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Abstract: Existing reinforced concrete buildings have experienced different forms of failures due to limitations
mn analysing and interpreting the information derived from the study of their behaviowr under leading. Structural
Health Monitoring (SHM) which 1s the study of the way structures relate with different loading conditions
using equipment and machine that can read data without affecting the existence of the structure has been
analysed in times past using different methods and there is need to bring in probabilistic methods in terms of
reliability-based paradigm, i.e., reliability theory to analyse and interpret SHM data. Reliability method expresses
logical handling of structural design uncertainties n the assessment of the structures safety and serviceability,
1t provides a very powerful tool for SHM to add probabilistic structural evaluation function that current SHM
applications and statistical analysis packages do not have. This review study looks into different ways SHM
data have been analysed and the need to introduce probabilistic approach to SHM.
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INTRODUCTION

Reinforced Concrete Buildings (RCB) undergoing
construction to a greater extent can be assumed safe
using the present day design requirements and
assumptions, structural fitness is therefore guaranteed
for this category but for existing buildings; there is
need for timely monitoring methods to acquire data
which will help to determine their state of fitness.
Presently m the construction world, a great
sensitization 18 occurring towards the usefulness of
having systems in aerospace, civil and mechanical
structures which can state the cause of damages.
This damage prognosis system 1n a structure
would give the user mformation on the structure’s
health, accurate details of upcoming damage and the
structure’s life span (Farrar and Worden, 2006). The
assessment of existing buildings 15 of much importance
and of great concern to the construction world, users also
daily get involved in a new way of putting these
structures to use and a standard is yet to be developed
for the examination and retrofitting of existing RCB
(Holicky et al., 2014; Rens et al., 1997). The structural
health of existing buildings poses much treat to our

environment due to inadequate methods of acquiring data
on the structures responses to loads, envirormmental
impacts and age. For an effective SHM process n terms
of reliability-based paradigm, there is need to focus on the
mode of testing structures both in real life and laboratory
conditions/environment, equipment used, type of data to
be taken, how they are analysed and used in reliability
studies.

Literature review

Non-destructive testing: Recent mmovations of codes
(BSI., 1998) provide clear rules for assessing the safety
static  strengthening on existing
buildings. Inventions alse have provided a way out in
non-destructive methods or techniques to assess existing
buildings. Non-Destructive Tnspections (NDT) are ways of
assessing a structure working with attached or embedded
equipment which does not in any way affect the state of
the structure (Elsener et al., 2003a, b; Chang et al., 2003).
Non-Destructive Testing (NDT) is a maturing technology
field that reveals, study and analyse defects in
engineering structures using mostly  physics-based
techniques (Ibrahim, 2014, 2016). NDT has been defined
has methods of examination without having an adverse

and conduct of
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effect on the examined system. These methods are now
top on the list in the area of reliability and effectiveness as
it offers a better choice in testing in situ (Shaw and Xu,
1997). NDT techmques measures responses given by a
structure to interferences induced using mechanical,
chemical and electromagnetic energies. NDT techniques
has gone through periods of revolution from unassisted
visual and aural (acoustic) inspection (ACT Committee
228, 1998, Park et al., 2001, Estes and Frangopol, 2003;
Gattulli and Chiaramonte, 2005; Alanietal., 2013, 2014 to
advanced methods of lighting to aid visual mspections
and tap-hammers to detect more subtle acoustic (and
hence localised stiffness) changes (Ibrahim, 2014).
Different researchers in different parts of the world have
worked on numerous NDT methods which are visual
mspection (Perenchio, 1989; Anonymous, 2001), chain
drag (ASTM., 2003, 2009, Barnes and Trottier, 2000;
Gucunski and NRC, 2013; ASTMD, 1997, Barnes et al.,
2008), coin tap test (McCann and Forde, 2001; Cawley,
1991; Wu and Siegel, 1999, Cawley and Adams, 1988),
acoustic emission (Rens ef al., 1997; Carlos ef al., 2000,
Holford and Larle, 2005; Holford et al., 2001), impact echo
testing (Sansalone, 1997, Sansalone and Street, 1997,
Lin and Sansalone, 1993, 1994, 1996; Cheng and
Sansalone, 1993; Lin and Su, 1996, Azari et al., 2014),
somes (ACI Committee 228, 1998; McCam and Forde,
2001 Binda etal., 2001, 2003; Colla et ol , 1997), ultrasonic
NDT (ACI Committee 228, 1998, Azari et al, 2014,
Afshari et al., 1996, Bogas et al., 2013; ASTM., 2009,
Schickert, 2005; Shah et af., 2013; Shokouhi ef ai., 2013;
Taffe and Wiggenhauser, 2006), impulse response (ACI
Committee 228, 1998; Davis, 2003; Tumer, 1997), ground
penetrating radar (ACT Committee 228, 1998; Barnes et al.,
2008, Orlande et al, 2010, Alami et al, 2013;

