, (18)
RHZ, 0,0,0,5y,0,0, Ey,, Iy,

Where:
o I |:(P l-e +(D+“"H:|
{0 b (0] (1) o )+ (@ (1e) iy )
- £y . 07 (Si{1)B)
e T K
w OE, e vl
L
o I, oo (Py\‘,:le o HVGW(P;
T N T N O T Ty

(i) Co-existence equilibrium P*_ given inEq. 10 and 13, 14
whenever R, >1 and R, >1 for1,j =1, 2{(i#]). Further, the
phenomenon of backward bifurcation is explored as
follows. Since, two serotypes are mathematically
symmetric and for mathematical convenience, the
serotype- boundary equilibrium 1s investigated under the
assumption ¢, = 0. Substituting ¢, = 0 mto (Eq. 16) gives
the fixed point problem ¢.(¢,, 0) = @, for which its fixed
point, denoted ¢°,, the positive root of Eq. 19:

A11((P1)4 JrBn(([’1)3“311(([’1)2Jan(PﬁrEn =0 19)
Where:
A, = I, (1_8)2 Ay (A1+Az) >0
M K

B KA, +(1-8) :
My

[M_A4]cl(1-g).AlA3(1-e)2 >0

My

B, —nH(l-e)(AwAz){
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C, =11, (tejc + alHIAC
Uy K,
[T, {A+A,)(1€)B, -1, (1) A A+

H

I
{—H-A4}clBl-z(l-e)AlAaB1 >0

Dy :ﬁ(REm'Rim): E, :ﬁuvKlBZ(l'Riaﬂ)

My My

_ bB\n (T]HlK:s +Gl) A

A JA =
1 K, 2
iy AR L A A = 1_[\/fb[?’1‘j\/f1 A = 1_[1-16101
> 3 > 4
MyK, MK, My KK,
B, =or&{le) ., B, =0t C) =
(AFA,)B U, (16)K,, C, =u KB,
RC — HH8151CZB1'“HK1K382 (HHC1'A1A3“H (1'8)) 0
. HHMVKIZKBBZ (Bl Ty (1'5))

Clearly A, B,,, C,, are always positive while D,; and E,;
are positive or negative depending on R%,, and R,
From the analysis of the coefficients and using Descarte’s
Rule of Signs (DRS), the following result is established:

Theorem 1: Assume that ¢,” = 0 and R,,;<1. The system
(Eq. 5) and (6) has:

i.  Two serotype-i boundary equilibriums if R, ;"<R. <1
1. Anunique serotype-1 boundary equilibrium if R, ;=1

Theorem 1 reveals that it 18 nstructive to determine
whether
phenomenon of backward bifurcation. Therefore, the
Centre Manifold theory (Carr, 1981) is used to determine
backward bifurcation threshold conditions at which the
dengue-vaccine model exhibits. Thus, the following result
is established.

dengue vaccine model, undergoes the

Theorem 2: When R, =max{R R} =R ;=1,i=1,
2 the dengue-vaccine model exhibits a backward
bifurcation if R <R,.<1 and R’, <1 and a forward
bifurcation if R,_>1 andR",>1.

Proof, we consider R, = max {R_.,, R...} =1 when
R, = 1 and R,.<1 (the approach to be applied also
work if wesetR,.,=1 whenR,, <1). Taking p, =P, as a

bifurcation parameter. To apply Centre Manifold
theory, the bifurcation coefficients # and & of the

dengue-vaccine model are computed in form as follow:

18 2
a= UW W o, (0,0)=
i ox dx (20)
LK, (N, KL to .
— Hzl 23 2 1)( - vacl)uélwg
HHMVYIGIBI
And:
- 15 2
b= 3 vw, 2k (0,0)=
el ax, 0,

(21)

HVbZBVIGVIMlZ-I (T]HIKB 0, )2 ((DJ'_&(I'E) Ty ) VW
Tl 7,0, K K (et ) s

where, U0, w:>0 and R, = BY[ATA] paKs/
ped,0, B K K el (1 -2).

