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Asymptotic Solution for a Temperature Problem with the Fluid of Poiseuille into
the Navier-Stokes Equations Applying the Boundary Layer Method
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Abstract: In this study, we study the variation of temperature in a fluid with uniform velocity between two
parallel planes located at a constant distance that contains certain boundary layer. We study the region outside
of boundary layer considering it in one dimension. After this, we study the inner of the boundary layer using
certain transformation and a method called combination of variables and it arises in the main term of the
expansion, after this we apply the boundary conditions to find the approximate solution of the temperature.

Key words: Boundary layer, inner expansion, outer expansion, Prandt]’s matching condition, parallel planes,

solution
INTRODUCTION ar ar 1({eé*r é'r 1
un—+ty—-— —+— ( )
_ ax oy pelax’ &
In physics the problem of the transfer of energy here:
between two bodies has resulted in many lines of research w e_re.
around the world. In this study, we study the temperature u = Ut
of a fluid near a solid wall where the temperature * =V, o _
shall be obtained from a partial differential equation  Uo = The characteristic velocity

which will be resolved by the method of the matched
asymptotic expansions with some boundary conditions.
By Diaz-Salgado et al. (2014), it was treated the fluid of
Coutte and the boundary layer. By Bush (1992), we can
encounter the boundary layer method. By Murray (1984),
we can find the background of asymptotic analysis. By
Avyala-Hernandez and Hijar (2016), they saw the method
multiparticle collision dynamics 1s reliable to simulate
cylindrical Poiseuille flow for a wide range of system sizes,
applied pressure gradients and viscosities and densities
of the simulated fluids. We studied the similarity of the
partial differential equation by Strauss (2007). By Ma and
Wang (2009), they derive a rigorous characterization
of the boundary-layer and interior separations in the
Taylor-Couette-Poiseuille flow. By McKernan (2006), they
have that from the Navier-Stokes and continuity
equations, a spatial-state spectral model of Poiseuille flow
with transpiration action of the wall. By McKernan et al.
(2006), a method for the incorporation of wall transpiration
m a Poiseuille flow model n a linearized plane was
presented.

MATERIALS AND METHODS

Preliminaries: In this study, we present some preliminary
data that are used throughout the document. The
temperature field can be obtained for the next equation:

Consider fluid flow inside two parallel walls of length
L. and the walls are separated by a distance H and the
temperatures are held constant T = T, Suppose a fluid
flows between the two walls with a velocity flow
profile U= 1.5Uy(2-y) and V = 0. Replace values of uand
*, respectively, in Eq. 1. We obtain that:

U
u=—=15y(2-

U, y(2-y)
v:lzo

UU
Lsy(2-y)eT _ 1(o°T o'T

ox Pe| ox’ oy

The boundary conditions for the problem are:

T(0,y)=T, O<y<h
T(x,0)=T, 0<x<l
T(x,h)=T, 0<x<l

Here, T, is the fluid inlet temperature which is a constant
value and we suppose that T;>T,,. Temperature profile at
the exit 1s T:
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T(L y)=T, O<y<h

RESULTS AND DISCUSSION

Technical development
Theorem 3.1: The composite one-term approximation
[Tg"mpj of the partial differential equation:

L5y(2y)oT _1(&T &T @
&x  Pelox’ &’

With the following boundary conditions:

T(0,y)=T, 0<y<h
T(x.0)=T, 0=<x<l
T(x.h)=T, 0<x<l
1s:
(1x)y

T, =T,H(T,-T,))e ° +

B 3
(Tw ;[‘0)1—*{1: YJ+
F[J 37 9ex
3
r[ 1 ] 37 9ex

3
Proof: For finding T,™™, we must have T,”, T, and T,™**
because T, is formed as follows:

Ty = T2+ (x = 1 boundary layer)-
Tsnamh +T, (y = 0 boundary layer) _Ténamh N
Ty (y = h boundary layer }-T,"

Replacing the small parameter 1/Pe by * into Eq. 2, we
obtain:

1.5y(2:y)eT _g[aZT+aZT] 3)

o E o

We analyze the boundary layer in one dimension:

1.5y(2+)aT 2T
y(y)_s[z] O<x<]
ax ax

T(0)=T, and T(1)=T,

from this problem, we have the following general solution:

where, A and B are constants and by the initial
conditions, we have:
15y(2)

A+B=T,and A+Be * =T

W

and solving this system, we obtain:

_L3y(2-y)
T,-T,e °
A= _L3y(2+)
1l =
_L5y(2-y)
e ° (T,-T,)
B= _L3y[2-y)
1l =
and replacing A and B:
71.5y[2-y) 7(1-x)l.5y(2-y)
T,-T,e ° +HT,-Te °
I= 71.5y[2-y)
1 =
as e/ es () we obtain:
(1=)1.5y(2y)

o e

T=T,+(T,-T,)e =+

by analyzing one-dimensional case, O(+) is the boundary
layer thickness occurs at x = 1, we now return to the
two-dimensional problem. The walls y = 0 and y = h will
have a parabolic profile boundary layer with thickness
0(3vk) and the temperature in the outer region is the
same as is the one-dimensional case namely T, The
outer expansion is:

T (x,y,e)=T;" (x. y)+
sTl"m(x, y)JrSZTZ"“t (x, y)+, s

And replacing in Eq. 3, we obtain:

N L5y(2y)(0T" (x. y))
: ox

o T )

T (%, y) N T (% y)
6}(2 aYZ
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: 1.5y (2-y (015" (x, v))

2
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aZTlDu( (X, y)+ a}rluul (X, y)
ax’ 5y2
0 (="} 1.5y (2-y )(0T (x. ¥)) _
ox
T (x, y)+ aT™ (x,y)
ax’ 5y2

for n* 1. And T™(x, y) = g(y) where, g is a function that
satisfies:

Toout (X, y) — To

It is only necessary to consider the boundary layer at
v = 0, the ¥ = h boundary layer will be a reflection of it.
Suppose we have the transformation of the form s = y/e*.
Replacing in Eq. 3, we obtain that:

1 &°T
g7 g

6 3 ,,00T 1 27T
—8-—€8 |—=—7——
5°5 ax  efox

The left-hand side of equation is O(1) and the
principle of least degeneracy requires that p = 1/3, then,
the one-term inner expansion T"(x, s) holds that:

68T, _ 0T (4
3 & o

with T® (s = 0) = T,. We will find the general solution of
this partial differential equation by combination of
variables (Strauss, 2007). Assume:

T (% y)=TH(n)
where:
s

8(x)

and * (x) function that will be determined. Now, we obtain
the derivatives with respect to x and s:

T]:

oty . oleim)) - magnd(x)
ax " "san ox
and:
aTr 1 &

' e

Substituting these results in Eq. 4 leads the following
differential Eq. 5:

RESTR

We suppose that:
§°(x)8'(x)=C (6)

where, C is an arbitrary constant. We set C = 5/3, then, we
write Eq. 5 as:

¢!!+2n2¢| =0 (7

The general solution of Eq. 7 can be written as:
¢(n) = a'1+a'21—‘ l 27“3 ®)
33
where, a, and a, are constants and:
1 21 w -2
F{E,T} = .[?t Jexp(-t)dt

The solution of Eq. 6 with imtial condition * = 0 1s:

Then:

From Egq. 8, we obtain:

h(x,5)= a1+a21"{l, 2 ]

3'15%
Therefore:
1
3
T =7 | Llta,r| 22 (9)
3 15x%

with T," (s = 0) =T, We can check that it is a solution for
Eq. 4. Therefore, the boundary conditions are:

T, (x,s=0)=T, for x>0
Ty (x,8 > o0)=T,_-a, F[;} for x>0

Ty (x = 0,8)=T_-a,l (;] for s=0

And the Prandt]’s matching condition is:

ImT" (x,5)=LIm T, (x,y)

500 y—0

1
Tw—azl"[3j: T,
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so that:
TW_TU
a, = 1
()
3
Now, T 1s:
T -T 1 2y
T =T+ 0T =, ==
0 (X,Y) 0 1—*{1] [3:15@(} (10)
3

T,™** is T,. And thus, we can write the composite
one-term approxXimation as:

(1 rx)y

T =T, +(T,-T,)e = +
(TW-TD)r(l, 2y3 J+(TW_TD)F[1, z(h_y)j]
) 2l

3 3

3 15sx
Now, we show a program for a numerical solution to
the heat equation:

¢« clearall

« cle
«+ EPS=01
+ N=9
+ M=9
¢« dx=1IMN
¢« dy=1/M:
co- Z*EPS*[ ! 2+12}
(dx)" (dy)
_ EPS
(dy)’
« (CS=CN
CF = EPS _0 5
(dx) dx
o EPS 05
(dx)' dx
+  forj=2:M-1
« T(A,p=1
+ end
¢+ fori=1:N
« T 1=0
« end
+  forj=2:M-1
.+ TN j)=0
+ end
¢+ fori=1:N
« TALM)=0

« end
¢ 1=2:M-1
+ 1=2:N-1

+  foriter = 1:6:

CN*T(i, j+1)+CS*T (i, j-1)+
CE*T(i+1. j)+CW*T(i-L j)
CcoO

T(Lj)=

+ end
*  contourf(T)

CONCLUSION

When analyzing the data of the temperature problem,
a great practical importance is the speed of heat transfer
on the surface of the walls. When applying the proposed
method with which we develop the problem, the
approximations are consistent with the phenomenon of
temperature and its transfer.

This result is a very good approximation, since, the
solution can be expressed as an incomplete gamma
function when using Asymptotic methods being more
specific boundary layer.
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