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Abstract: Differential Algebraic Equations (DAFs) are regarded as stiff Ordinary Differential Equations (ODEs),
therefore, they are solved using implicit method such as Backward Differential Formula (BDF) type of method

and require the use of Newton iteration which usually requires a lot of computational effort. However, not all

of the ODEs in the DAE system are stiff. In this study, we describe a new technique for solving index-1 semi
explicit system of DAE where the ODEs are treated as non-stiff at the start of the integration and putting the
non-stiff ODE’s into the stiff subsystem should instability occurs. Adams type of method is used to solve the
non-stiff part and BDF method for the stuff part. This strategy 1s shown to be competitive m terms of

computational effort and accuracy. Some numerical experiments are presented to illustrate the effectiveness.
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INTRODUCTION

The dynamical behaviour of physical process is
usually modelled in several equations. But if the
states of the physical system have constrain, for example
by conservation laws such as Kirchoff's laws mn electrical
networks or by position constraints such as movements
of mass points on a surface, then, the mathematical model
also contams algebraic equations to describes these such
constrains. Such systems, consisting of both differential
and algebraic equations are called Differential Algebraic
Equations (DAE).

In recent years, much research has been focused on
the numerical solution of DAEs. Some numerical methods
have been developed using BDF (Gear, 1971, Petzold,
1982), implicit Runge-Kutta method (Ascher and Petzold,
1991), Pade approximation method (Celik et al., 2006) and
Adomamn Decomposition method (Celik et al., 2006).
Following the study by Gear (1971), several codes
inplementing the BDF methods were written. The most
widely used production code is the code DASSL of
Petzold (Brenan et al., 1989). The code 1s designed to be
used for the solution of the implicit form F(t, y, ¥ ) = 0 with
index zero and one. The code L3SODI, developed by

Himndmarsh (1998) is written for linearly implicit DAFEs of
the form A(t, y) v’ = f (1, y). The SPRINT code developed
by Berzins et al. (1989), also employs BDF method for the
solution of DAEs. Still not all DAEs were solved
successfully with these codes. Each code has its own
restriction. For example, code DASSI has difficulties to
distinguish between a failure due to inconsistent initial
conditions and one due to a higher formulation. Code
LSODI, the user must supply a subroutine for evaluating
the matrix A times a vector. The general form of DAFs is
given by:
Fit,y,y)=0

With consistent initial values:

vix )=y, V(%) =¥ (1)
When JF/dy” 1s non-singular (Eq. 1) 13 an ODEs. The
existence of algebraic constraints on the variable is
expressed by the singularity of the TJacobian matrix
JdF/dy’. They are more difficult to handle that ODEs
due to the existence of algebraic equations. The
algebraic constraints may appear explicitly as inthe
system:
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y'=f(ty. z) (2)
0=1(t,y.z)

The system, Eq. 2 is called a semi-explicit system of DAFs.
A system of DAFEs 1s characterized by its index which is
the number of differentiations required to convert it mto
a system of ODEs. Here, the Jacobian matrix 1, is assumed
to be non-singular for all t, therefore, the system has index
one. Since, most DAEs arising in the applications are in
semi-explicit form, then, the technique to be developed 1s
for solving DAEs in this form.

In solution of ODEs, partitiomng of the equations
mto stiff and non-stiff subsystems has been very
successful in terms of computational effort (Suleiman,
1979; Suleiman and Baok, 1992). Some of the earlier works
on partitioning are given by Enright and Kamel. Watkins
and Hansonsmith developed a precise partitiomng
method proposed by Enright and Kamel but differ in the
partition of the TJacobian matrix. Other research on
partitioning are discussed by Hall ef a/ DAFs consist
of algebraic equations which are treated as stiff
(Wanner and Hairer, 1991). However, the same cannot
be said of the ODEs counterpart which consist of
non-stiff and stiff subsystems that can be treated by
non-stiff and stiff methods, respectively. Consider the
regularization of DAEs (Eq. 2) where it is replaced by
the ODE:

