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Abstract: Thermal processes in electronic systems are stochastic and nonlinear. The stochasticity of thermal
processes 1n electronic systems can be caused by both external stochastic environmental factors and internal
stochastic factors of the electronic systems. Methods existing in the literature allow modeling thermal processes
caused only by external stochastic factors. At the same time, there are no methods that would have the ability
to simulate thermal processes, taking into account both nonlinearities and stochasticities of external and internal
factors. In this study 1s developed a method that allows us to simulate stationary stochastic thermal processes
in electronic systems taking into account the stochasticity of both external and internal factors and nonlinearity
too. The method is based on the concept of a pseudoinverse matrix as well as on the decomposition of a
stochastic temperature-dependent matrix of thermal conductivities mto a product of two matrices. One of this
matrix depends only on temperature and the other matrix depends only on stochastic factors. The application
of the proposed method to the design of real electronic systems has shown its adequacy and efficiency
sufficient for engineering practice.
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INTRODUCTION

The development of the multipurpose Electronic
Systems (E3) 1s based on the mathematical and computer
modelling of the processes of various physical nature.
Moreover, the thermal processes which occur in the
operating ES are among the key factors that limit the
required operating and reliability parameters of the
said ES. Valid and highly-effective mathematical and
computer-aided methods for thermal processes modeling
are required for the ES to be competitive. Moreover, to
meet increasingly strict requirements applicable to
modeling validity, it is necessary to develop methods and
techniques which are able to ensure a possibility to
simulate both nonlinear and stochastic thermal processes
occurring in the ES. Mathematical and computer modelling
of the thermal processes in the ES exclusively of nonlinear
and stochastic factors that define the thermal process
results in the development of inappropriate electronic
components and ES in terms of their thermal
characteristics and consequently in the design errors, the
operating parameters that are beyond of the tolerance
range, the loss of performance, the reduced reliability and
finally, the development of the noncompetitive ES.

The nonlinear character of the thermal processes in
the ES is due to the nonlinear relationship between heat
exchange and temperature (convective heat flow and

emission, thermal conductivity of the materials and
environment) (Madera, 2005; Ellison, 2010; Spalding and
Taborek, 1983) and due to strong dependency between
the power consumption of the electronic compenents of
the ES (Integrated Circuits (IC), Electromic Components
(EC)) on temperature (Ellison, 2010; Madera, 2018).

The stochastic behavior of the thermal processes in
the ES depends on two groups of factors, 1.e., the mternal,
system-specific factors and the external factors which
occur only when the ES 1s operating and interacting with
the environment (Madera and Kandalov, 2016; Chiba,
2012, Wang et al., 2015).

The stochastic character of the internal factors occurs
due to the statistical technical dispersion of the thermal
and electrical parameters of the IC and EC during their
manufacturing assembling and installation in the ES.
Those factors mclude the size and the location of the
elements m the ES, the thermal resistance of the cases, the
value of installation clearances between the elements,
contacting inside the ES between the printed board and
the installed IC, etc. The external stochastic factors
depend, firstly, on the stochastic values of IC and EC
power consumption and secondly, on the stochastic
characteristics of the environment, namely the stochastic
values of the ambient temperature, the air flow rate, the
temperature of a cooling liquid at the input of the ES, the
humidity and the pressure in the environment.
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The stochastic factors, both mternal and external,
defining the thermal processes in the ES are of
mterval-stochastic character (Madera and Kandalov,
2016), meaning that a stochastic factor under the
consideration is a random variable, obeying a certain
probability law within an interval of its values. Tt is often
assumed m the engineering practice of the thermal design
of the ES that the interval-stochastic factors are
distributed within the interval of their values under the
uniform law. The interval-stochastic character defining
the thermal processes m the ES results in the
mterval-stochastic  character of the temperature
distributions in the ES. The values of the possible limits
of the intervals for the changing stochastic factors
depend both on the adopted techmology for ES
manufacturing and installation and on the degree of final
testing and screening of the 1C and the EC used in the ES.
The interval-stochastic character of the factors that define
the thermal processes 1s unavoidable and can be
found whatever processes are applied in the course of
production assembly or installation of the electronic or
design elements in the ES.

The available literature examines the methods that
consider either the nonlinearity of the thermal processes
or their interval-stochastic character which caused solely
by the external stochastic factors (Madera, 2018;
Chantasiriwan, 2006, Saleh ef ai., 2007; Srivastava, 2005,
Stefanou, 2009; Chiba, 2012). At the same time, only a few
papers examine the methods of modeling of the
interval-stochastic and nonlinear thermal processes
affected both by the external and internal stochastic
factors (Madera and Kandalov, 2016, Adomian, 1983,
Keller and Antonetti, 1979). This is preliminary due to the
fact that the mathematical models for the stochastic
thermal processes which are conditioned by the internal
factors are much more complicated than those models
which consider only external stochastic factors.
Although, the methods suggested in studies by Adomian
(1983), Madera (2005), Madera and Kandalov (2016) and
Rubinstein (2016) which utilize the Stochastic Green’s
Function, the stochastic operator, the stochastic inverse
matrix, the decomposition of the nonlinearities with the
Taylor’s series, the Monte Carlo method, allows for the
examination of the stochastic processes affected by the
external and internal stochastic factors, a part of them is
very time and memory consuming (e.g., the Monte Carlo
method). Though, their application in simple and one-
dimensional systems 1s limited. The other methods have
a small validity range due to their specific features and the
rest provide low accuracy (Chiba, 2012).

