Tournal of Engineering and Applied Sciences 14 (23): 8855-8861, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Application of Half-Sweep MAOR Iterative Method on Autonomous
Robot Path Planning in Static Indoor Environment

'A A Dahalan, "W K. Ling, *A. Saudi and *J. Sulaiman
'Department of Mathematics, Naticnal Defence University of Malaysia, 57000 Kuala Lumpur, Malaysia
*Faculty of Computing and Informatics,
*Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu,
Sabah, Malaysia a.qilah(@upnm. edu.my

Abstract: Mobile robots have been undergoing constant research and development to improve its capability,
especially, in its ability plan its path and move to specified destination in a given environment. However, there
1s much room for mmprovement of mobile robot path plaming efficiency. This study attempts to mmprove the
path planning efficiency of mobile robots by solving the path planning problems iteratively by using numerical
method. This method of solution 1s based on harmonic function that applies the Laplace’s equation to control
the generation of potential function over the regions found in the mobile robot’s configuration space. This
study proposed the application of Half-Sweep Modified Accelerated Over-Relaxation (HSMAOR) iterative
method to solve the mobile robot path planning problem. By using approximation finite scheme, the experiment
was able to produce smooth path planning for the mobile robot to move from its starting point to its goal point.
Other than that, the experiment also shows that this numerical method of solving path plarming problem 1s

faster and is able to produce smoother path for the mobile robot’s point to point movements.

Key words: Robot navigation, collision free, optimal path, iterative method, five-point laplacian operator,
Zalf-Sweep Modified Accelerated Over-Relaxation (HSMAOR)

INTRODUCTION

In recent years, many attempts have been undergone
to mmprove the autonomous navigation of robot for
moving from its starting point to the designated goal
point. The main challenge 1s to develop a highly efficient
robot motion planning navigating through various
obstacles in order to complete its journey without any
collision in between. This study attempts to apply the
theory of heat transfer on the robot path planning in a
point to point simulation. The harmonic potential values
which determines the movement of robot from one point
to another in the simulation configuration space is where
the heat transfer theory is applied. By applying the heat
transfer model mto the simulation, we can avoid the
occurrence of local minima in the environment which
voids the performance of robot movement in the
simulation. It should also be noted that the heat transfer
model n this study 1s represented through the Laplace’s
equation.

For this purpose, this study proposed the application
of Half-Sweep Modified Accelerated Over-Relaxation

(HSMAOR) as the iterative method in generating the
robot’s path from start point to designated goal point in
the simulation. The results are then compared to the
currently available iterative methods based on the time
taken to complete the path intended and the iterations
number. The results were that the HSMAOR yielded
better performance compared to its predecessing
methods.

Brief history of related studies: The application of
potential functions n solving the path planning problem
has been implemented first by Khatib (1985). It treats all
the boundaries and obstacles as a repellent force omitting
barriers and the goal point as point which produces
attractive force. Based on the research by Connolly et al.
(1990) and Akishita et af. (1993) which applied harmomnic
functions in generating path for autonomous navigation,
has proven that the implementation of harmonic functions
has improved the performance of the robot autonomous
navigation in the configuration space by reducing the
time taken for generating path and prevented any

collisions along the path. Also, through their
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independently developed global methods via. Laplace’s
equation the occurrence of local mimma m the
configuration space were also avoided, resulting in an
efficient path line generation by the autonomous
navigation. Other than that, Sasaki experimented with
numerical technique in enhancing the path generation of
autonomous navigation and has proposed that the
applied method had resulted in efficient navigation
through complex maze simulation. On the other hand,
Karonava made use of Dijkstra’s shortest path algorithm
via. image processing where the inages are compared in
terms of its pixel intensity to compute the length of the
shortest path between the pixels. The results showed that
the algorithm was able to produce the shortest path for
the robot to move from point to point in a fairly large sized
maze under a short renge of time. Hachour (2008)
proposed the application hybrid intelligent in autonom ous
navigation by merging two different programming
languages where one 1s the visual basic language, a
programming language that enable the robot to avoid all
obstacles while in motion, the other one is the Delphi
language, a programming language that guides the robot
motion through the shortest path to reach the designated
goal point.

