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Abstract: Tn this study, a new control chart called, Full Range Autoregressive (FRAR) chart is introduced
following the Jiang ef al. A comparative study of the FRAR chart with existing ARMA and EWMA control
charts are provided to study the performance of FRAR chart.

Key words: Control chart, ARMA chart, FRAR Model, EWMA, existing, India

INTRODUCTION

Statistical Process Control (SPC) is a powerful
collection of problem solving tools useful in achieving
process stability and improving capability through the
reduction of variability and momtoring the performance of
the process. For monitoring autocorrelated observations,
various control charts have been developed to detect
shifts in the mean of the process.

Alwan and Roberts (1988) have discussed, standard
applications of statistical process control, a state of
statistical control 1s 1dentified with a random process
assuming mdependent and identically distribution (ud)
random variables.

Departures from a state of statistical control are
discovered by plotting and viewing data on a variety of
control charts such as Shewhart, Cumulative Sum
(CUSUM), Exponential Weighted Moving Average
(EWMA) and moving average charts.

In practice, however, it may be difficult either to
recognize a state of statistical control or to identify
departures from one because systematic non-random
partterns-reflecting common causes may be present
throughout the data. When systematic non-random
patterns are present, casual mspection makes it hard to
separate special causes and common causes.

A natural solution to this difficulty is to model
systematic non-random partners by time series model that
g0 beyond the simple benchmark of iid random variables.
Hence, when the data suggest lack of statistical control,
one should attempt to model systematic non random
behaviour by time series model-autoregressive or other
types models. In particular, using the Autoregressive
Moving Average (ARMA) Models of Box and Tenkins
(1970), identified and estimated by standard techniques,
to supplement the 1d model. This approach leads to two
basic charts rather than one:

A chart of fitted values based on ARMA Models.
This chart provides guwdance in seeking better
understanding of the process and in achieving real-time
process control, called common cause chart. Chart of
residual (or one-step prediction errors) from fitted ARMA
Models. This chart can be used in traditional ways to
detect any special causes, called special cause chart.

There have been many applications of time series
concepts 1n process control, the thrust of these
applications has been directed toward testing for
randomness, not toward modelling of departures from
randomness. Use of ARMA Models in other areas
of statistical process control and designing control
chart.

Determination of appropriate ARMA (p,q) Model,
namely, appropriate p and g values is a very difficult task
in time series data. Hence, a new family of tume series
model 1s used to avoid the order determination problem
with minimum number of parameters.

MATERIALS AND METHODS

Shewhart control chart: Control charts of Shewhart
(1926) are widely used to momtor a stable process by
plotting a sequence of sample data in time order on the
charts. Such samples are usually taken as independent
samples from the process either with fixed sample size or
with fixed sampling interval.

Shewhart control chart is based on the information
about the process contained n the last pomt plotted on
the control chart, it ignores any information given by the
entire sequence of points obtained from the experiment.
This feature makes the Shewhart chart relatively
nsensitive to small shifts n the process when the
change is very small compared to standard deviation or
less.
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There are many effective alternatives to the Shewhart
control chart can be found in the literature, when small
shifts of mterest. The CUSUM and EWMA are most
popular and best alternatives for the Shewhart control
chart. The CUSUM chart directly incorporates all the
information in cumulative sums of the deviations of the
sample value from the target value, more details can be
found by Montgomery (2002).

Exponential weighted moving average is a type of
control chart used to momtor either variables, attribute
type data using the monitor process. The EWMA
emerges as a flexible time-series model that, for
many but not all processes may be a satisfactory
approximation.

Roberts (1959) first introduced the Exponential
Weighted Moving Average (EWMA) control scheme.
Using simulation to evaluate its properties, he showed
that the EWMA is useful for detecting small shifts in the
mean of a process.

One appealing interpretation of EWMA 15 that the
process being studied can be decomposed into two
components: 1id random disturbances with mean 0. A
random walk which is the sum of a fraction of all past iid
random disturbances.

Autoregressive moving average chart: The statistical
control chart 1s an effective tool for achieving process
stability. For monitoring autocorrelated observations,
various control charts have been developed to detect
shifts in the mean of the process. Among those that have
been widely discussed are the Special Cause Chart
(SCC) Alwan and Roberts (1988). The basic idea of the
SCC chart mvolves filtering techniques to whiten an
autocorrelated process and then monitoring the residuals
by traditional control charts are used (Zhang, 1998). This
chart 1s more effective when detecting large shifts. On the
other hand, the EWMAST chart applies the Exponential
Weighted Moving Average (EWMA) statistic directly
to the autocorrelated process without identifying the
process parameters and is more efficient in some
parameter regions. More details regarding EWMA charts
and its proportion can be found by Chao-Wen and
Reynolds (1999).