Thus study offers a method for mathematical modeling
of the stationary thermal processes in the ES which

involves the nonlinear interval-stochastic character of the
thermal processes affected simultaneously by the internal
and extemal stochastic factors. The method 1s based on
the pseudomnverse matrix (Gantmacher, 2010; Horm and
Johnson, 2013; Penrose, 1955) and the method for
modeling of the interval-stochastic thermal processes with
the interval and statistical measures (Madera and
Kandalov, 2016). The nonlinearities m the original
equations of the mathematical model are sclved using
Taylor’s series expansion with the deduction of the
elements of the first order of smallness. Combined
modeling of the nonlinearities and the stochastic mternal
and external factors is based on the decomposition of the
matrix of the ES thermal conductivities into the product of
two matrices, namely the temperature-dependent matrix
and the matrix with only stochastic elements. The
resulting method is universal and allows for modeling of
the stationary, nonlinear, interval-stochastic thermal
processes 1n the complex ES with accuracy sufficient for
the engineering practice of the thermal design of ES.

MATERIALS AND METHODS

Stochastic nonlinear mathematical model: The thermal
model of the ES represents a system of N isothermal
elements (Madera, 2005; Madera and Kandalov, 2016)
which is presented as a graph, containing N+1 nodes
{(nodes from 1 to N-1 correspond to the ES elements, node
N corresponds to the ES case, node N+1 correspond to
the environment mside the ES), M paths, N-1 mdependent
sources of the heat flows (+ , 1=1, 2, ..., N-1) and two
nodes that simulate the mitially known temperature of the
environment T, and that of the air flow, coming at the ES
input from a premise with T, ambient temperature.

The mathematical model, describing the static
nonlinear and stochastic thermal processes which 1s
presented as the matrix of the stochastic temperatures
T+ )where 1=1, 2, ..., N+I means isothermal elements of
the thermal model, for each + ¢+ (where, ¢ is the simple
events from the sample space * ), appears as follows
(Madera, 2005):

AG(T,0)A T ()= O(T,0 ) +tAG(T,0)T,(0),0 € Q

(1
where, T(* )= (T,(* ), T{* ), ..., Ty,(* )N+ is the vector
of the stochastic unknown temperatures n the nodes of
the thermal model; A(N-+1)xM is the incident matrix of the
thermal mode graph; G (T, * ) = diag(g,(T, * ).g,(T.* ), ...,
gl T, * ))is the diagonal nonlinear stochastic M>M matrix
for the known stochastic temperature-dependent
functions of the path’s thermal conductivity g (T, « ), k =
L2, Mo (Toe )= (T 0 s AT e s walTs * )
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0, 0)'-N+1 is the vector of the known stochastic
temperature-dependent functions of the heat sources (IC
and EC power consumptions) * (T, * ), i=1, 2, ..., N-1;
T.(+)=1(0,0, .., T(+), T(*) is the M-vector of the
known stochastic temperatures T+ ) of the external
environment and the flow fed into the ES with the known
mathematical expectation T, and dispersionDy ;*» is the
space of the simple events ¢ on the probabilistic space
{s, U, P}, U is the »-algebra of the subset » ; P is the
probability per U (Feller, 1968); (*)" is the transposition
operation.

In general, the power of the heatsources ¢ (T, ¢ ),
1=1,2, .., N-1 depends on the temperature T, in the ith
node of the thermal model graph which is explained by the
effect of the thermal feedback m the IC and the EC
(Madera, 2018). Madera (2018), the effect of the thermal
feedback in the ith active element (the IC and the EC) can
be simulated by commecting two new model elements to 1
node of the graph of the thermal model, namely the
thermal conductivity g(T;, ), 1 = 1, 2, ..., M which
temperature dependence matches to that of the power of
the ith active element ¢ (T, * ) and the heat source with
* (*), capacity independent of the temperature. The
introduction to the thermal model graph of the new model
elements, simulating the thermal feedback does not
change the structure of the mathematical model (1) and
the form of the diagonal matrix of the thermal
conductivities G(T, + ).

Equation 1 can be significantly simplified, if the
temperatures n the nodes of the thermal model T;(* ) will
be reckoned from the temperature of the environment
T.(+ ). By denoting the excess of the temperature in the
nodes of the thermal model graph over the temperature on
the environment as ¢ (¢ )= T,(+ »-T(+),1=1,2 ... N+1
(Madera, 2010, Ellison, 2011) and making use the
expression ATe(* ) = ATT(* )-T.(* ), instead of Eq. 1 we
will obtain the equation expressed in terms of temperature
rise vector * (+ ) = T(* }-Ty(s )= (*1(* ) *5(* ), ooy #3i(* D)

AG(8,0)A"8(0)=D(0),0eQ (2)