MATERIALS AND METHODS

Laplacian potential in autonomous path planning:
Laplace’s equation, also known as the steady-state heat
equation (Evans, 1998) 1s used in generating the path line
for autonomous navigation in this study. The process of
generating path lines can be modelled as a heat transfer
problem where harmonic functions are computed as the
solution for the Laplace’s equation. The way it works is
that the harmonic functions are calculated throughout the
entire region of the configuration space where in the
configuration space exists the starting point, outer
boundaries, imer walls, obstacles and last but not least
the goal point. The outer boundaries, inner walls and
obstacles are fixed with a constant temperature and were
treated as heat sources whereas the goal point is assigned
with the lowest potential value and is treated as a sink
that pulls the heat in. Following the concept of heat
conduction where heat will flow from region of higher
temperature to another region with lower temperature, this
phenomenon of heat distribution represented by the
Laplacian potential values will produce heat flux lines that
will flow to the region with lowest potential value which
in this case is the sink, filling the configuration space.
This way, by following the heat flux line produced, the

path line for the robot to navigate through the
configuration space was laid out. And because the
implementation of harmonic functions as shown by
Commnolly et al. (1990) that prevents the occurrence of
local minima and able to guide the robot to avoid
obstacles m the configuration space, the path of the
robot’s navigation towards the goal point is thus certain.

In understanding the concept mathematically, a
harmonie function i the domain + + R" 15 a function that
satisfies Laplace’s Eq. 1:
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Where:
%, = The ith Cartesian coordinate
n = The dimension

In the case of generating robot path, the domain ¢
consists of the outer boundaries, mner walls, obstacles,
start points and goal point. Since, harmonic functions
complies to the min-max principle, it allows the Laplace’s
Eq. 1, when applied, to limit the generation of functions in
the configuration space, thus preventing the occurrence
of false local minimum inside the domain . The
implementation of harmoenic functions enabled a smooth
and efficient robot navigation path due to the complete
path planning algorithms it produces. In previous related
worles, Laplace’s equation has been solved using various
standard numerical techmque (BEvans, 1985; Evans and
Yousif, 1986; Ibrahim, 1993) such as Jacobi method,
Gauss-Seidel (GS) method and Standard Over-Relaxation
(SOR) method. This study attempted to solve Eq. 1
through modified accelerated iterative method for a more
efficient computation.

In this study, the Laplacian Model was implemented
for generating path line for autonomous navigation.
Taking mto account the temperature and heat flux present
which translates to potential value and path line in the
configuration space, respectively, the
Laplace’s Eq. 1 was computed. The experiment utilizes a

solution for

two-dimensional domamm which consists of outer
boundary, imner walls and various shape of obstacles to
represent the configuration space. The iterative method
that was used for computing Eq. 1 in this study was
HSMAOR, through this, the temperature value at each
node was determined, thus the potential values. For the
purpose of comparison, the performance of autonomous
navigation via. various iterative method was also tested.
The other iterative methods include, Full-Sweep SCOR

(FSSOR), Half-Sweep SOR (HSSOR), Full-SweepModified
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SOR (FSMSOR), Half-Sweep Modified SOR (HSMSOR),
Full-Sweep AOR (FSAOR), Half-Sweep ACR (HSAOR),
Full-Sweep Modified AOR (FSMAOR) and Half-Sweep
Modified AOR (HSMAOR).

The half-sweep modified accelerated over relaxation
method: The half-sweep iterative method 1s where only
half of the nodal points in the configuration space are
considered for calculation. Tt was introduced by Abdullah
(1991) through the Explicit Decoupled Group (EDG) that
was used to solve the 2D Poisson equation. Other use of
the method includes for solving partial differential
equation as shown by Ibrahim and Abdullah (1995),
Yousif and Evans (1995), Abdullah and Al (1996),
Dahalan et al. (2013, 2014, 201 5), amodified version of this
method was also considered to be used to solve the
diffusion equation (Sulaiman et al., 2004). The early usage
of combination between SOR with other technique dated
back to 2009 by Sulaiman. In previous resesarches, the
techniques used in solving the Laplace’s Eq. 1 was such
as standard GS (Connolly et al., 1990) and SOR (Saudi and
Sulamman, 2013). The techmque used m this study 15 the
MAOR iterative method which is a modified accelerated
iteration procedure and is a faster technique in solving the
Laplace’s Eq. 1. Consider the 2-dimensional Laplace’s
equation n Eq. 1 defined as:

2 2
au eu (2)
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X

Equation 2 1s then simplified into the five-point
standard fimte difference approximation equation by
applying the second-order central difference scheme as:

qu..=0 3

1,1+1 - 1,1

+u +u +u

-1, i+l ii-1

Since, the half-sweep method is utilized, the way the
Laplace’s Eq. 2 was iterated was that only half of the
nodal points was considered in the computation and that
the iterative method was simply done by repeatedly
replacing each nodal value with the average nodal value
of the nodal pomnt’s four neighbours. The nodal values
which was assigned to the outer boundaries, inner walls,
obstacles and goal point was kept constant.