This ARMA chart provides a more flexible choice of
parameters to relate the autocorrelation of the statistics to
the chart performance and includes the SCC chart and
EWMAST chart as a special case. It can be shown
that an ARMA chart with appropriate parameter values
will outperform both the SCC and EWMAST charts for
autocorrelated processes.

Suppose that, we are monitoring a production
process and with to detect the shift in the mean of the
process if any. Using ARMA (1, 1) which is more general
model then AR (1) 1s fitted to the data that 1s:

X, =90 +tOX , =
eu (et_Bet—l+®1Xtrl

where, f = 8/6, and B8, is chosen, so that, the sum of the
coefficient 18 unity when X, 1s expressed in terms of ¢, "s
that is:

where, B is the backshift operator and Be, = e,
Thus, 6, = 14+8,-2,. To guarantee that the monitoring
process is reversible and stationary, we have the
constrains that [B]<1 and |2,|<1 the ARMA chart signals
when [X>Lag, The ARMA chart reduces to the EWMA
chart when 8, = 0 with o, = 1-A, thus, the ARMA chart
can be considered as an extension of the EWMA chart.
More generalized version of AR Model called FRAR
Model 18 now considered to construct the control chart
which is explained in the following section.

Full range autoregressive model: Full
autoregressive model is introduced by Venkatesan et al.

range

(2017) 15 a new family of time series models which avoid
the problem of order determination and explained in the
following.

The various models discussed in the literature are all
of fimite order type. That 13 each mvolves only a fimte
order, at least as far as real life applications are concerned.
That 1s, they are all generally based on the questionable
assumption that the future value would be mfluenced
only by a limited number of past values.

Moreover, the existing theory of autoregressive
models assumes that the coefficients of the model are not
comnected in any way among each other. That 1s they are
treated as independent constants. Therefore, it would be
useful from practical point of view, to propose new
models which can accommodates long range dependence
and have the property that the coefficients of the past
values in the model are functions of a limited number of
parameters.

Further, most of the research in time series analysis
are concermed with series having the property that the
degree of dependence between observations separated
by a long time span, given the intermediate observations
1s zero or highly negligible.
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A family of models, called full range autoregressive
models and denoted as FRAR Model for short are defined
i such a way that they possesses the following basic
features.

The models should be capable of representing long
term persistence. This 1s justified by the fact that the
future may not depend on the present and a few past
values alone but may depend on the present and the
whole past. The models should be flexible enough to
explain both of short-term and the long-term correlation
structure of a series. The parameters of the model which
are likely to be large in number due to (1) should exhibit
some degree of dependence among themselves wlich
would avord the difficult task of order determination of the
model.

Therefore, the new models are expected to have
mfinite structure with a fimte number of parameters
and so, completely avoid the problem of the order
determination. FRAR Model is defiung a family of models
by a discrete-time stochastic process {X}, t =0, £1, £2,
43, .., called the Full Range Autoregressive (FRAR)
Model by the difference equation:

X, = wapﬁet M
r=1
= Ear Xt-r+et (2)
r=1
Where:
o

k, &, 6 and o are real parameters. The initial assumptions
about the parameters are as follows. Tt is assumed that 3
will influence 3., for all positive n and the influence of X,
on X, will decrease, at least for large n and become
insignificant as n becomes very large because more
umnportant for the recent observations and less important
for an older cbservations. Hence, a, must tends to zero as
n goes to mnfimty. This achieved by assuming that a>1.
The feasibility of X, having wvarious magnitudes of
mfluence on X, when n 1s small 13 made possible by
allowing k to take any real value. Because of the
periodicity of the circular functions sine and cosine, the
domain of 6 and » are restricted to Be(0, m) and
ze(0, m/2), respectively.

The region of identifiability of the models is given by
S=1{ak 0, o[keR, a>1, 6¢[0, © and 2€[0, ©/2)} and more
details can be found by Venkatesan ez al. (2017).

Full range autoregressive control chart: Introduce the
new FRAR chart for monitoring the mean of a production
process. which is expected to be stationary and random
process. Suppose that, we are monitoring the process
{3} which is assumed to follow a time series pattern and
e,1=1, 2, 3, ..., nare normal variation with mean zero and
variance 0°. We wish to detect shifts in the mean of the
process, if any using FRAR chart.

The mean, variance and other statistical properties of
the FRAR process can be found by Venkatesan et al.
(2017). One can show that:

Mean =,
. K K(+k)!
T+ o

E[X, X,.]=0

o
o (1+k")

and
2 2
var(X,) = oy =0, S ; %
: (1+k)* | o’ -(1+k?)
When  autocorrelation  exists  between  the

observations. Then, the control limits for FRAR chart are
obtained and 13 given by:

UCL =y, +Loy,
CL =u,
LCL = py-Loy,

RESULTS AND DISCUSSION

Numerical examples: A numerical example 18 considered
for illustrating the applicability of FRAR control chart and
to comparative performance of FRAR chart over other
charts, considered by other researchers available in the
literature. We use a same set of simulated observations
from Tiang et al. (2000). The data, together with the
corresponding FRAR values are shown in Table 1. The
target value is taken to be 0 and standard deviation is 1,
so, the process 1s in-control for the first 11 observations.
The mean level was shifted upward by approximately one
standard deviation for the last 8 observations.