Let’s consider the structure of the thermal
conductivities gi(*, * ), k=1, 2, .., M in the matrix G(+, + )
of Eq. 2. The thermal conductivities g,(+, *) can be
caused by various types of heat transfer, namely the
thermal convection occurred between the ES elements and
the internal or external ES environment, thermal radiation
m the ES elements and in the elements and the
enviromment as well as by the thermal conduction
between the contacting elements. Tn all cases, the heat
flow T, between i and j elements with « ;and -
temperatures which transfer the heat between themselves

and the environment is described by Newton’s law
(Madera, 2005; Ellison, 2010; Spalding and Taborek,
1983) gpmt-comerd _grendeemsmi (g ) where, g™ ™™ is the thermal
conductivity between two elements or between an
element and the environment occurred as a result of
thermal conduction, convection and radiation. In turn,
the thermal conductivityg™®™™is expressed as
g gy where, o™ 1s the heat-exchange
coefficient between two elements related to thermal
conduction, convection and radiation and S; is the
effective surface area of two elements 1 and j which
exchange the heat between each other or the contact
swiace area of two elements i and j in case of
conduction.

Generally, speaking, the heat-exchange coefficients
related to convection, * ™, radiation * ™ and conduction
+ " depend on the temperature of 1 and j elements are
stochastic in nature and can be expressed as follows: for
natural convection * ™+, *,, ¢ ) = A" (* ).(* =), for
thermal radiation ¢ ™ (+, *;, * ) = A™,(+ V(s "=+ /(s -2 ),
for thermal conduction * (¢ ) = *;(* V/+;(* ) where,
A™™(+ ), A™; are the stochastic variables, n is the index
of power mn the heat exchange law, * (+ ) and +(+ ) are the
stochastic variables, describing the conductivity and the
material thickness in the contact layer between elements
(Madera, 2005; Madera and Kandalov, 2016; Ellison, 2010,
Spalding and Taborek, 1983).

Tt’s also worth considering that the thermal processes
in the IC depend on the IC temperatire and are of
stochastic character. Actually, the thermal resistance of
the IC case, i.e., junction-to-case thermal resistance R;(* )
and the case temperature *.(* ) are stochastic in nature
while the IC power consumption * (¢, * )is stochastic
and temperature-dependent. Therefore, the temperature of
the IC chip +,(+) will also be stochastic and will be
defined by the equation * (=, + ) = g.(+ )(*(* )+ o(* ))
where g(*) = R'.(*) is the stochastic thermal
conductivity of the IC case.

Hence, it follows that the thermal conductivities
g+, *) m the diagonal matrix of the thermal
conductivities G(*, * ) can be normally presented as the
product of two conductivities gi(*, ¢ ) =g, (* ).g..(*(* ),
k=1, 2 .., M, one of which namely the conductivity
g..(*, * ) is solely stochastic while another one g, ,(*(* ))
depends solely on the stochastic temperature * (* ). In this
case, the diagonal matrix of the conductivities G{+, * ) can
be also presented as the product of two diagonal matrices
G+ ) and G.(*(* )} as follows:

G(e, co):GS(c-)).Ge(B(w)),wEQ 3)

where, Gy(*) = diag(g,(*). g.{*) . gul*)) i3
the stochastic diagonal MxM matrix with the stochastic
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temperature-dependent elements, G.(*(*) = diag(g, .
((**), g2.(* ), ..o g L*)) 18 the diagonal M=M matrix
depending only on temperatiwe. The matrix G(e, *)
presented as the product (3) of two matrices G,(* ) and
G.(*(*)) allows deriving the following nonlinear
stochastic matrix Eq. 2 (¢ =+ )

AGS(m)Ge(B(m))ATG(m):(D(m),cer (4)

The solution of (Eq. 4) which is both nonlinear and
stochastic, comes across the insuperable difficulties.
Meanwhile, the matrix AG,(* )G.(*(* AT in the set of
(Eq. 4) has a specific structure. Namely (N+1 )xM matrix of
A 1ncidences of the thermal model graph consists only of
elements 0, 1, -1 whle the matrix of the thermal
conductivities G(+, *+ ) in (Eq. 3) 1s the diagonal matrix and
is the product of the diagonal matrices. As it is shown
below, the structure of (Eq. 4) allows for the application of
the pseudoinverse matrix concept (Gantmacher, 2010;
Hom and Johnson, 2013; Penrose, 1955) to search for the
stochastic solution of equation . The decomposition (3) of
the stochastic matrix G(+, ¢ ) into the product of two
diagonal matrices G+ ) and G.(*(*)) allows for the
separation of the stochastic and temperature-dependent
variables.

Method for defining the statistical measures of the
stochastic temperatures based on the pseudoinverse
matrix concept: As i1s known, any stochastic process 1is
completely described by its probability distribution laws
of all possible orders at any specific time. However, it 1s
impossible to define them for, so, complicated equations.
At the same time, the engineering practice of the thermal
design of the ES does not require the knowledge of
probability distribution laws (Pugachev, 1984; Feller, 1968)
as it is sufficient to be able to find the statistical measures
of the stochastic temperatures, +,(* ),1=1, 2, ..., N+1 with
a degree of accuracy required for practical needs,
namely:

Mathematical expectations 8 =E{@, (w)} where, E{-} is

the expectation operator; dispersions DSX:E{[&(Q})T}

where, E)l(m):el(m)-ﬁi(t) is the centered stochastic
temperature difference with zero expectationE:é(a)}:g

and mean-square deviationo,=,D, ; covariances

K., =E{& ()8, (m)} between the stochastic temperatures *;

=+ (s e, =+ (+)of1andjelements (1,7=1,2,...,N+1) of
the thermal model.