By using the half-sweep method, the computational
time was able to be reduced to half, since, the methed
enable only half of the nodal points to be taken into
account when performing calculation. To better
understand the half-sweep concept, Fig. 1 shows the
computational grid for both full-sweep method and half
sweep method.

(2)

10

Fig. 1: The computational grids for: a) Full-sweep and b)
Half-sweep

As can be seen from Fig. 1, the black dots represent
the nodal point that were considered by the respective
methods during computation, thus when applying
full-sweep method, all of the nodal pomts in the
configuration space were considered, whilst when
applying half-sweep method only half of the nodal points
were considered, therefore, reducing the computational
time dramatically.

As to the computational pattern of both full-sweep
and half-sweep method, Fig. 2
information where the full-sweep method has a
standard computational pattem for fimte difference

shows the
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Fig. 2: The computational pattern for finite difference approximation of: a) Full-sweep (standard) and b) Half-sweep

(rotated)

approximation while the half-sweep method has the
rotated pattern of computation as opposed to the
standard pattern.

As seen from Fig. 2, the approxmmation equation of
half-sweep method was actually based on the
cross-orientation operator where by rotating the 1-j plane
by 45° the approximation equation was able to be
obtamned. The result was that the rotated five-point

approximation formula was produced:

U =0

1+1,1+1 - 1,1

u +U +U +U

1-1,1-1 1+1,1-1 1-1,1+1
After that SOR was mmplemented into Eq. (4) by
adding a weighted parameter (Sulaiman et al., 2004, 2009),

thus, the half-sweep iteration is shown as:

feet) _ O (41) fier1) k)
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(5)
To improve the computational performance, a method
known as Modified Accelerated Over-Relaxation (MAOR)
method was 1mplemented into Eq. 3. The fact that the
formulation for MAOR iterative method are similar to AOR

method. However, the MAOR. iteration schemes involves

1

the implementation of red-black ordering strategy through
the use of three different weighted parameters r, + and * .
The formulation of family of HSMAOR methods produce

2 formulae, one for the red nodes:

@
Ut =T U Ul e U U L [ epul
(6)

another one for the black nodes, shown below:
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mwhichr, *+ and ¢ * are the optimum relaxation parameters
and was defined in the range by Khatib (1985) and
Commnolly et al. (1990). There 1s no general formula in the
effort to obtain the minimum number of iterations by
determimng the optimum values of r, + and * °. Based on
the researches of Hadjidimos (Saudi and Sulaimar, 2013)
the value r and * ’ is normally chosen to be close to the

value ¢ of the corresponding SOR.
RESULTS AND DISCUSSION

In testing the performance of the proposed method,
this study has set up 3 environments of different sizes,
L.e., 300x300, 600x600 and 900=900 1 terms of grid sizes.
The elements present n the environment include, the
outer boundary, the mnner walls, various obstacles and the
goal pomnt. These elements were assigned with their own
temperature value. By applying the Dirichlet boundary
condition, the outer boundary, the inner walls and the
obstacles were assigned with high temperature values,
whereas the goal point was given the lowest. The
temperature value of all other points was set to zero
while no initial value was assigned to the starting
pont.

After the preparations were all set, the computational
process begins, utilizing a PC runmng at 2.50 GHz speed
with 8 GB of RAM. The computation process started and
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the temperature values at all points in the environment
was calculated, the process continued on until stopping
condition was met where when there were no more
changes mn temperature values and the difference of

Table 1: Performance of the considered methods in terms of number of

harmonic potential values between iterations k and k+1
were small enough that 13 around 1.0-10. When the
stopping conditions were met, the loop of computation
would then be terminated. The stopping conditions

