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Abstract: Cases of Android security defence system penetration has increasedin recent years. This increase
has prompted the investigation and evaluation of the execution behaviours of malicious applications in mobile
systems, especially, Android Operating Systems (O3s). The main challenge of the detection systems is making
many false alarms which are related to misclassifying the malicious behaviours as normal. This study proposes
a new approach that combines the Android mobile features for targeting malwares and uses a deep feed forward
neural network for detecting malicious activities or behaviours. The study employs different sets of mobile
malware features to train and test the detection model. Results showed improved accuracy of detection rates
when the detection model 1s tramed with combined features.
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INTRODUCTION

Smart mobile devices are open, portable and popular
platforms for using various applications. The number of
downloaded mobile applications continuously increases
anmually. In fact, 197 billion applications were
downloaded in 2017 and 290 billion in 2018. By 2021,
the number of downloads is predicted to increase to
352.9 hllion {(Anonymous, 2018). This rapid increase 1is
attributed to the convenience of mformation sharing,
portable communication and various services that the
mobile applications offer. Another factor is that these
applications are free. Nevertheless, some mobile
applications mcrease the vulnerability of smart mobile
devices to threats and attackers (Kavitha, 201 5).

Many aftackers target mobile devices not only
because they use several applications but also because
attackers aim to breach privacy and subsequently, acquire
personal information. Android devices which hold leading
positions in the market have been targeted by 97% of total
mobile malwares (Yan and Yan, 2018). Sunilarly, 105
devices have been exposed to serious attacks. These
trends prompted extensive research in the field of mobile
malwares, especially, those affecting Android devices.

Surveys on mobile malwares were performed by
Yan and Yan (2018) Abdullah et af (2018). Yan and
Yan (2018) surveyed most researches that proposed

dynamic tools. The researcher starts with defining the
dynamic techmques proposed for mobile malware
detection, identification of mobile malware features and
review of the criteria and performance evaluation. The
study argued that further tests that show the
effectiveness  of dynamic-based mobile malware
detection systems must be further explored. Meanwhile
Ricky and Gulo (2015) comprehensively investigated
Android malware detection systems for mobile devices.
Abdullah et al. (201 8) compared different mobile malwares
and several defence systems.

Most state-of-the-art systems classify detection
systems 1nto static and dynamic analysis systems. Static
analysis systems aim to 1dentify known malicious features
or gaps in the code segments of suspected applications
without execution. On the other hand, dynamic analysis
systems focus on known malicious behaviours to classify
applications at runtime. Both systems require the trade-off
between the accuracy rate of detecting zero-day malwares
and the efficiency of resource consuming as detecting
and classifying mobile malwares cannot be performed
perfectly without using the advantages of both systems
(Kavitha, 2015, Naway and Li, 2019). The reasons are
related to the security requirements of mobile defence
systems. One of these requirements 1s detecting zero-day
malwares and intrusion with low false alarm rates
(preferred zero rate).
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Another security issue associated with mobile
malwares is related to the increase in Android-based OSs
within the era of Internet of Things (IoT). The number of
Android devices connected to the internet continuously
increases. One of the great characteristics of these
devices is direct communication between devices and this
characteristic 1s 1deal for malware propagation (Naway and
L1, 2019). In this regard, the present study proposes a
method that combines two different sets of factors: the
calls and permissions requested by a suspected mobile
application and physical status of mobile hardware that
the same application may activate or deactivate. The
present combination approach should minimize the false
alarm rate during the detection of malwares in Android
mobile devices.

Work contributions: The performance indicators used in
most mobile malware classifier models can be used in the
evaluation of false alarm rate. Decrease in false alarm rate
indicates improvement in detection models. This study
aims to decrease the false alarm rates in Android mobile
malware detection systems. Artificial classifier models are
tested and trained with the combination of two sets of
features that represent mobile malware behaviours. These
models can be applied to the static and dynamic analysis
systems for mobile malwares. Furthermore, a Deep Neural
Network (DNN) i1s used in mobile detection. DNNs are
often used in text, speech and image classification or
clustering. However, DNN is very rarely used in security
filed, especially, in the Android malware detection
systems.

Literature review: Resrarch by Kavitha (2015) suggests
that Android malware detection methods for mobile
devices are still immature. Most researcher are using
either static analysis or dynamic analysis. Novelties
in both systems are presented in this study.