The statistical measures 8, D.,, ».,, K., ., 1,1=1,2, ...,
N+1, completely define the intervals [*g, i, *y, o] for
measuring the real temperature values of the ES elements,

occurring during the operation. The lower * . ; and upper
limits » ;,; of the interval [*,;, * ;] are defined as » ;=
8-+ and *,; = 6- -+, where ¢ is the coefficient
which 13 defined in accordance with the Chebyshev’s
5P {8 () <5, (0}2 11142 inequality (Madera and Kandalov,

2016; Madera, 2017).

To identify the sough statistical measures of the
stochastic temperatures of the ES and their variation
intervals, it 1s necessary to have the equations, describing
the sough statistical measures.

Determination of a stochastic solution of the matrix
stochastic equation using the concept of a pseudoinverse
matrix: The method which 1s developed in this study 1s
based on the pseudomverse matrix concept,
decomposition (3) of the conductivity matrix and the
method of deriving the equations for the statistical
measures developed in studies (Madera and Kandalov,
2016). The pseudoinverse matrix, also known as the
Moore-Perrose generalized mverse matrix (Gantmacher,
2010; Hom and Johnson, 2013; Penrose, 1955) has the
following essence.

If the matrix equation Ax =y contains the square and
non-singular matrix A = {a;}",, then the said matrix has the
inverse matrix A" and the unique solution x = A'y. If the
matrix A is square but singular or A = {a;},., 15 the
rectangular nxm matrix (where n and m 1s the number of
rows and columns), then the matrix A has no mverse
matrix, however, there can be created the only one matrix
A" which is called the pseudoinverse matrix that makes it
possible to find the best approximate solution x"= A'y,
=", %, ., X of the equation Ax = v in terms of the
minimum squared residual norm (Euclidian norm), 1.e.:

2

m
yi_zauxj

j=1

n
. 2 .
m1n|| -AXH = min
infly in ),

i=1

Attained when x = x° while the vector of the best
approximate solution x' has the least length, ie,
x|} = x"x = min where, x"x is the scalar preduct of the
vector x. It’s worth noting that if the matrix A 15 square
and non-singular, then its inverse A" coincides with the
pseudoinverse matrix A" The random rectangular nxm
matrix A of r = min {n, m} rank can be always presented as
the product of two rectangular matrices A = BC , namely
nxrmatrix B and r=<m matrix C, also known as the skeleton
decomposition of the matrix A (Gantmacher, 2010; Hom
and Johnson, 2013). As a result, the pseudoinverse matrix
A" will be described as (Gantmacher, 2010) A" = C'B’
where, C" = (CC")' and B' = (B'B)'B". Moreover, despite
the fact that the skeleton decomposition A = BC does not
explicitly define the terms B and C, the expression A™ =
C"B’ defines the only one pseudoinverse matrix with any
skeleton decompositions.
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Let us use the concept of a pseudoinverse matrix in
order to obtain the equation, defining the statistical
masures of the stochastic temperature vector (* ) using
the method that has been developed by Madera and
Kandalov (2016). Let’s multiply both parts of (Eq. 4) by
the transposed AT incident matrix. We will obtain the
following:

ATAG, (0)G,(8(0))AT8(0)= AT0(0),0cQ ()

The matrix B = ATA is square and singular and has no
inverse matrix. However, its pseudoinverse matrix can be
created and it i3 possible to obtain the best approxiumate
solution of (Eq. 5) as follows:

G, (0)6.(0(0)) A0(0)= B'A®(0), 00 ©

taken in terms of the minimum squared residual norm for
each « *+ . To obtain an explicit expression in order to
define the pseudoinverse matrix B', let’s consider the
square singular matrix B = ATA which is the product of
two rectangular matrices, namely Mx{N-+1) matrix A" and
(N+1)=<M matrix A. As the number of nodes does not
exceed the number of paths in the thermal model graph of
the real ES, then the condition N+1+ M will be always met
for the A mcident matrix, meaning that the rank r of B
matrix meets the relationship r* M and ATA product is the
skeleton decomposition of B matrix. Then, B matrix will
have the only one pseudoinverse B" matrix defined as
follows:

B = AT(}‘L/-\T)'1 (AAT)'I A )

By multiplying the left part of Eq. 6 by the inverse
matrix G (* ), we will obtain:

Go(6(@))A8(@) =G (0)B"ATO(w) &)

where, G'(+ ) = diag(g™, (+ ). g',.(* ) . g (+ )} is the
mverse diagonal matrix stochastic MxM matrix. It’s worth
noting that as the matrix G”(+ ) is diagonal, its elements
can be found in an explicit form as g', (* ) where the
elements g, (¢ ), k=1, 2, ..., M, of the stochastic matrix
G,(+ ) are the known source data. Moreover, the elements
g.(*dand g' (* ), k=1,2, ., M, of the matrices G,(* )
and G'(+ ) as well as the elements * (+ ), 1=1, 2, ..., N+1,
of the stochastic power vector * (+) are statistically
mndependent of each other.

In stochastic matrix (Eq. 8) all nonlinearity is
centralized in the left part and the stochastic property 1is
centralized in the right part which allows considering the
nonlinearity and the stochastic property m Egq. 9
separately and independently of each other.