Table 2: Performance of the considered methods in terms of CPU time (sec)

iteration N*N
N=N
Methods 300300 600%600 900%900
Methods 300300 600x600 900%900 Case 1
Case 1 FSSOR 8.13 227.95 1134.25
FSSOR 1728 8117 17831 FSAOR 8.6l 230.17 1148.87
FSAOR 1591 7529 16594 FSMSOR 6.72 240,99 1227.39
FSMSOR 1583 7557 16697 FSMAOR 7.44 247.99 1295.65
FSMAOR 1524 7311 16060 HSSOR 239 81.24 404.15
HSSOR 837 4108 9086 HSAOR 172 73.76 369,91
HSAOR 759 3803 8420 HSMSOR 213 73.03 373.18
HSMSOR 7 3812 8484 HSMAOR 219 81.73 431.96
HSMAOR 708 3671 8190 Case 2
Case 2 FSSOR 10.69 251.72 1270.23
FSSOR 2128 8776 19254 FSAOR 10.27 24824 1226.66
ES&CS%R ;ggg ;gg i;ggi FSMSOR 9.36 260,68 1355.34
FSMAOR 1872 s L6817 FSMAOR 9,30 267.18 1360.64
HSSOR 071 1138 0813 HSSOR 2.95 86.77 445.70
HSAOR a1y 4023 2024 HSAOR 2.75 76.79 403.25
HSMSOR 088 1108 0314 HSMSOR 2.64 80.20 414.86
HSMAOR P 1787 9135 HSMAOR 2.34 86.67 450.83
Case 3
g;ssg; s624 L4614 3004 FSSOR 16.22 427.27 2190.45
FSAOR 3236 13165 0680 FSAOR 18.66 418.45 2073.25
FSMSOR 2102 13814 31104 FSMSOR 14.40 462.03 2361.08
FSMAOR 3023 12305 28037 FSMAOR 15.35 450.60 2420.88
HSSOR 1780 7445 16856 HSSOR 5.16 154.79 783.72
HSAOR 1568 681 15149 HSAOR 4.80 137.18 721.94
HSMSOR 1650 7006 15912 HSMSOR 4.08 140.88 739.14
HSMAOR 1448 6271 14284 HSMAOR 4.66 151.04 803.10
Case 4 Cage 4
FSSOR 2507 9868 21654 FSSOR 11.02 281.85 1441.47
FSAOR 2288 9025 10840 FSAOR 12.52 281.78 1423.54
FSMSOR 2305 adll 20667 FSMSOR 9.78 309.74 1576.44
FSMAOR 2169 3623 18940 FSMAQOR 9.83 309.98 1581.29
HSSOR. 1212 5000 11036 HSSOR 3.58 102.16 510.22
HSAOR 1097 4555 10008 HSAOR 3.08 92.44 471.17
HSMSOR 1155 4769 10526 HSMSOR 3.28 94,51 482.17
HSMAOR 1028 4351 0643 HSMAOR 3.27 100.31 533.66
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Fig. 1: Continue
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Fig. 3: The generated paths from several different start and goal positions for various environment: a) Case 1, b) Case

2: ¢) Case 3 and d) Case 4

regarding the small difference of harmonic potential
values are very important as to prevent a condition known
as ‘saddle pomnt’ from occurring where flat area could
occur in the solution that could fail the robot path
line generation. The results were shown, where Table 1
shows the performance of the considered methods in
terms of number of iteration and Table 2 shows the
performance of the considered methods in terms of CPU
time (sec).

As seen from results obtained, it was found out that
the HSMAOR iterative method allow better performance.
After succeeding in obtaimning the potential values present
in the environment, the path of the navigating robot
can be constructed. It follows the principle of heat
distribution using the steepest descent method, the
algonithms will follow the descent m temperature flowing
to the sink which in this case the goal point, thus, creating
path line for navigation. Figure 3 shows the path line
generated through HSMAOR with different starting pomt
and goal pomt which follows the temperature distribution
profile obtained through mumerical computation. The path
line generated had successfully avoided any obstacles
while navigating from the start point (green dot/square
dot) to the goal point (red dot/circle dot). It also goes on
to show that path was able to be generated regardless of
where the starting point and goal point was set to be.

CONCLUSION

The results of performance obtained in this study
concludes that by numerically solving the Laplace’s
Eq. 1, the path plamming problem’s solution may not seem

too large of an issue. By utilizing the current available
technologies and new-found numerical techmques, the
idea of having a high performance self-navigating robot
may not seem too far fetch of an idea at all. Tn this study,
1t was proven that the HSMAOR iterative method 1s more
efficient in solving path planning problem, compared to
traditional methods that is SOR and AOR methods. The
increase in number of obstacles in the environment the
robot have to go through also does not affect the
navigation performance, mn fact the computation became
more faster due to the fact that areas occupied by
obstacles are ignored during computation. In future
worlks, other than the concept of half-sweep iteration
method, the quarter-sweep (Dahalan et al., 2016, 2017)
iteration method can also be considered as another
attempt to  further speed up  computational
efficiency.
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