ez'=1(x, y, z) (3)

which depends on a small parameter O<e<]. This means
Eq. 3 1s very stiff. Tt 1s natural to consider methods for stiff
ODE for the solution of the DAFs m Eq. 2. If, we
now let €-0, we obtain the reduced (Eq. 2). For the
ODEs Eq. 2, the systems can be partitioned into stiff
and non-stiff parts to reduce the cost of iteration scheme.
These reasons motivate us to look mto the partitioning of
Eq. 2. Therefore, m thus study we look mto partitioned
system, so that, substantial saving can be gained if this
part 1s done efficiently.

MATERIALS AND METHODS

The propose method for this solution of D AEs given
i Eq. 2 requires a modification of the mtegration formulae
by Suleiman (Brenan et al, 1989). The formulae are
based on storing back values of y* where | takes cne of
the values 0, 1, ..., dand d is the order of the equations in
this study we only discuss on equations with d = 1. The

case of | = 0 will refer to generalisation of Adams method
to solve non-stiff problems where a predictor-corrector
scheme using the simple iteration 1s appropriate. The case
j=0 is for stiff problems and the solution set at each
integration step using Newton type of iteration is
required.

Most partitioming strategies start by treating the
ODEs system as non-stiff and solve using Adams
method. Once there is an indication of instability due to
stiffness, then, the whole system is treated as stiff and
solve using BDF method. As we mentioned earlier, the
solution of large stiff system requires expensive iteration
process. Therefore, if the equations requires stiffness can
be identified, there will be significant reduction in the
computational cost where only the relevant equations that
cause instability are placed in the stiff subsystem. At the
first instance of instability which is due to the eigenvalues
of the largest and almost equal in the magnitude of the
Jacobian of the system, the appropriate equation 1s placed
1n the stiff subsystem and solved using BDF method.

In doing so, the effect of these eigenvalues is
nullified and larger stepsizes are permissible until the
effect of the next set of the largest and almost equal in
magnitude of the eigenvalues cause instability. Hence,
again the appropriate equations are placed in the stiff
subsystem and the process continues. In general, problem
may be stiff in some intervals and non-stiff in others.
Therefore, this techmque also allows us switching
from stiff to non-stiff when necessary. This type of
called dynamic or componentwise
of first

partitioning  is
partitiomng. Consider a
ODESs of the form:

system order

v'=f(x,y) y{a)=n ye®’ 4

Let, the first w equations be non-stiff and the
next (s-w) equations be stiff. Then the iterative equations
corresponding to the solution of Eq. 4 given by
Suleiman and Baok (1992) are:

e, :agileﬁr %”‘e] t=1..w (3)
jzlaY_] j=w+l aYl
: 1oof . z. of.
L‘“ej— 2 —Te, =y —t'e, t=1..s (6)
h i=w+l a}ﬁ j=1 aY_]

where, "'e, =*'y,-y, is the increment at (i+1)th iteration of
the tth equation. We define:
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1 If the component stiff

a0 =
hp,

If the component non-stiff

m]%iej 1s referred to as the perturbation term in the tth

1

equation due to jth the component of the system. It is the
growth of this perturbation that causes instability
and 13 the mam identification for partitioning. If there
is an indication of instability because of LTE>TOL or
non-convergence, then, the presence of stiffness is
suspected. Once stiffness 1s detected, the component that
15 associated with the largest perturbation which 1s the
cause of stiffness 1s i1dentified. Note that stiffness may
occur in the equation already stiff due to coupling to a
non-stiff component. Suppose the jth equation fails the
error test, then (Algorithm 1):

Algorithm 1; Equation fails the error test

1. Letn =0, m=j (variable n counts the number of equations, m

identifies the questions)
2. Setn=n+l
3. SetAln]=m
4. If (mth component is not stiff) then the most dominant term on the
RHS is:
of,
o, =0, —2le,
oy
(if component p is non-stift)
or
%,