To obtain the equations with respect to the statistical
measures, let’s linearize the nonlinear matrix G.(* (+ )) in
Eq. 8 by using Taylor’s series expansion method with the
deduction of the elements of the first order of smallness
developed in study (Madera and Kandalov, 201 6; Madera,
2017). As a result, we will obtain the matrix stochastic
equation with respect to the centered temperature
N+1-vector § ()= 6(c)-B (@ 1s the vector of the mathematical

expectations of the temperatures):
G, (B)ATB+V(B)6(w)= G (0)BATD(w), 0 c 2 &)

where, g(m):[g (@), B2 (@), - Brea (m)JTNH is the vector of the
stochastic centered temperatures in the nodes of the
thermal model; 8=(8, 8, ..§,,) N1 is the vector of
the mathematical expectations of the temperatures
n the nodes of the thermal model;
G, (8)=diag (2,4 ().82. (0), .2, (6)) 18 the diagonal MxM
matrix with the elements that depend on the
mathematical  expectations of the temperatures
8 v(8)= (a1, /20,) - Mx(N+1) is the Jacobian matrix,i=1,2, ...,
M, j=1, 2, .., N+l which elements are equal to the partial
derivatives of the heat flows I, with respect to the
temperatures +,, being taken at the values equal to the
mathematical expectations 8.7, are the elements of the M
vector of T = G.(*(* )JAT* (¢ ), equal to the heat flows in
the paths i = 1, 2, ..., M of the thermal model graph
of the ES.

The assessment of the error occurred in the course of
linearization of the heat flows shows the followmng
(Madera and Kandalov, 2016). For the heat flow occurred
as a result of natural convection I*™, between two
elements a and b or the element a and the liquid b with the
temperatures T, and T,, we will have the following
relationship J**,, = ™, S,(T-T)* « T™",0<n* 1 where,
+T = T,-T,. It 18 possible to show that the relative
deviation ; -

centered temperature

o
AT/AT‘ of  the

difference 43 from its mathematical expectation AT satisfies
the inequality ¢ <,f25,/a(n+1) Where, *; is the relative error
occurred as a result of replacement of the convective flow
I, with its approximate value during Taylor’s series
expansion with the elements of the first order of smallness
remained in place. For example, if the relative error of
linearization of the convective heat flow 1s *,* 5%, then
the tolerable relative deviation will make * 80% for natural
convection, obeying 1/8 power law, * 57% in case of 1/4
power law, ** 80% in case of 1/3 power law. In absolute
figures, this means that, for example, under 1/4 power law
and AT = 40°C the tolerable change in the centered
difference of the temperatures will make ¢ T+ 23%°C in
case of convection.
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The assessment of the linearization error for thermal
radiation allows for the following conclusions to be made.
Thermal radiaticn flow I, between two elements a and
b with the temperatures T, and T, 1s described as follows
T o= et g (T-T)e T -T%. If », is the relative
linearization error, then it is possible to demonstrate that

the relative deviationg—

AT /AT‘ of the centered

temperature | .7 with respect to its mathematical

expectation T will meet the condition <5,/ . For example,
in case of the linearization error for the thermal radiation
flow « « 50%0, the tolerable relative deviation * will be 9%.
In other words, if the absolute temperature of the element
is T = 400 K (maximum value for the ES), then, the
tolerable range of a random deviation of the element’s
temperature shall not exceed 36°C in absolute units.

The analysis of the magnitude of the errors occurred
as a result of linearization of the heat flows with Taylor’s
series while retamning the elements of the first order of
smallness allows for the conclusion that the applied
method makes it possible to model the thermal processes
in the course of ES thermal design with accuracy
sufficient for the engineering practice.

Equations for the statistical measures of the stochastic
temperatures: Stochastic matrix (Eq. 9) 1s a linear
equation with respect to the vector of the centered
temperatures g(w) but is nonlinear with respect to the

vector of the mathematical expectations of the
temperatures & . That being said, the right part of (Eq. 9)
contains only stochastic terms while the left side contains
only temperature-dependent nonlinear terms. This allows
obtaiing the matrix equations for the statistical measures
of the stochastic temperature vector g(m) , namely for the

vector of mathematical expectations 8 and the covariance
matrix K...

To derive the equation with respect to the vector of
the mathematical expectations 8= (8 ()., (). ... 8,,,(w)) of
the stochastic temperatures, let’s apply the expectation
operator to (Eq. 9) and use statistic independence of the
elements in the stochastic matrix G(+ ) and the stochastic
vector * (* ) of each other. We will get:

G, (8)AT6 =G (@)B"ATD (10)

where, G, = diag(§.,87,. ... By, ) is the inverse diagonal MxM
matrix, depending on the mathematical expectations of the
thermal conductivities defining explicitly.