Since, the coefficient b 1s automatically positive, it
follows that the dengue-vaccine model will be undergo
backward bifurcation if the coefficient, &, given by Eq. 19
is positive, that is R,..,<1. If R,,.;>1, then 3<0 . Since, two
serotypes are mathematically symmetric. Then we can
implies that the dengue vaceine model (Eq. 5) and (6) will
undergo backward bifurcation with serotype-i boundary
equilibrium when R, ;<1 and R,,<1. If R, _>1, then the
serotype-1 boundary equilibrium is LAS for R, ;<1<R,
and B",<B, with B, close to B’

It follows from theorem 2 that the dengue vaccine
model (Eq. 5) and (6) exhibits the backward bifurcation
under the condition R®_ <R, <1 and R", ;<1. On the other
hand, the dengue-1 vaccine model (Eq. 5) and (6) has an
unique serotype-1  boundary
Rig=l<R, g forl,j=1,2,1#).

The backward bifurcation phenomenon of the

equilibrium  whenever

dengue vaccine model 1s illustrated by simulating the
dengue vaccine model with various initial conditions and
the parameter values used: B, = 0.45, 8, = 0.3 and the other
model parameter values in Table 1. With this set of
parameter values, R, = 0.9776, R,,, = 0.9652, RS, =
0.2838 and R',,; = 0.5581, so that, R, = R_.,;<1, R° <
R,..<l and R',,<1, respectively which satisfy the
conditions in theorem 2. The results are shown in
Fig. 2.

The results obtained 1s suggested that owmg to
the phenomenon of backward bifurcation in the
dengue-vaccine model, dengue elimination when would
depends on the 1mitial sizes of the sub-populations of the
dengue-vaccine model.
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Infected human with serotype-I

0.0 0.5 1.0 1.5 2.0

Fig. 2: The dengue-vaccine model

Furthermore, 1t can be shown that the backward
bifurcation is removed when the disease-induced death
rate (8,) is zero. Thus, the effect of the vaccine efficacy
and &, on this phenomenon is investigate by substituting
&, =0into R, it can be shown that:

vacl»

o[ (st )

_ +“HbBV1(nHl (Yl +“‘H)+Gl)
vacl MHEE_’(I-E)

=1
MK (7 1y )

(22

It 1s clear, from (Eq. 20) that if the parameter &, = 0

then R, >1. These results indicate that the backward

bifurcation is removed when the disease-induced death
rate (8,) is zero.

Dependence on vaccination rate (£), vaccine efficacy ()
and vaccine wanes (w): The impact of vaccination is
investigated by using sensitivity analysis (ie,
differentiating R, partially with respect to control
parameters vaccination rate (%), vaccine efficacy (g) and
vaccine wanes (w), respectively. It is found that:

R, 1 e(otug )R, .
aE_, 2J(wé(].g)+“H)(m+é+“H)3

Ry 1 R, <0 (23)
oe 2J(w+§(l-e)+uH)(m+a+uH)

R, 1 sER, -

RN

Where:
a+E(1€)+ z
R, =R, E(1€) s and R, = Hvbz BTty
U-H_F;-H'LH HHMvKiKHZKHél

(24)
Tt is clear from Eq. 23 that increasing values of
E and e reduce R,,, while R, increases as increasing w.

2.5 3.0 3.5 4.0 4.5 5.0
Time (days)

The study results indicate that in controlling the disease,
vaccination rate must be increasing, vaccine efficacy must
be high and no vaccine wane. The critical values of £, ¢
and o denoted by £, & and w, respectively are
obtained by setting (Eq. 24) equal to one and solving,
given by:

(G‘H'MH)(RS'l)

T 1(1€)R;

_ (wrEru, )(REA) (25)
‘ ER;

o (E_.+MH)'(§(1'S)+MH)R§

L RZ-1

For these requirements, vaccination has a positive
impact on dengue control. It follows from Eq. 25 and the
parameters £, w, e€[0, 1] that if R,,.<1 that is £»E | £>¢_and
W<W,