(if component. p is stiff)

If (Pe./<lci '), ¢ is a suitable constant, then
Goto 8 (exit)

else (mth component is stiff) then

if (n = 1) then
a) find the most dominant term on the LHS of Eq. 6:

By =[%_%:Jzem (if g=m)

bysetAn]=q
) find the most dominant term on the RHS of Eq. 6:

dif \em| <C then

of,
—e
“gy &

P

goto 8 (exit)
else
a) find q such that the most dominant term on the THS of Eq. 6:

v, of,
L8, =| -2 |%, (ifq=m)
g {h aqu q

of,
i, =-—1%
.

. (ifq#—m)

i

byset An]=q
) find the most dominant term on the RHS of Eq. 6:

. o,
dyif |8, [<C gt then

P

goto 8 (exit)
end if
end if’
5. Fors=1ton
T (A [s] =p) then
ayford=ston
if component o is not stiff, change to stiff’

end if
b) goto 8 (exit)
6.m=p
7. goto 2
8. RETURN

Illustration of the partitioning process: Example: system
of two equations (both are treated non-stiff initially):

®@—0

The first instability occur on Eq. 2. Tt shows that the
term due to Eq. 2 dominates on the RHS of Eq. 5 meaning
the instability n Eq. 2 was due to the term of Eq. 2 while
due to Eq. 1 is almost negligible. Therefore, Eq. 2 is
changed to stiff while Eq. 1 remain as non-stiff:

@— O
The term due to Eq. 1 dominates on RHS of Eq. 6,
meaning the instability in Eq. 2 was due to Eq. 1.
From Eq. 1, the dominant term 1s Eq. 2, meamung that the
perturbation mn Eq. 1 was due to the term from Eq. 2.

Hence, there is coupling effect on Eq. 1 and 2. Therefore,
both equation will change to staff.

System of three equations (mix method): Examples:
Eq. 1-3 become stiff:
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/\
@—0—0

Equation 1 and 3 become stiff:

o—B—0

Equation 1 become stiff:
®—a)

We now consider the iteration process of solving
the system (Eq. 2) using the Adams PECE and BDF
method on non-stiff and stff equations, respectively.
Imtially, the ODEs (Eq. 2) are treated as non-stiff and
solved with a Variable Stepsize Variable Order
Componentwise (VSVOC) Adam method. This 1s referred
as case | = 0. The predictor:

k-1

And:
k-l
FZ"*‘l = Z"+2g1’ 11[n,n—1,. 0]
1=0
Where:
Enil
g, = I (xx, ), .., (X%, )dx
£t g din noy, o, og-the ith divided difference
The corrector:
3 gk,l
Yo = pYn+1+_e
k.0

where:

—rf® p |
eif( yn+1’ Znﬂ)_ yn+1

Case ] = 1 18 mtroduced for stiff problems and the
solution of a set of in general, nonlinear equations, a
Newton type iteration 1is each

integration step. For

required  at
simplicity, we combine the
solution for Eq. 2. The formulas are given below. The

predictor:

k-1
f Yo = Egv lF[n, n-l, .., 0]
i=0

where:
Eoon n_l]—the ith divided difference
F=y(x)
kel
pZn+1 = Eg1= lF[n, n-l, .., 0]
i=0
where:
F[n, ol n_l]—the ith divided difference
F=1(x)
k-1
e Zdv 1F[n, n-l, 0]
i=o
where:
= (e, ) o ()

The corrector, for ] = 1 (Eq. 2) 15 solved using
modified Newton iteration where two corrector iterations
are used. The notation 1 15 mtroduced for specifying the
iteration:

. d
i+] i+l i, k—1,1 i+1
f( yn+1’ ZnH) - yn+l+ ey
Br-1n
f 1 +1+1 1 +1+1 . +dk—1,1 i+1
¥Yan1 Cyr Zyn €)= Yauu S,
Bi-10