The same parameter taken from Jiang et al. (2000), the
EWMA with parameter 4 = 0.15 and L = 2.913, giving
actual control limits of +0.829. For the ARMA chart, the
parameter are chosen as » = 0.85 which corresponding to
A =0.15 of the EWMA chart and 8 = -0.03. The control
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Table 1: The comparison of EWMA, ARMA and FRAR charts

1 o, shift 0.75 a, shift
Obsgervation No.  Observation  EWMA ARMA FRAR Observation EWMA ARMA FRAR
1 1 0.15 0.12 0.000 1 0.15 0.12 0.000
2 -0.5 0.053 0.072 0117 -0.5 0.053 0.072 0.117
3 0 0.045 0.046 0.079 0 0.045 0.046 0.079
4 -0.8 -0.082 -0.057 0.053 -0.8 -0.082 -0.057 0.053
5 -0.8 -0.190 -0.168 -0.059 -0.8 -0.190 -0.168 -0.059
6 -1.2 -0.341 -0.311 -0.182 -1.2 -0.341 -0.311 -0.182
7 1.5 -0.065 -0.12 -0.334 1.5 -0.065 -0.120 -0.334
8 -0.6 -0.145 -0.129 -0.154 -0.6 -0.145 -0.129 -0.154
9 1 0.026 -0.008 -0.136 1 0.026 -0.008 -0.136
10 -0.9 -0.113 -0.085 0.010 -0.9 -0.113 -0.085 0.010
11 1.2 0.084 0.045 -0.046 0.95 0.047 0.015 -0.046
12 0.5 0.147 0.134 0.083 0.25 0.077 0.071 0.053
13 2.6 0.515 0.441 0172 2.35 0.418 0.350 0.108
14 0.7 0.543 0.537 0.478 0.45 0.423 0.422 0.384
15 1.1 0.626 0.609 0.585 0.85 0.487 0.474 0.467
16 2 0.832 0.791 0.652 1.75 0.676 0.639 0.516
17 1.4 0.917 0.900 0.799 1.15 0.748 0.733 0.651
18 1.9 1.065 1.035 0.878 1.65 0.883 0.856 0.722
19 0.8 1.025 1.033 0.979 0.55 0.833 0.843 0.817
1.0 7 i -o—- EWMA
: FRAR — ARMA
0.5 - | o UICL (0.431) 1.0 TFWMA-UCL (0.829) —& FRAR
/' ISD =0.148
o I Mean =0
I [=]
=}

LCL (-0.431) =

t [

1 Q

I 8

1 @)

-1.0 T T T T T T T l T 1 -0.5 --_____T __________________________
13 5 7 9 11 13 15 17 19 ARMA-LCL (0.725) .
Run 1.0 EWMA-LCL (-0.829)
. T T T T

Fig. 1: FRAR control chart

limits +0.725 are chosen, so that, the in-control ARL
remains at 500. The FRAR parameters are chosen as k = 2,
«=17,0=01736 and » = 0.5736. Giving the actual
control limits +0.431.

To see how the EWMA and ARMA chart react the
mean shifts, we know a shift of one standard deviation
occur at the 11th run and the FRAR chart react the mean
shift, of one standard deviation occur at the 12th run. As
shown m Table 1, the EWMA chart and ARMA chart
both signal at the 16th run and the FRAR is signal at the
14th run.

To illustrate the difference between the three charts,
we consider a small mean shift of 0.75 standard
deviations. As shown m Table 1, the EWMA chart
signals the shift at the 18th observation and ARMA chart
detects the shift at the 17th but the FRAR chart detects
the shifts at 15th. From Table 1 and Fig. 1 and 2 it is
obtained FRAR chart quickly detect the change in the
mean of the production process compared to that of
ARMA and EWMA charts.

From Table 1 and Fig. 2, it 13 observed that, FRAR
chart perform better then ARMA and EWMA chart in the

1 3 5 7 9

Fig. 2: The comparison of EWMA, ARMA and FRAR
charts

sense that quickly detecting the change in the process.
Hence, FRAR chart may be considered on variable
alternative to ARMA and other charts.

CONCLUSION

FRAR charts is proposed in this study by using
FRAR Model which could completely avoid the order
determination problem, to momtor the production process
and shown that its performance 15 a relately better than
ARMA and EWMA to detect the change in the mean of
the process and quickly detect the change in the mean of
the production process.
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