RESULTS AND DISCUSSION

The impact factor of vaccination for controlling disease
control: Dengue vaccination policies aim to produce
immunity to provide long-term protection against all four
serotypes. In addition, vaccine creates the immune to
vaccinated mdividual. It can also create herd immumty
too. Herd immumnity 1s a form of immumty that occurs
when a part of portion population 1s vaccmated then
provides the protection for individuals who have not
developed immunity. Therefore, the number of individuals
vaccinated and vaccine efficacy are a part of important
factor for controlling disease. From lemma 1, the
disease-free equilibrium (P",.) of dengue-vaccine model is
LAS whenever R,,.<1 (see in lemma 2.1). This enables to
determine the disease will be eradicated from community
without vaccination whenever R;<1 and the disease dies
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Fig. 3: The fraction of individuals vaccinated: a) R; =1.3516, b) R, =3 andc¢) R, =12

out with vaccine if R, <1. For controlling disease in
dengue vaccine model must consider only case of R;>1
if Ry<1, then disease dies
vaccination. Hence, the fraction of mdividuals vaccmated

because out without
at steady-state 1s investigated as follows. Let p be the
fraction of individuals vaccinated at steady-state that is
p = PN’y The expression, Eq. 24 can be written as:

R (26)

e = Royf/1-PE

Form Eq. 26, the reproduction number under vaccine
(R,,.) 15 changed according to the reproduction number
(Ry), the fraction of mdividuals vaccinated (p) and vaccine
efficacy (£). The relation of R,.., Ry, p and € is described
by contour plot. A contour plot of reproduction number
under vaccine (R.,) as function vaccine efficacy (g) and
the fraction of individuals vaccinated at steady state (p)
1s depicted in Fig. 3.

Tt is seen that if the values of € and p increase then
R,.. decrease. When the reproduction number (R,) are
high, the values of e and p are closed to unity as show in
Fig. 3a-c. The basic reproduction number for dengue
transmission m Thailand 1s estimated from low values
of range 1-3 to higher values of 10-12 (Feng and
Velasco-Hernandez, 1997). The example for controlling
disease, for R, =1.3516 (low levels). Hence, it follows that
if the vaccine efficacy 1s 60%, the fraction of vaccinated
individuals should be »75% to eliminate dengue from the
community.

Comparison predicted data and epidemiological dengue
data in Thailand 2013: Thailand is the tropical country
confronting the dengue outbreak every years. In 2013,
Bureau of Epidemiology, Department of Disease Control,
Ministry of Public Health, Thailand reported that there are
151,502 of dengue cases, an mncidence of 235.74 per
100,000 population and especially, 133 deaths from DF,
DHF and DSS. Therefore, i this section the model (5-6) 1s
applied for predicting the transmission of Dengue Fever
(DF), Dengue Hemorrhagic Fever (DHF) and Dengue
Shock Syndrome (DSS) in Thailand 2013.

For the simulation, the parameters based on real data
for dengue in Table 1 are used with k, = k, = 0.037. By
these values, the associated reproduction numbers are
R,=R,=1.3516 mtherange from 1.15-3 (Carr, 1981). The
1nitial conditions are chosen as:

S, (0} = 900000, E,, (0) =1000, I,,, {0} =
1500, R, {0) = 7000, E ., (0) =500
(0) = 2500, E,,,(0) = 1000, 1 ,,(0) =
1500, Ry, (0)=7000, Ey,,(0) =500
L, {0) =2500, R, (0) =110000, S, {0) =
100000, E.,, (0) =100, I,,, (0) = 500
E.,(0)=100,1,,{0) =500, C(0) =808S

IH12

With above parameter values and initial conditions,
the dengue model is simulated for predicting the
cumulative mumber of dengue cases and they are
compared with the actual data as shown in Fig. 4. The
value of R is 0.9983 which confirms that the predicted
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Fig. 5: The simulated results are compared with both actual data and predicted data produced by the dengue model

data produced by the dengue model fit well to the
actual data. Therefore, the dengue model can be used
to predict the occurrence of dengue m Thailand,
2013.

As stated earlier, the dengue is caused by the
dengue viruses [-TV. Infection by one of the four dengue
virus serotypes has been shown to confer lasting
protection against the other serotype reinfection but only
transient protection against a secondary
Moreover, secondary infection is associated with an
mcreased risk of severe disease which 1s referred to as
immune enhancement of disease. The study result in
Fig. 4 supports this fact. Due to these dengue-specific
complexities, vaccine development is to focus at
providing long-term protection against all
serotypes.