Table 1: Limitations of non destructive methods

Yehiaetal., 201 4; Perez-Gracia et al., 2008; Diamanti ef ai.,
2008, Solla et al., 2012; Hugenschmidt and Mastrangelo,
2006; Chang et al., 2009), conductivity (McCann and
Forde, 2001; Colla ef al., 1997, Garboczi et af., 1995,
Whittington et al., 1981), coring (Gucunski and NRC.,
2013; Suzuki ef al, 2010, Scott et al, 2003, ASTM.,
2003), electrical resistivity (Gueunski and NRC., 2013,
Ryan et al., 201 3; Lataste et al., 2003; Saleem et al., 1996;
Polder, 2001), proof load test (Casas and Gomez, 2013;
Faber et al., 2000; Saraf et al., 1996; Fuand Tang, 1995),
infrared thermography (ACI Committee 228 1998,
Guecunski and NRC., 2013; Mc¢Cann and Forde, 2001;
Clark et al., 2009, Buyukozturk, 1998; Stanley and
Balendran, 1994), half-cell potential (Elsener ef al., 2003a,
b; ACT Committee 228, 1998; ASTM., 1999; Elsener et ai.,
2003a, b; Elsener, 2001; Ohtsu ef al., 1997; Clemea et ai.,
1992), radiography (Thrahim, 2014; Song and Saraswathy,
2007; Malhotra, 1976; Naik et al., 2004), dynamic/vibration
testing (Bedon and Morassi, 2014; Cunha et af., 2013;
Samman and Biswas, 1994, Hashim et al., 2013;
Ismail et al, 2011; Gentile, 2006, Reynolds, 2008;
Caetano et al., 2015, De Roeck et al., 2000; Salawu and
Williams, 1995), Schmidt rebound hammer (Szlagyi et al.,
2011; Breysse, 2012; Kim et al., 2009; Anonymous, 2001 ;
Basu and Aydin, 2004, Samman and Biswas, 1994). These
NDT methods have limitations which are hindrances to
their usage (Rehmanet al., 2016) as iterated in Table 1.

The process of making use of non-destructive
techniques and equipment to observe and study a
structure within a time frame 1s known as SHM.
Inspections in RCB 1s a periodic exercise, the transition
from NDI to SHM is a transition from the traditional
the emerging “condition-based”
maintenance (Mandache et al., 2011).

“time-based” to

NDT methods

Limitations

Tmpact echo (Sansalone, 1997,
Azari et al., 2014,
Sadowski et afl., 2016)

Impulse response (Davis, 2003;
Sadowski et al., 2016;

Maierhofer ef al., 2010)

Acoustic emission (Holford and Lark,

20085; Suzuki et ¢f., 2010, Behnia et af.,

2014; Langenberg et af., 2010)
Ultrasonic pulse velocity (Bogas et af.,
2013; Breysse, 2012; Jain et of., 2013)

High termperature of asphalt concrete overlay not detectable

Low viscous material is ditficult to detect

Rignals are affected greatly by deck boundaries

Marking the boundaries of delimited area m7ay not be possible without dense grids
Detection is only possible for loosely bonded overlay to the deck

Interference of boundary on signal is more prominent on limited dimensional elements like girders and piers
Selection of test points determines reliable data interpretation

Inability to detect small defects

Unavailability of automated apparatus

Tt works with a background noise

Tts anatysis application to real stracture is difficult

Well defined procedure for all types of bridges is not available

This method is time consuming

Detection of shallow defects may not occur

Coupling of the sensor unit determines the quality of data in a great deal and there is difficulty in coupling on

rough surfaces
Very close grid spacing is needed
Lower frequencies may cause incomplete detection
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NDT methods

Limitations

Ground penetrating radar (Alani ef ¢,
2013a, 2014; Barnes and Trottier, 2000)

Half-cell potential (Elsener et ., 2003;
Elsener, 2001; Wankhade and
Landage, 2013)

Infrared thermography (Clark ef af., 2009,

Buyukoztuk, 1998; Tortora et ., 2016)
Electrical resistivity (Lataste et af., 2003;
Polder, 2001; Torres-Luque ef al., 2014)

