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Abstract: In this research 1s given a simple expression for the center of mass of a system of material points in
a two-dimensional surface of Gaussian constant positive curvature. Using basic techniques of geometry, an
expression in intrinsic coordinates is obtained and it is showed how this extend the definition for the Euclidean
case. The argument is constructive and also serves for defining center of mass of a system of particles on the

one-dimensional Sphere .
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INTRODUCTION

Center of mass (center of gravity or centroid) is a
fundamental concept and 1ts geometrical and mechanics
properties are very important in the comprehension of a
great variety of physical problems. Their definition for
Euclidean spaces is elemental, nevertheless a definition
for curved spaces 18 few frequent. Galperin (1993) makes
an extensive explanation showing the possibilittes of
construction this concept in more general spaces and it is
signalized the difficulties to defined in spaces of non zero
curvature because this lack of linear structure. Wlle 1t 1s
true that the researcher synthesizes the basic properties
of the center of mass in his approach appear some ones
lacking of physical meaning such as the non conservation
of total mass of system, m normal condittions or the
presence of nfimties velocities. Diacu ef al. (2012) makes
mention about of the difficulty for defining of center of
mass in curved spaces. He provides a class of orbits in
the curved n-body problem for which apparently “no
point that could play the role of the center of mass is
fixed or moves uniformly along a geodesic”. This proves
that the equations of motion lack center-of-mass and
linear-momentum integrals. But nevertheless, 1t 1s
not provide a way to calculate or determinate this

element. Applications in fields like Chemistry by
Berrio-Guzman et al. (2015). By Aarseth (2003), it can
found gravitational n-body simulations. The gravitational
million-body problem has a multidisciplinary approach to
star cluster dynamics (Heggie and Hut, 2003). Barnes and
Hut (1986) was obtained a hierarchical O(N log N) force-
calculation algorithm. Tnitial conditions for star clusters
was taken for the dynamics of the n body problem
(Kroupa, 2008). A good book for an introduction to
celestial mechanics (Moulton, 1970). An algorithm for
finding best matches m logarithmic expected time it is
useful for codes in n-body problems (Friedman et af.,
1977). Stembach and Brooks (1994) obtain new spherical-
cutoff methods for long-range forces in macromolecular
simulation in this case the potential is similar to the
potential for n-body problems. Multifocus image fusion
using improved dual tree complex wavelet transform and
discrete optimization method, this method of dual tree is
useful for simulation in n-body problems (Srilatha, 2014).
Location of collinear equilibrium pomts in the generalized
photogravitational elliptic restricted three body problem
is a difficult problem (Kumar and Tshwar, 2011). Artificial
satellites, center of mass and the three body problem are
related. For artificial satellites (Hillier and Balyan,
2019; SiMohammed et al., 2007, Cooksley efal., 2007,
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Adediji et al., 2007, Ahmed et al., 2010, Emetere et al.,
2016; Smgh, 2017; Anand, 2017; Buliali et al., 2017,
Phonphan, 2017; Basha and Vyayakumar, 2018; Nathan,
2017, Parthasarathy, 2017, Kaur and Singh, 2017,
Rajab et af., 2018, Ramakrishnan, 2018; Nathan, 2018;
Manivannan, 2018; Ik-Sco and Myung-Jin Bae, 2019,
Sergey et al., 2019, Ashraf et al., 2019).

Garcia-Naranjo et al. (2016) in which they refer to a
center of masses in a curved space, in a problem of
celestial mechanics but they do not give a formula or a
procedure to calculate it. Diacu (2012) study the n-body
problem in spaces of constant curvature. Ortega et al.
(2019) find the hyperbolic center of mass for a system of
particles on the Poincare upper half-plane. Diacu et al.
(2018) imvestigate the stability of fixed points and
asscciated relative equilibria of the 3-body problem on '
and $°. Shchepetilov (2006) is a beok of mechanics on
curved spaces.

In this research, the problem of gives a mathematical
expression for computing the center of mass of a system
of n particles sited on the two-dimensional sphere with
Ratio R, s; is considered. Through stereographic
projection of 82 onthe extend Complex plane €, endowed

with the conformal metric (Perez-Chavela and
Reyes-Victoria, 2012):
4R* dwdw
ds® = — (1)
(R +wl")

Both, ¢ with the metric (Eq. 1) and si with the
Euclidean metric have the same Gaussian curvature K =
1/R* and for the Minding’s Theorem belong to the
isometric  differentiable class (Do Carmo, 1976,
Dubrovin et al., 1984; Perez-Chavela and Reyes-Victoria,
2012) is proved the equivalence of the n-body problem for
both models, the one on the sphere si with the Euclidean
metric of ambient space R’ and the other on the extend
Complex plane C with the metric (Eq. 1). Following the
basic methods of the geometry, we obtain, here, the
expression for the center of mass for a system of n
particles sited m the sphere s of arbitrary Radio R.

This study 1s organized as follow: n section 1 are
mtroduced some concepts relative to center of mass in the
euclidean spaces. In section 2, are remembered some
properties of stereographical projection and it 1s
proceeded to deduce the expression for the center of
mass, for two particles on the sphere from the “spherical
rule of the lever” (Galperin, 1993) extended to surface of
sz , this case can be reduced to the Sphere s, , under a
suitable two rotations and using the invariance of the

relative position of center of mass under isometrics of
sphere (Galperin, 1993). Once obtained the expression for
the center of mass for two particles m s, it can be
extended naturally to a system of n particles n s, and the
same way, to a system of particles in si. The expression
obtained, here, satisfies the five axioms for the “Axiomatic
Centroid” established by Galperin (1993).

