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Abstract: In this study, we present a new method of calculating the reactivity using the inverse pomt kinetic
equation. We discretize the history of the neutron population density with the integration method known as
Simpson’s 3/8. We resolve it numerically with the sum of a convolution. For this study we develop diverse

numerical experiments, in which we consider different expressions for the neutron population density and

different time steps. When we compare the results acquired with some methods reported in the literature, we
find that the proposed method gives correct results and therefore can be used to calculate reactivity correctly.
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INTRODUCTION

Nuclear fission happens inside the core of a nuclear
reactor. This fission process 1s based on the division of
heavy atoms, like 2°U and 7P mto two lighter atoms called
“product of fision”. Several neutrons can be produced
after the fission, freeing up to 200 MeV (Stacey, 2018).

One of the most important parameters, that
guarantees the safe operation of a nuclear reactor is the
reactivity. Reactivity is obtained from the inverse point
kinetic equation. This equation is an integral-differential
equation, that contains the history of the neutron
population density in the mtegral side. The differential
side 18 related with the period of the reactor.

Monitoring of the reactivity inside a nuclear reactor
guarantees safety and operability of the reactor. By
moving the control rods mside the reactor, the density
flux in the neutron population produced in the fission
events can be controlled (Lamarsh, 2002).

There are different methods in the literature that give
solutions to the inverse pomt kinetic equation to calculate
reactivity (Shimazu et al., 1987, Binney and Bakir, 1989,
Ansari, 1991, Hoogenboom and Sluijs, 1988; Tamura,
2003). There is also, a reported work that requires the
history of the density in the neutron population, known
as the Fimite Impulse Response (FIR) filter (Diaz ef al,
2008). Another method uses the Lagrange polynomial in
order to disapear the history of the density of the neutron

population (Malmir and Vosoughi, 2013). Another very
precise method lknown as the Hamming method was
presented by Diaz ef al. (2012). This method discretizes
the history.

Due to the importance of knowing the value of the
reactivity, we propose solving the inverse point kinetic
equation using the integration Simpsen’s 3/8 method
(Mathews and Fink, 2004).

MATERIALS AND METHODS
Theoretical considerations: Inside a nuclear reactor,

reactivity can be calculated using the inverse point kinetic
equation (Stacey, 201 8):

dp = LI
p(t)—6+%%—$ B
i= — g (t-t ' v
f e p(1)at
Where: (1)
. = The reactivity
P (t) = The density of the neutron population
. = The prompt neutron generation time
+. = The decay constant of the ith group of delayed
neutrons precursors
*. = The effective fraction of the ith group of delayed
neutrons
. = The total effective fraction of delayed neutrons
P, = The intial population of neutrons
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Assuming that P (t) is known, the problem is reduced
to the mtegral contamned m Eq. 1, known as the history of
the density of the neutron population. We give solution
to Eq 1, solving the history using the third order
Newton-Cortes numerical integration method, also known
as the Simpson’s 3/8 method.

Simpson’s 3/8 method: The Simpson’s 3/8 method
belongs to the family of Newton-Cortes formulas which
calculates the area under the curve of a third degree
polynomial by interpolating the curve in four points.

In order to show that the Simpson’s 3/8 method can
be applied to solve the inverse pomt kinetic equation, we
develop several numerical experiments, in which we
calculate the value of the reactivity over an mterval of
time for different functions of the density of the neutron
population such as polynomial, exponential, sinusoidal
and hyperbolic. In order to solve numerically Eq. 1,
we can rewrite it as:

(1) S
A dP(t 1 &
p(tn):B+ P(t ) dt - P(t )ZA‘H& At‘l
n n/ji=1 J'D"e‘?a(fn‘fk)p(tk)dtk
where: (2)
t,=(t=0)
t=t, =t,+ndt,;n=1,2,...n__ (3)

t'EtkEtDJrkdtk; k:L 2,...,km

ax

With the notation defined in Eq. 3, we calculate the
derivative mumerically, given Eq. 2, using the form:

dp(t) P(t,+At,)-P(t,) @

dt At

n

The history of the density of the neutron population
1s given by:
H(t, )= [ e M6 Ip (e (5)

il

In order to solve Eq. 5 we use a Lagrange
mterpolating polynomial that 1s aproximated integrated the
following way:

o{t,) =™ %p(1, ) ~ Pal, (t,) (6)

where, Pol, () is a polynomial of degree m that
interpolates the function e« (t,) in m+l points. This
polynomial 15 of the Lagrange form and a solution 1s
already known (Burden et al., 2016):

Pol_ (t, )= i(tp)d)]-'m,p (t )
(7

Using Eq. 7 and integrating this polynomial we build:

ot -Sa [ i

gq=10
q=p

From Eq. 3, we obtain an expresion for

ty =ty +kAt t, =t +qAt, , therefore, we can get the
following expresion:

t,—t, =t, + kAt~ (t, +gat ) =(k-q)at, 9

Using the same reasoning we find a way to re-write
the denominator in Eq. 8:

t,—t, =(p-q)At, (10)
Substituting q = k-1 in Eq. 9, we find that At, = At Ak .