Chain drag and harmmer sounding
(Stanley and Balendran, 1994)

Too costly to use
Difficult to detect moisture completely frozen

Strength, modulus and some mechanical properties estimation is almost impossible

GPR data are affected by extreme cold conditions and acquired signal influenced.
Effects like corrosion or rebar section loss are difficult to read
Tsolating layers such as paint, coating and asphalt are difficult to read
Depth data is difficult to correct

Temperature higher than 2°C is required

Concrete cover depth influence unknown

Method can’t be used for moisture or salt content calculation

Deep flaws difficult to detect

Depth of crack data are not provided

Results are often influenced by conditions at the boundary, irregularities at the surface and atmospheric temperature

Results are often confusing and ditficult to analyse and interprete
Pre-wetting process must be carried out on the surface
Unavailability of road measurement system which are autormnated.

Properties like salt content, porosity and moisture content have great infhience on it

This can’t be used on vertical surfaces
Operator’s hearing skills is highly required
Initial delamnination is not detected
Ineffective on bridge decks with overlays

MATERITALS AND METHODS SHM is the in-service positioning of sensors and

systems to mamtamm calibration when exposed to the

Structural health monitoring: Structural Health elements over many months or years. Several
Momnitoring (SHM) refers to the studying of a  researchers have carried out various study on SHM,

structural system for a period of time and taking
records of its responses with the use of equipment like
arrays of sensors, Damage-Sensitive Features (DSFs)
extraction and statistical analysis to detect changes that
may result from structural damages (Farahani, 2013). SHM
can also be defined as the measurement of the operating
and loading environment and the critical responses of a
structure to track and evaluate the symptoms of
operational incidents, anomalies and/or deterioration or
damage indicators that may affect operation, serviceability
or safety reliability (Aktan et al., 2000). It aims to give a
diagnosis of the state of every element of a structure
at every moment during the structure’s lifetime. SHM
combines a variety of sensing technologies configured
to capture, log and analyse real-time data, its systems
are designed to accurately study and test the health
and performance of structures such as buldings,
stadia, bridges, dams, wind turbines, aircrafts, ships,
etc. SHM structural
responses to the environment m real time (Yun et af,
2003). The difference between NDT measurements and
SHM 15 that NDT provides inspection mto the structural
geometry, response to load application, details of damage

emphasizes on monitoring

events, regions of damage mitiation and stress point while
SHM 1involves the use of sensors which are fixed
permanently for routing checks at intervals (Habel, 2010).
The two philosophies are related and at times both uses
the same measurement physics. A major factor in

spanmng  from laboratory work to full scale tests
(Ragland et al., 2011; Cheung et al., 2008; Fasel et al.,
2002).

An early practice of SHM can be found in the
aerospace industries which assessed the condition of
materials and structural components by using Non-
Destructive Evaluation (NDE) methods (Doebling et al.,
1998). Fasel et al. (2002) worked on a three story
building simulation using an electro dynamic shalker
attached to the base of the structure, it was reported
that sensors position in any assessment 18 important and
can determine the effectiveness of the work done.
Ragland ef al. (2011) used a different approach in finite
element analysis of a five-girder bridge subjected to
vertical vibration source and reported difference in
sensitivities of the horizontal response of the bridge and
the vertical response. Cheung et al. (2008) used the triaxial
vibration data of the 724 Bridge, Kramer et al. (1999)
obtained under the ambient loading and reported
similarities in the results obtained using horizontal and
vertical vibration data. Lucena and Dos Santos (2016)
proposed a new approach for SHM 1n structural damage
detection using both Time Reversal Method (TRM) and
Spectral Element Method (SEM). Their methodology uses
numerical simulation evaluation (MATLAB environment)
to bring together time reversal signal processing and
wave-based spectral element model It was established
that healthy and cracked rod models simulations gave
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same acceleration response result with the literature also
damage status and position can be revealed with the
method.