MATERIALS AND METHODS

One-dimensional Euclidean case: Let consider two
particles with positive masses sited in the real line at the
points x, and x,. The center of mass of system 1s defined
be the pomnt x.:
< mx, +mx, 2)
m, +1m,

A direct calculation shows that m,[x.-x,| = m,x.-x,|
(Euclidean rule of the lever). It is easy to prove that x, is
the unique point in the segment (geodesic) joining x, and
x, with this property. This defimtion can be extend to more
dimensions in Euclidean spaces. This definition can not
be extended to spaces in general because 1s possible that
1n such spaces 1s not defined a linear structure. But with
the “rule of the lever” in mine 1s possible carries this
definition to Riemannian surfaces as we shall see later.

In Fig. 1 showed that: s, = B8R, s, = 6.R tanf, = d,/R
and tan0, = d/R. Moreover, when R-o. 0, 0,0 and
s,~d, y 8,~d, then,

L= lim—dlfR :lim$

Reg fR Ry

1= lim 06

R—pee 81

Hence, s,~d, and in similar way s,~d,.

# My

Fig. 1: Center of masses in the circumference and the real
line
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RESULTS AND DISCUSSION

Center of masses in a two-dimensional spherical space
Some observations about the stereographic projection:
TLet p:si—=C the stereographic projection, then for
(x.y.z)es , we have P(x, v, z) = w = utiv where u= Rx/R-z
and v = Ry/R-z and P(0, 0, R) = < and moreover the
mnverse projectionis P~ :C—s; and:

R(u2+V27R2)
' +vi+R?

2R%u 2R%

PHu+iv) = s R
( ) v+ R T ui v +R?

P leaves invariant the set {(x,y.z)es;:z=0} and it is
the same set and will called equator. For analogy, the
set {We<:| W<k} will called Scuth Hemisphere and the set
{wec W Rt will called North Hemisphere, w = 01s called
South Pole and w = o will be called North Pole. P
transform lines through the origin in meridians and the
circles with center in origin, {WeC:|wi<const} in parallels.
Finally, for two complex numbers w,, w,, if |w ||w,] = R%,
then each point is sited in two parallels, the same radio
and symmetric respect to Equator.

If consider the stereographic projection of the one-
dimensional sphere si on the real line, then the above
equation 1s reduced to:

P(x, yv) = uwhere u = Rx/R- y and P(0, R) = o and moreover
the nverse projection is:

SENE

W +R?T u'+R?

In this last case, the length of arc from the South Pole
P, to arbitrary point (x, y) is:

2
s=| %R dtz = 2R arctan| —
"+ R R

More general, the length of arc s from the pomt Q,(x,,
v, ) to Q,(x;, v,), if their stereographical projections are u,

and u, 1s:
s = 2R| arctan e —arctan et
R R

Consider now two masses m,, m, sited in the points
Q,, Q,, respectively and let Q(x,, y.) the coordinates of
center of mass and s, the length of arc from Q, to Q, and
8, the length of arc from Q, to Q,. Then, from the relation
(spherical rule of the lever) m s, = m,s, it follows:

™~ (X2, V2)
Mgl

. Ue .‘\"u

ull\_ N} Uz
\ I (Xc: YC)
R 7.“
.“ -

\

my,
(X1, Y1)

Fig. 2: Center of mass on the one-dimensional Sphere si

|

=2Rm, {arctan{u—z} - arctan(ﬁn
R R
Therefore:

Arctan a3y 1 m, arctan Ll + m, arctan i)
R/} m +m, R R

(3

Figure 2 illustrates the situation. This concept can be

extended a n particles with masses m,, m,, ..., m, sited in

the points (x,, v,), (X3 ¥ ..., (X, y)on si and with

stereographical projections u,, u,, ..., u, in the real line the
following way:

u 1 xn u
Arctan(ﬁ] :Ezkzlmk arctan(ik] (4)

where, m= 3 m,.

Center of masses for a system of two particles in §°:
Now, we extend the “rule of the lever” to context more
general: let a Riemannian surface T and two particles with
masses m,, m, sited in the points 5, 8,£T, respectively,
then the center of mass is defined the point s, in the
geodesic joining s, to s, such that 1s verified the following
relation:
md(s,s ) =m,d(s,.s,)

where, d 1s the metric in T. For the case of s , geodesics
are great circles and distances are measure take the
shorter arc.

Let m,, m,, ..., m,, n masses sited, respectively in the
points (X, ¥i. Z), (Xp Yo Z)s s (Xp Yoo Z) 10 Sp with
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stereographical projections w,, w,, ..., W, in the extend
complex plane and let w, their center of mass, then it is

satisfy the next relation:
Arctan (£} Ly m, arctan(ﬂ)
R m = R
where, ,,_ 3 m, Note that in 5, if multiplied by R in both
k=1 .
sides and we take the limit when R~< then result:

1 s
W, o=—
c m k=1

m,w,

And this correspond to the equation for the center of
mass in the Euclidean complex plane, that is the complex
plane (or R*), with Euclidean metric and zero curvature.

CONCLUSION

There is a formula to calculate centers of mass in
curved spaces that extends this concept of Euclidean
spaces (of null curvature).
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STATEMENT OF SIGNIFICANCE

In this research we present for the first time a formula
to calculate centers of mass in curved spaces.
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