This result, along with Eq. 9 and 10 allows to rewrite Eq.
8 into the following form:

t m m ™ (k-
_[tn ¢(tk)Atk:Z_‘a¢(tp)AtkL ] ((IJ%AK (11)

Taking m = 3 in Eq. 11 and expanding the right hand
side of Eq. 11, we obtain:

. P

RN e e e
om0
o
R

Solving the mtegrals in Eq. 12 1t 1s possible to
obtam:
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i ol )At—Z¢ )mm -

(P q) (13)

Tolt)+30(t)+30(1.) + o{.) ]t

The right hand side of Eq. 13, happens to be the
Simpson’s 3/8 rule (Mathews and Fink, 2004). This rule 1s
used to find the area under the curve for a function
defined between t, and t;, however, the function * (t,) is
discretized m k parts withk=0,1,2, 3, .,
mutiple of 3. Therefore, we can write:

n. Where,nisa

_[tu o{t, )AL, _j (t, At +_|' AL+,

(14)
T
L”q;(tk /_\.tk—zk J o(t)ar,
Using Eq. 13 to solve Eq. 14, we get:
j o(t )Atk,zk IJ‘;: o(t, )AL, =
(15)

[‘b(tak—a )* 3¢'(t3k72 ) + 3¢(t3k71 ) + ¢'(t3k )J At,

=
[

[ 5
oo | W

Equation 15 1s known as the composite Simpson’s 3/8
rule. Now we have ¢(t,)=h(t P(t,) with h(t y=e™&™
We can rewrite the history of the neutron population
density using the following form:

n (16)
E/_\.t 23: h(takfa)P( - 3)+3h( T z) (tak—2)+
8 3h(ty Pt )+ Bty )P(ty,)
Equation 16 can be simplified to:
ty
H(tk):j h(t, )P(t, At, =
(17)

2 35Nt P

where, C is a vector that contains the integration of the
Lagrange coefficients, such that C = [1, 3, 3, 1] for
Simpson’s 3/8 as was shown onEq. 13. Using Eq. 3and 17
we can rewrite Eq. 2 as:

3

m 3
B I AT SO ()
() -1 7\' —1z=0
(18)
We will use Eq. 18 in the following section to
study the efectivity of our method to calculate the
reactivity for different densities of the
population.

neutron

RESULTS AND DISCUSSION

In this study we show numerical experiments
simulating the behaviour of a nuclear reactor for different
densitties of the neutron population. Equation 18
represents the method proposed using the Simpson’s 3/8
rule. We obtain the reference method solving Eq. 1
analitically. The densities of the neutron population have
histories with analitical solutions given i1 Table 1. These
solutions allow having reference values to compare with
the method at hand.

The parameters used m the nmumerical experiments are
presented in Table 2. We use eight different neutron
densities and calculate the reactivity with time steps of
0.5, 0.1, 0.05 and 0.01 sec.

Table 1:  Analitical solutions of the history of the neutron population
density in the inverse kinetic equation for some shapes of the
neutron population density

b
B(t) Le Pl
e ettt _ g
O]
a+ot, %(e“ - 1)+%[e“i' (1t-1)+1]
bt}
a+ bl }u(e 71) {“[M(M 2y+2]-2}
a+ b %(e“ -1) +%{el" [2.t(at (Wt -3)+6)-6 ]+ 6}

a + bsin (mtk) LYY 1) b

7L,( +kf+(yf{ [ksm mt

— WCos (ot ] (x)}

a +beos(et, )

(¢4 1) g st Lomin () hos(on) )

e

a + beinh (et )

%(e“" ~1)+ P Jt: -{e* [ A, zinh (wt) - wcosh (et) |+ o}
1 1 «

a + beosh (et ) (el" _ 1) N
7

i 1

?-"gn

b = {e“ﬁ [ s cosh (et ) — esinh (et ) ]+ 1)}
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Table 2: Parameters for the numerical experiments for all six precursor