Matrix (Eq. 10) 13 nonlinear with respect to an
unknown vector of the mathematical expectations of the

temperatures ® and it can be solved using the known
mumerical techniques (Rheinboldt, 1998). Tt's worth

noting that the inverse matrix G; () is diagonal one and is
defmed explicitly, 1.¢.. G} ()= diag(g], (8).53, (8). .83, (7)) . To

define the covariance matrix g - E{g(m) ot (w)} . let’s deduct

(Eq. 10) from (Eq. 9), we will obtain the following:

Where, () - w(w) W - 6! (0)B"A™0(w) G/ Bra™® 15 the
stochastic centered vector with zero mathematical
expectation. By multiplying the night part of the
equationv(g)g(w):v”v(w) by the  transposed equation

o (@)V7 (8)= W (®) and applying the product to the
definition of the covariance matrix g :E{g(m)gf ( m)} , we
will obtain the matrix expression to define the covariance
matrix of the stochastic temperature vector * (¢ )

V(0)KLV (0)=K

W

where, g__ - E{\?V(m)\%ﬁ (m)} is the covariance (N+1 )<(N+1)

matrix of the stochastic centered N+1 vector (@) The
resulting expression can be presented m a more
convenient form, i.e. as the matrices Av(6)and v*(6)A" are
square and nondegenerate, they have mverse matrixes.
Therefore, we are able to obtain the explicit expression to
define the covariance matrix K..:

Koo =(AV(8)] Ko (VT(8)AT) an

In this way, (Eq. 10) defines the wvector of
mathematical expectations & and (Eq. 11) defines the
covariance matrix K,.. Solving (Eq. 10) and further
calculations using (Eq. 11) allows defining mathematical

expectations 8, dispersions D,; and mean-square

deviations o, = /D, of the stochastic temperatures (= ),
1 =1, 2, ..., N+1 which are then used to calculate the
intervals [6g,;.6y,; |=[ 60,6+ 0, |for the changing real
values of the temperatures of the ES elements.

Equation 10 and 11 have been obtained to define the
statistical measures & and K., of the stochastic vector of
the excess in the temperatures against the ambient
temperature, i.e., for the vector «(* ) =(* (* ), *,(* ), ...,
¢ ul* V. However, we are seeking for the absolute
stochastic temperatures T(* )= (T,(* ), T,(* ), ..., Tpeur(* )T
and therr statistical T=E{T(0)} and

1}

K =E {T(m)%T(m)}_ The temperatures *,(* ) and T,(¢ ) in the

medasures
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nodes of the thermal model 1 =1, 2, ..., N+1 are nterrelated
via. the expression *,(* ) = Ti(* }-T(*) which can be
used to find the expressions to calculate the statistical
measures L and Dy, defining with the above
mentioned statistical measures 8  and D, namely,
i((‘)):él+i> Dy =Dy 4Dy,

RESULTS AND DISCUSSION

Application of method and discussion: Let’s consider a
specific example of the method using the ES (Fig. 1a)
which is an Electronic Module (EM) with three Integrated

Circuits (IC) of different types mounted on a Multilayer
Printed Board (MPB). The energy consumed by the 1Cs
heats the chip and the body of the ICs. At the same time,
the ICs mounted on the same MPB interact with each
other creating the conductive heat transfer and with the
environment creating the convection heat transfer. A part
of the heat flow 1s released by the heat-releasing swrface
of the IC body mto the environment with convection.
Another part of the thermal flow is transferred from the IC
body to the MPB with conduction both through the air
slot between the IC and the MPB and the IC outputs
welded tothe MPB. The thermal flows that come from the

Fig. 1: Electronic system (a) which includes three integrated circuits IC1-IC3, soldered to a multilayer PCB circuit board
and the graph of ES thermal Model (b) Designations: * is power consumption IC; R, is thermal resistance of the
hull MC; R, 1s the thermal resistance of the gap between the IC case and the PCB; R, is thermal resistance of the
leads of case of IC; R, 1s thermal resistance from the surface of the IC case to the environment; Ry 1s thermal
resistance of conductive heat exchange on the PCB between two neighboring 1C;, Ryqp . is thermal resistance from
the external surface of the PCB in the area of IC placement into the environment; T, T, Ty, T, are the
temperatures of the IC chip, the IC case, the PCB m the area of the IC location, the environment,

respectively
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MPR are distributed across the MPB structure, creating

the conductive heat transfer between all ICs and MPB and

convective heat transfer between the EM surface and the
environment.

The EM is a standard interchangeable component
that should be replaced completely, if one of the 1Cs
welded to the MPB fails. Despite the fact that all ICs in the
EM are identical their external and mternal factors which
identify the thermal behavior of the EM are of interval
stochastic nature which is determined by the statistical
technological dispersion of the thermal and electric
parameters of the IC during ther manufacturing
assembling and mounting in the EM.

The heat exchange processes in the ES under the
consideration are modeled using the graph of the thermal
model with 9 nodes and 18 paths (Fig. 1b). In the EM
under the congideration, there are the following interval
stochastic factors that determine the heat processes in the
EM:

+  Consumption capacity of the ith IC, (i = 1, 2, 3),
©(+)°[* s s * il where, = 4, and =, are the
lower and upper limits of the range of dispersion of
the consumption capacity * (* )

+  Thermal resistance of the body of the ithIC (i=1, 2,
3R ()[R Ry, i d where, Ry, ;o ;and Ry,
where are the lower and upper limits of the range of
dispersion of the IC body thermal resistance R, .(* )

* Thermal resistance of the air slot R, (* )*[Rg, .
R, ;] between the body of the ithIC (i=1, 2, 3) and
the MPB where, Rp,, ., and R, ,; are the lower and
upper limits of the range of dispersion of the thermal
resistance of the air slot between the body of the IC
and the MPB R .(* )