Expanding {('y,,, +"e,, 'z, +"e,) by Taylor expansion:

i+ i+ i+ af i+ af ' i i
f( 1Yn+1= 1Zrﬁl)-‘r ley_+ lezgz IYnH_f( Yn+1> ZnH)
. of d_, . i of ‘
1+ley77 L ley+l 1617: 1Yn+1 7f(1Yn+1:~lzn+l)
- 0z

7
1( 1Hynﬂ’ i Znﬂ) =0

i i+l i i+l
1( Yot s Zpy T ez):O

Expanding 1(y,..+"e,, 'z,.,+""e,) by Taylor expansion:

| al

iy iz, )+"e —+7le - =0
( yn 1 n 1) v ay z aZ (8)
1+1e al +1+1ez al :_1(1yn+1’12n+1)

"oy 9z
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From Eqg. 7 and 8 this then allows us to RESULTS AND DISCUSSTON

construct an iterative scheme for the BDF method. At

iteration I: Numerical: The test problem considers the following
DAEs (Table 1 and 2):
of dy,, of
By [ oz Mle, B 1y‘n+1_f(lYn+1’1zn+l) y' =tcost—y+(14t)z  y(0)=1, z(0)=0
a A {%j_ SIS AN 0=sint—z 0<t<10
dy oz
y(t) =exp{~t)+tsint
The two stage iteration process proceeds as Exact sohution :
follows. (A is the Tacobian Matrix) Sclve for ‘e z(t) =sin{t)
from:
Ae, =Y (" Y 70 n' = - (1)a 7(0)=1 7, (0)=1
v, =ty —{1+t)z, z(0)=-1 z,{0)=1

Ale, =1("y,,."2,,,) = (y,2,}/5-cos(1*/2)

0={y +z )/5—sin(t?/2
Compute the corrected values: (vi+2) Sm( )

Vet = ety y,(t) =sin(t)+5cos(t*/2)

2 =0t e, Exactsolution : (t - ()+5sm( /2)
Solve for e° from: z(t ):fcos(t)
z,(t) =sin(t)

e_f(lynﬂ’lznﬂ)

Br-10

Aze — ,1( Yn+1= n+1) Notations used i Table 1 and 2:

»  TOL-Tolerance
+  MAXERR-Maximum Error
+  S3-Success Step

Compute the final corrected values:

3

Yo = Yan T8 »  TS: Failure Step
‘z, =z, e, *+ TS: Total Step
Table 1: Notation (1)
10(-2) 10 (-3) 10 (-4)
Tol Partitioning Without Partitioning Without Partitioning Without
MAXERR 1.55935(-2) 4.84960(-2) 1.70125(-3) 1.04648(-2) 6.24365(-5) 2.46260(-3)
S8 25 30 33 38 53 62
FS 3 7 5 3 6 6
TS 28 37 38 41 59 68
Table 2: Notation (2)
10(-2) 10 (-3) 10 (-4)
Tol Partitioning Without Partitioning Without Partitioning Without
MAXERR 9.24758 (-3) 2.73121 (-1) 5.03043 (4) 2.5821 (-2) 9.71525 (-5) 2.51579 (-3)
S8 156 102 161 152 159 231
FS 2 5 2 2 2 4
TS 158 107 163 154 161 235
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CONCLUSION

We noted that with the same TOL, the global error 1s
smaller and the number of steps also reduced for the
partitiomng case compared to non-partition case. For
problem 2 while in lower TOL despite partitioning case
needs more mumber of steps but its accuracy are much
better compared to non-partition case and with hgher
TOL partitioning technique increase the performance by
giving smaller munber of steps and continue increasing
the accuracy. In conclusion, we have demonstrated that
it 1s favourable to partitioning DAE system into non-stiff
and stiff subsystem rather to treat the system as a stiff
system to all equations. The approach (using partitioning)
15 effective in term of computational effort, since, the
Jacobian has smaller dimension, hence, requires less
number of matrix operation mn order to evaluate the
Tacobian matrix and also increasing the accuracy.
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