Table 5: Greatest diferences (in pcem) for the third experiment with

groups differentwand a neutron population density pyyy_ o™
Parameters Values dt=105 dt=10.1 dt =0.05 dt=0.01
LN 0.000266 * [sec] t[sec]  [sec] [sec] [sec] [sec]
3 0.001491 0.00243 100  1.9004 53700107  3.4393x10  5.5468x107
*s 0.001316 001046 100 1.9113 5.4078x10°  3.4637x10%  5.3864x107
'y 0.002842 0.02817 100 1.935% 5.4918<107  3.5182x10%  5.6745x107
s 0.000896 0.12353 100  2.0706 5.9628<107  3.8236x10%  6.1692x107
* 0.000182 1.00847 100 3.7235 1.2121%10%  7.8440x10%  1.2695<10%
1 0.012700 2.345 100 7.5608 297204102 1.9537x10%  3.1790x10%
‘2 0.031700 11.6442 60  3.4118 6.2469<101  5.0956x107  9.0281x10°
E 0115000 g500350 10  5.1520<10' 5.9695 1.3177 5.7269x10°
. 0.311000
. 1.400000
v 3.870000 Table 6: Comparison with other methods with w = 0.12353 sec’!, time of

a=1b=1/10+ =000002

Table 3:  Greatest diferences (in perm) for the first numerical experiment with
w=0.12353 sec’ and a simulation time of t = 100 sec

Pty dt=0.5[sec] dt=0.1]sec] dt=0.05[sec] dt=0.01[sec]
et 2.0706 5.9628x10° 3.8236%10* 6.1692x107
ate f, 2.0145 5.7905x10°% 3.7123x10" 5.9893x10¢7
a+ht? 2.7413 8.4593x107 5.4519=10* 8.8117=107
a+bt’y 3.8407 1.2645%10° 8.1930x10* 1.3274x10°
atbsin(s t,) 1.9531 5.5527=10° 3.5576x10* 5.7384x107
atbeos(* 1) 1.9520  5.5527x10°  3.5576x10%  5.7384x107
a+hsinh(+ t,) 2.0706 5.9627x107 3.8236x10* 6.1691=107
a+heosh(® t) 2.0706 5.9627x10° 3.8236x10" 6.1691x107

Table4: Greatest diferences (in pcm) for the second numerical experiment
with w=1.008477 sec’! and a simulation time of t =100 sec

Pt dt=0.5[sec] dt=0.1]sec] dt=0.05[sec] dt=0.01[sec]
et 3.7235 1.2121x10° 7.8440>10* 1.2695%10°¢
ate f, 2.3967 7.4770x10° 4.8177x104 7.7852x107
a+ht?, 2.7413 8.4593x107 5.4519=10* 8.8117=107
a+ht’y 3.8407 1.2645%107 8.1930x10* 1.3274%10°¢
atbsin(s t) 2.3934 7.1079x10° 4.5721x104 7.3814x107
atbcos(s t;) 2.3938 7.1070x10° 4.5705%104 7.3813x107
a+hsinh(+ t,) 3.7235 1.2121%102 7.8440=104 1.2695=10¢
a+hcosh(® t) 3.7235 1.2121=102 7.8440=10* 1.2695x10°¢

Table 3 and 4 have information about the maximum
differences between the results in the experiments,
obtained by Eq. 18 and the analitical solution given
by Eq. 2 with the registered solutions on Table 1. For the
first experiment we used w = 0.123353 sec™ and for the sec
we used w = 1.00847 sec”. The results show that the
method converges to the solution for small time steps.
The error obtained for each time step does not show any
significative dependency in the neutron population
density. Also can be seen for a neutron population
density with no dependency on w such asP(t,)=1+bt]
andP(t,)=1+ by} that the results show no changes in the
maximum difference.

On Table 5 we register the maximun difference for the
third numerical experiment. For this experiment we use an
exponential function to simulate the neutron population
density and some of the w values frecuently used in the
literature. On Table 5 we observe that the value on the
maximum diference on the method proposed does not

simulation t =100 sec and p()_ "

dt[sec] FIR Trapezoidal rule Hammnig Simpson 3/8
0.5 2.4400x 107 7.0562x10! 4.727x10' 5.1520%10!
0.1 8.9341x10! 9.7611 513 5.9695
0.05 2.3719 3.0888 1.00 1.3177
0.01 1.5390x10" 1.3737<107 2.33x10° 5.7269x107

Table 7: Comparison with other methods with w = 52.80352 sec’!, time of
simulation t = 100 sec and p(j)=¢™

dt [sec] FIR Trapezoidal mle  5-Points Lagrange  Simpson 3/8
0.5 8.6509x10! 1.0341x10* 2.78%102 2.0706

0.1 1.5662x10" 4.2872x10" 4,501 5.9628x10°7
0.05 32054 1.0731=101 1.24x10°3 3.8236x10
0.01  1.5277 4.2940=10! 1.24x10°3 6.1692x107

show dependence on the value of w when this parameter
is smaller than 1. When w is =1, we reduced the time step
to compensate the loss on precision.