*  Temperature of the environment T (* )*[Ts,.. T, .l
where, T, , and T, , are the lower and upper limits
of the range of dispersion of the temperature T (* )

Bot, jc, b

Determining factors are:

+  Thermal resistance of the heat-releasing surface of
the body of the ith IC (1 =1, 2, 3) R,

+  Thermal resistance of the body outputs R, ; of the ith
IC(1=1, 2, 3) welded to the MPB

+  Thermal resistance of the conduction occurred across
the MPB body between all ICs Ryop 4, (1,7 =1, 2, 3)

+  Thermal resistance of the convective heat exchange
between the MPB surface where the ith IC i1s
mounted (i =1, 2, 3) and the envirenment Rpcg, ;

The heat exchange processes in the EM under the
consideration (Fig. la) are modelled using the thermal

model graph (Fig. 1b) and are described by the interval
stochastic (Eq. 2) where ¢ (¢ )=(s (¢ 3, *,(* ), ., *(* D' is
the desired vector of the thermal gradient in the graph’s
nodes of the thermal model; A 1s 9x8; matrix of incidences
of the thermal model graph; Ge(s) = diag(g,*(* ),
g0 (* ), ..., gz (¢ ) is 18x18 diagonal interval stochastic
matrix of the thermal conduction of the paths g (+) =
R'ye(*), k = 1, 2, .., 18, representing known
temperature-dependent and interval stochastic functions;
(T,*)=(* (*),*,(*)* (), ..., 07 is the vector {with
the length of 9) of the known stochastic consumption
capacities * ((* ), ¢ ,(* ), *+ ,(+ ), [C], IC2, IC3.

The thermal conductions g, (*) = R', (*) and
Zecpai(*) = Ry, (*) in the paths of the thermal model
graph (Fig. 1b) are determined by the natural convection
occurred between the surfaces of the body of the ith IC
(8w o) and the MPB (g, ;) and the environment,
therefore, they are tem perature-dependent and are defined
by the following expressions (Madera, 2005; Ellison,
2010).

Where A, |, App,; are the ceefficients determined by
the environment with which the convective heat exchange
oceurs; S, 1, Spepa are the surfaces of the body of
the i-the IC (1 =1, 2, 3) and MPB where the 1-th IC 1s
mounted where the heat exchange with the environment
oceurs; n is the power coefficient equal to 1/3, 1/4 or 1/8
depending on the law that describes the convective
thermal exchange process, form and spatial orientation of
the object (Madera, 2005; Ellison, 2011).

The thermal conductions of the body of the i-th
ICg, . (*)=R"_(+)and the air slot between the body of
the i-th IC and the MPB g (* ) =R, {(* ), 1= 1, 2, 3 are of
interval stochastic nature and do not depend on
temperature while the thermal conductions g, (+) and
Z:cp. :(*) on the contrary are temperature-dependent and
determined. Therefore, the diagonal matrix of the thermal
conductions G(+, * ) in Eq. 2 can be presented as a
product of two diagonal matrices G+ ) and G.(*), one of
G.(+ ) which 1s of interval stochastic nature and does not
depend on temperature and another, G.(*) 1s determined
and temperature-dependent one. In other words, G(*,
$ )= G )Cu(e), oo

The statistical measures (mean vector 8 and complete
correlation matrix K..) of the stochastic vector *(+ ) are
determined by matrix (Eq. 10) and (11). The statistical
measures of the stochastic temperatures of IC1, 1C2, 1C3
chips (mathematical expectations Teny, dispersions Dy,
and mean-square deviations *,my. 1 = 1, 2, 3) calculated
with the Pseudoinverse Matrix (PTM) method described
herein at different temperatures of the
environment are shown in Table 1. The statistical
measures of the stochastic temperatures of IC1, IC2,

external
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Table 1: The statistical measures (T g } and intervals of the real temperature values for the IC1-IC3 chips calculated with the PIM and M-C methods at

temperatures of the external environment 25, 55 and 85°C

T €O . O
Relative error Intervals of the real
IC number PIM method M-C method PIM method M-C method (v, %) temperature (°C)
Temperature of the external environment T, = 25°C
IC1 80.148 78.537 3146 3212 23 [70.7-89.6]
Ic2 49.269 47.793 2.026 1.806 4.5 [43.2-55.3]
IC3 48347 46.432 2.403 2129 59 [41.1-55.6]
Temperature of the external environment T, = S5°C
IC1 110.148 108.5189 3146 3199 lo [100.7-119.6]
Ic2 79.269 77.78 2.026 1.809 2.8 [73.2-85.3]
IC3 78.347 76.502 2.403 2.149 34 [71.1-85.6]
Temperature of the external environment T, = 85°C
IC1 140.148 138.590 3146 3204 12 [130.7-149.6]
Ic2 109.269 107.8 2.026 1.805 2.0 [103.2-115.3]
IC3 108.347 106.482 2403 2132 2.5 [101.1-115.6]
160 o . .
admissible measure of inaccuracy for modeling the thermal
140 processes in the ES. Moreover, according to the research
studies, the measure of inaccuracy of the statistical
120 - measures delivered with the PIM method depends
o significantly on the condition number of the thermal
£ 100 conduction matrix x(G)=|g|-|c"|and decreases with the
S reduction of x(G3). The application of the PIM method also
E 80 - allows for the significant reduction (by several times) in
E the computing time as compared to the Monte-Carlo
g 601 method.
5
40
0 CONCLUSION
20 4 . D
The method described in this study has proved to be
0 effective in computer-aided and mathematical modeling of
T T 1
0 25 55 85 the thermal processes n the complex ES. The measure of
Ambient temperature (°C) inaccuracy of the method does not exceed 6% and is
sufficient for engineering purposes. The research shows
Fig. 2. The intervals which will include the real that the measure of inaccuracy of the pseudoinverse