The dengue-vaccine model is simulated with £ = ¢ =
0.5, w = 0.3, P(0) = 1000, the other parameters and mitial
conditions as used n simulating the dengue model. It 1s
seen that the reproduction number of the dengue-vaccine
model is less than the reproduction number of the dengue
model that is R, =1.1705 and R, = 1.3516. The simulated
results are compared with both actual data and predicted
data produced by the dengue model (Fig. 5). Tt is found

infection.

virus

Table 2: Effect of vaccination parameters on the reproduction numbers

g Ros e Ry w Ros

0.30 1.1705 0.30 1.2183 0.30 1.1207
0.50 1.1207 0.50 1.1207 0.50 1.1705
0.85 1.0732 0.85 0.9255 0.85 1.2200

that if people have vaccinated, the cumulative number of
dengue cases decrease. This result verifies that a dengue
vaccine would be a major advance in controlling the
spread of dengue n a community.

Further, the effect of vaccination parameters are
investigated by simulating the dengue-vaccine model with
simulations various values of vaccination rate (£), vaccine
efficacy (€) and waning rate of vaccine (w), respectively.
It is clear, from Table 2 that increasing values of £ and €
reduce R, while R, increase as w increases. However, all
cases give R, <R,.

It 1s important to note that the vaccine efficacy 1s the
most influential factor in decreasing R,... The simulated
results are compared with both actual data and predicted
data produced by the dengue model as shown in Fig. 6.
This figure indicates that increasing the values of £, & and
decreasing the value of w lead to the reduction of dengue
cases.
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Fig. 6 The reduction of dengue cases: a) Effect of vaccination rate; b) Effect of vaccine efficacy and ¢) Effect of waning

rate of vaccination
CONCLUSION

The two-serotype dengue model with the impact
of vaccine factors called the dengue-vaccine model
is  developed in this study. Tt is based on
Susceptible-Exposed-Tnfected-Recovered (SEIR) epidemic
model being realistic with life cycle of the dengue disease.
Analysis of the developed dengue-vaccine model reveals
the existence of four equilibrium points which belong to
the region of biological interest. One of the equilibrium
points corresponds to the disease-free state, the other
three equilibria correspond to the two states 1.e., one
serotype is present and both serotypes coexist,
respectively. This developed dengue-vaccine has a
locally asymptotically stable disease-free equilibrium
whenever the associated reproduction number 1s less than
unity. The state when one serotype is present, the
developed  dengue-vaccine exhibits  the
phenomenon of backward bifurcation where the stable
disease-free equilibrium coexists with a stable endemic
equilibrium. Tt is shown that the developed model can
have endemic equilibria if infection with one serotype
confers partial cross immumty agamst the other serotype
mn which disease elinination, competitive exclusion or
co-existence of the two serotypes can occur. The stability
region of secondary co-existence equilibrium is reduced
by strong cross mnmumnity. Further, the developed model
15 compared with the real data to showing the impact of
vaccination parameters in controlling the transmission of
dengue with two serotypes in Thailand 2013. Tt is verified
that three vaccination parameters values of vacciation
rate (£), vaccine efficacy (&) and waning rate of vaccine

model

(w), respectively are critically important in controlling the
transmission of dengue with two serotypes. The
comparing results demonstrated that the predicted data
produced by the developed dengue-vaccme model fit well
to the actual data. Therefore, the developed model can be
used as a suitable tool for predicting the occurrence of
dengue mn Thailand.

At present, the dengue vaccine 1s only provided to
the primary infected persons for acquiring high
effectiveness. However, the symptom of dengue fever for
primary infection is similar to common cold leading to
disregard of the best treatment for dengue fever
Consequently, the patients are the severe disease by the
secondary infection and then leading to death. Therefore,
if we can develop the dengue vaccine being able to
prevent dengue virus, since, the persons have no
inflection, severe disease and death by the secondary
infection of patient may be reduced.
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