Next, we compare the mtegration method using
Simpon’s 3/8 rule with other methods reported in the
literature. On Table 6 we compare the method we show in
this document with the FIR filter method, the trapezoidal
rule and the Hamming method, we clearly observe that the
method we choose 1s superior at converging to the
solution compared to: FIR filter and the trapezoidal rule.
With respect to the Hamming method, ours mantains the
same precision. On Table 7, we include the comparison
with the 5 points lagrange method presented on
Malmir and Vosoughi (2013). That method consists on
derivatng a forth degree polynomial while the
Simpson’s 3/8 method consists on integrating a third
degreepolynomial which results on better precision (for
small time steps), although, both methods are based on
the Lagrange interpolation polynomial.

On Fig. 1 and 2, we observe that the behaviour in the
third degree polynomial and the convergency of the
method to the solution Simpson’s 3/8 1s a method that
aproximates to the solution each three points. The
oscilations observed on Fig. 1 and 2 are due to the values
that that takes the aproximation when it 1s evaluated on
a point that is not a multiple of 3. Taking only the values
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Fig. 1: Oscilation in the reactivity for the neutron  Fig. 4: Calculation of the reactivity for the neutron

population density p (t) = at+b sin (wty) with population density p (t) = atb sin (wt,) with
w =0.12353 sec” and dt = 0.5 sec w =0.12353 sec” and dt = 0.03 sec
1004 350 -
50+ 300 ~4
0_
= 250 4
2 0 T -
= g 200
= .100- > 150
§ = 100 D (n)- Simpson 378 metho!
X 1504 Eg ——D (n)- Analytical method 1
. D (n)- Simpson 3/8 method X 504
-2001 —D (3n-3)- Simpson 3/8 method
- ——D (3n-3)- Analytical method 0
o 20 ) 60 80 100 50 . . . .
Time [seq] 0 20 40 60 80 100
Time [sec]
Fig. 2: Oscilation in the reactivity for the neutron — Fig. 5: Oscilation in the reactivity for the neutron
population density p (t) = at+b sin (wt,) with population density p (t,) = atb cosh (wt,) with
w = 0.12353 sec” and dt = 0.05 sec w =0.12353 sec" and dt = 0.1 sec
100 3004
50 250
0 = 2001
Q
€ je _
g -50 > 150 —— D (n)- Simpson 3/8 method
g = —— D (n)- Analytical method
5 1007 § 1001
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Fig. 3:Calculation of the reactivity for the neutron  Fig. 6 Oscilation m the reactivity for the neutron
population density p (t) = at+b sin (wt,) with population density p (t,) = atb cosh (wt,) with
w = 0.12353 sec” and dt = 0.5 sec w = 0.12353 sec” and dt = 0.01 sec

that correspond to 3n withn =0, 1, 2, 3, ..., n,. we obtain of the method (Fig. 5 and 6). It is worth noting that the
Fig. 3 and 4 which coresponds to the natural behaviowr — curves * (n) for Simpsons 3/8 on Fig. 1 and 2 are only
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Fig. 7: Emror in the Simpson’s 3/8 method (in pem) for the
neutron population density p (t,) = a+b sin (wt,):
with w = 1.00847 sec'and dt = 0.1 sec

8.0x10"* 1
" ~*— Simpson 3/8 method
6.0x10" dt=0.05
- P (t) = a+b ()
g
= 4.0x10*
e
i
2.0x10* 4
0 T T T T
0 20 40 60 80 100

Time [sec]

Fig. 8: Emror in the Simpson’s 3/8 method (in pem) for the
neutron population density: p (t,) = atbt’ with
dt=0.05 sec

shown to examing the behaviour of the third degree
polynomial which is integrated and then wsed to
approximate the history of the neutron population
density. The oscilations generated by the polynomial
are reduced when the the time steps are smaller. On
Fig. 5 and 6 we present the results of the other numerical
experiment which show the change on the oscilations
when we change the time steps for a neutron population
density of the form P (t) = atb cosh (w t,). Figure 5
corresponds to the oscilations for a time step of 0.1 sec
and in Fig. & the oscilations are due to a time step
of 0.01 sec.

In this research we use a maximum time of t = 100 sec
for most of the numerical experiments shown. Other
methods run the simulation for times of t =1000 sec and
evennt = 10000 sec. This decision 1s justified because for
numerical experiments realized after a time t, the error of

the aproximation in the metod becomes constant or it
oscilates around a constant value because the reactivity
has the same behaviour. To show this tendency, we
include Fig. 7 and 8.

CONCLUSION

We presented a new numerical way to calculate
reactivity using a third degree Lagrange Interpolation
polynomial. We analytically showed how our method 1s
related to the Simpson’s 3/8 method. We showed a way to
solve the history of the neutron population density given
different functional shapes for it and also using different
time steps. Although, this method is very simple in its
numerical implementation, it is a powerfull tool given the
precision we achieved. This is reinforced by the maximum
errors shown in the numerical experiments. Due to its
simplicity and precision, it is recommended this method to
be mmplemented on digital reactivity meter.
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