temperature values for the IC1-C3 chips versus
ambient temperatures

IC3  chips(Tyucy Dywey Suepi=1.2.3) caloulated  with  the
Monte-Carlo method (M-C) with 10 thousand samples are
provided mn Table 1 for comparison purposes. The relative
error (* %) of the results delivered with the pseudoinverse
matrix method and the Monte-Carlo method has been
evaluated with 5,2 = T,

4(M-C)

T)(MAC)-T(HM)‘H;(MAC )+3

REORLY
expression. The intervals which will mclude the real
temperature values for the IC1, 1C2, IC3 chips in the
ES under the consideration, calculated using the
pseudoinverse matrix method at different temperatures of
the external environment are shown in the last column in
Table 1 and Fig. 2.

The comparison of the statistical measures of the IC
chip temperatures calculated with the pseudoinverse
matrix and Monte-Carlo methods shows that the maximum
measure of naccuracy does not exceed 5.9% which is an

matrix method is decreasing gradually with the reduction
of the condition number of the thermal conduction matrix
G and it takes much less time to compute the results with
the said method than to obtain them with the Monte-Carlo
method.

The pseudoinverse matrix method is universal and
very promising for solving complicated non-linear
stochastic matrix equations like AG(3, * YAT™(X, * )=Y(+ ),
+ «+ 1 which G 1s a diagonal matrix as these equations are
used to describe not only the thermal processes in the ES
but physical processes as well. This is due to the fact that
the matrix equation AGX = Y with G diagonal matrix
describes the processes in all graphs like that shown in
Fig. 1b, provided that there is a similarity between the
processes under the consideration and the electric
processes in the electric circuits.

The pseudomverse matrix method allows deriving an
explicit expression for the mverse matrix H' of the
stochastic non-linear matrix H = AG (X, ¢ JAT which
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elements depend on the desired X vector, thus, creating
its core advantage. In turn, the possibility to represent the
stochastic non-linear diagonal matrix G (X, * ) as a product
of two diagonal matrices G,(* ) Gx(X) one of which G+ )
is stochastic and another, Go(X) depends on the desired
X vector, allows to detach the stochastic and desired
variables, thus, delivering an explicit solution for the
stochastic and nonlinear matrix simultaneous equations
AG (X, o AT X(* ) =Y(s ), * o

Tf the matrix equation AG (¢ JAT X(* )=Y(* ), * ¢+ is
a linear stochastic equation and the matrix of the system
does not depend on the desired X variables, a stochastic
solution can be represented in explicit form as follows AG
X(* )= (AATY'AG!(+ )B"ATY(* ) with the pseudoinverse
matrix B calculated with expression (7). At that the

stochastic measures [iE{X(m)},KXX E{ }D;“(“;))XH of the

stochastic vector 2{(* ) can be easily obtained on the
basis of the solution for X(+ ) above.

If equation AG (3)A™-X = Y is not a stochastic one
but depends on the desired vector X in non-linear form as
well the pseudoinverse matrix method also allows to
obtamn a simple solution for the non-linear equation in
the explicit form. This is due to the fact that the
matrix G (3)which is a diagenal matrix of G (X) = diag
(g3, gX), .., gu(X)) is also diagonal and can be
defined 1n  the explicit form, namely as
G7(X) = diag(s; (X).g; (B), .2 (7)) . This makes 1t simple to
obtain the numerical solutions for the non-linear matrix
equations. For example, in case of solution for AG (X)
ATX =Y obtained with the iteration method, the iteration
process with regard to the desired vector X at k and k-1
iteration steps will take the following explicit form X% =
(AATY'AG(X*B'ATY . The condition for convergence
of the iteration process can be also expressed explicitly as

follows <1where, ||| 13 a matrix norm

(A" )’IA—a(Z_(;S()B*ATcTa
(Hom and Johnson, 2013). At that, the derivative matrix
* G307+ X will also be diagonal and its explicit expression
*G(X)e X =diag (+g" (X)X, g X)X, ., og u(X)X)

will allow to simplify the investigation of the convergence

of the simultaneous equations.

The developed method has no linitations both
terms of probability distribution functions for the
stochastic factors and parameters, determining the thermal
processes in the ES and the stochastic characteristics of
the environment. The method applied to the stochastic
nonlimear thermal process occurred m the ES with three
1Cs welded to the printed board and thermally interacting
with each other and the external environment has proved

to be effective and is characterized by the accuracy
sufficient for practical application. The research has
been performed within the project (0065-2019-0001)
implemented under the government order for fundamental
scientific research (GP 14).
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