Structural reliability theory: Structural reliability
analysis on the other hand is concerned with the logical
management of uncertainties in the design of structures
(Thoft-Christensen and Baker, 1982; Afolayan and
Opeyemi, 201 0a, b). Structural reliability in a most general
sense 1s the ability of a structure to fulfil its design
purpose for some specified time and m a narrow sense (or
mathematically) is the probability that a structure will not
attain each specified limit state (ultimate or
serviceability) during a specified reference period
(Thoft-Christensen and Baker, 1982). This ability of a
structure to fulfil its design purpose is measured on a
fundamental basis of probability; the reliability of a
structure can be said to be the probability of the structure
performing to the purpose of its design according to some
with
conditions within a time frame (Afolayan and Opeyemi,
2010a, b). Methods that has been proposed for
assessment of structural reliability are First Order Second
Moment (FOSM) method (Afolayan and Opeyemi, 2010a,
b; Akindahunsi and Afolayan, 2009, Wen, 2001),
Advanced Second Moment (ASM) method and computer

based Monte Carlo Simulation (MCS) (Ayyub, 1997).

performance functions respect to excessive

Table 2: Different methods of analyses of SHM researches

Numerous researches have been done on reliability theory
and applications, Akindahunsi and Afolayan (2009)
worked on developed reliability-based interaction curves
for design of reinforced concrete columns, the criteria of
British Standard Code of Practice (1997) was examined.
For established safety level to be maintained in designs,
FORTRAN computer language was developed using
British Standards Institute (1997) design requirements and
the First Order Reliability Method (FORM).

RESULTS AND DISCUSSION

Previous analyses of SHM data: Acquisition of SHM data
requires effective analyses and evaluation, researches
carried out on SHM in the past have been interpreted in
different ways.

From Table 2, researches done on SHM have
been analysed in times past using graphical
representations, table, numerical analysis, 3D images,
statistical analysis and fimte element methods, very
m terms of

that
employed reliability theory to analyse SHM data are
researches on bridges (Ye et af., 2018, Catbas et al., 2008).

There is need for researches into reinforced concrete

small number of the researches are

reliability-based paradigm. Researches have

buildings which will use reliability theory to analyse full
SHM data.

Researchers Analyses Methods Types of test Equipment used Data taken

Garnal et of. (2013) Graphical representations Laboratory test of Microprocessors, wireless communication, Structural strain data
and table forms a structural model transducer and cellular transmission

Skolnik et af. (2008) Finite elernent method, Real structure test Eccentric mass shakers, tri-axial Tnterstory dritt/
illustrations accelerometers, linear variable differential displacement data

Belostotsky and Akimov
(2016)

Roghaei and Zabihollah (2014)

Hajdukiewicz et al. (2015)

Hosseinlou and Mojtahedi
(2016)
Karayannis et af. (2016)

Loutas et al. (2015)
Comanducci et al. (2015)

Lucena and Dos Santos (2016)

Lorenzoni et al. (2016)

Finite element method,
illustrations

Theoretical illustrations

Graphical and tabular
presentations

Empirical modelling
Graphical presentations

Numerical analysis
Methods of multivariate
statistical analysis
Numerical sirmulation
Statistical models and
algorithmic analysis

Computational
assessment of load-
bearing finite
element model
Laboratory test of
a structural model
Real structure test

transducer
Computer based Stress-strain state and
load- bearing capacity

of structures

detormation and stress
data
Temperature data

Array of piezoelectric sensors

Vibrating Wire (VW) gauges, Electrical
Resistance (ER) strain gauges, TP68 rated
thermistor sensors, BMS and indoor sensors,
weather monitoring sensors, etc

Laboratory test of Electric sensors Column and bearn modal
a structural model measurements
Laboratory test of Piezoelectric sensors, linear variable Flexural response and
a structural model differential transducer deflection

Laboratory test Fiber Optic Ribbon Tapes (FORTs) Strain measurements
Laboratory test of Multivariate statistical analysis tools Wind speed and wind

a structural model effect data

Computer based mdel MATLAB, spectral element method Frequency data

Real structure test Traditional displacement transducers and Crack data

optical camera
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CONCLUSION

For proper acknowledgement of SHM for assessment
in structures there 1s a need for a reliability measure,
similar to the probability of detection for NDIL. Several
questions must be answered for the actualization of SHM
of structures such questions are:

¢ What are the economic and technical benefits?
¢ Ts the approach validated?

¢+ What is the false/positive call rate?

¢+ What is the reliability of such a system?

Structural reliability approach has not been fully
studied on reinforced concrete buildings usmg SHM
data as the mput. Most reliability methods make use
of condition ratings based on visual mnspections or
theoretical/numerical There
suggestions on supplementing reliability models with
sensor data or non-destructive experimental results. A
reliability approach using a complete SHM application
needs to be further investigated. The integration of SHM
and reliability analysis as a framework composed of a
comprehensive structural health monitoring application
for probabilistic analysis of buildings will foster efficient

models. have been

structural management and decision-making.
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