Static analysis detection: Methods that utilize static
analysis are known to be quick, inexpensive and
accurate (i.e., depending on scanning a suspicious mobile
application without execution). Mobile malware analysts
perform prelminary checks on a suspicious applications
by using static analysis and check the availability of
known malicious characteristics (Yan and Yan, 2018).
Many features in mobile applications can be extracted and
checked statically. The first feature of the Android mobile
applications 13 the usage of Application Programming
Interface (APT) functions. Information about APT usage
such as type and frequently usage can be extracted
through resources inside a package file (e.g., classes.dex,
resources.arsc and AndroidMamfestxml. Several novel

works on APT usage information as a feature for detecting
mobile malwares and malicious activities have been
conducted. This information was incorporated to many
statistical tools and machine learming algorithms
(Alazab et al, 2011; Qiao et al., 2014, Ghani et al., 201 5).
Another characteristic that can be studied and analysed
statically 1s considering the security risks that may occur
from request permissions such as requests that control
other applications or some hardware parts of the mobile
devices. Android mobile applications send permission
codes to a system mdividually or collaboratively as a
group or requests permission from another application.
Analysing the type of permission can defeat malicious
characteristics inside a segment of code (Aung and
Zaw, 2013). Finding the smmilanty between a lnown
malicious permission and a suspicious permission is the
result of detection (Feizollah et al., 2015). Disassembling
codes is another method of static analysis for mobile
malware detection. The called
engineering 1s performed after code segmentation.
However, the flow of the code execution is still monitored
(Yan and Yan, 2018; Daniel, 2013). The great gap or
disadvantage for this analysis method 1s detecting

Process, Teverse

zero-day malwares or system penetration events that
occur at the time of download or execution of an Android
application which always come with high false alarm rate.

Dynamic analysis detection: Dynamic analysis, unlike
static analysis, depends on the monitored execution
behaviours of mobile applications.
momtoring are normally performed in a controlled

Execution and

enviromment, so that, malicious code injections are
prevented (Bhatia and Kaushal, 2017; Ayasrah, 2019). The
process momitors the features of the execution behaviours
for tracking and identifying predefined taint behaviours.
Several works momtored the drawback of battery
efficiency and the power consumption of a suspected
application (Bhatia and Kaushal, 2017); they also
examined the network traffic of the application during
execution. The work depended on some packet-related
features (e.g., the TP address of source and destination,
the port number of the source and destination, the start
and end times of the network connection and the flow
direction of the commectivity). The most common dynamic
monitoring systems use the behaviours of system calls;
APT usage and the flow of sensitive data (Bhatia and
Kaushal, 2017).

Deep learning-based detection: Several studies that used
deep learning methods for Android malware detection
differ m the number of mput features used and in the
algonthm used for tramng. Zhang et al. (2018) classified
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Android malwares through three main steps, namely,
feature extraction, feature embedding and deep
learning-based detection. ITn the last step, malware
detecion was performed with convelutional neural
network. Xu et al. (2018) proposed the use of Deep Neural
Network (DNN) named as DeedRefiner, as an Android
malware detection system to increase the speed of
malware feature extraction mn order to keep up with the
speed of Android malware evolution. Meanwhile, a
multimodal DNN that meludes most of the Android
malware features in contrast to DeepRefiner was proposed
by Kim et al. (2019) and Kundeti et ai. (2019) who argued
that collecting malware features from many Android
devices (not only mobile device) and then building a good
representative method on the basis of the similarity
among features reduce complexity. Then, they evaluated
the proposed approach in terms of accuracy and time
complexity for updating the model. Thewr results
indicated 9% improvement in their model when two
features were used relative to when five features were
used. The time complexity increased by 10%. Overall, they
obtamed 98% accuracy.

The present study follows a feature combination
method and uses a DNN to improve the accuracy rate of
Android malware detection while minimizing the number
of utilized features in order to mimmize complexity and
maintain the accuracy rate.

MATERIALS AND METHODS

The proposed framework: Figure 1 framework of
combined DNN for Android Malware Detection Model
illustrates the framework proposed here. The study
consists of two main parts: collecting samples and
extracting features and usmg DNN and combmation
method to train the detection model and test its accuracy
performance.

Collection of samples: A dataset with malicious and
normal application vector representation 1s necessary to
the training of the combination malware detection
model. The bemgn samples from Google Play were
collected from Tune 2018 Tuly 2018. To exclude the
dataset from any malicious activity, we tested the
collected applications with VirusTotal. VirusTotal is a
website that provides malware scanming services with
more than 60 scanners. Malware applications were then
collected from the Android Malware Genome Project
and VirusShare (Wang et al., 2017). A total of 10,600 Apk
samples were collected, of which 5300 were malwares and
5300 were benign applications. The malware samples
belong to 49 different families and the bemign
applications cover different categories (call and contacts,

) Normal and
First part malware apps
collection
\ 4
Feature
¢ ¢ extraction

Decoding

D iling d
ccomptiing dex manifest files

Hardware status

API calls sequnce . .
information

A4 \ 4

Feature representation

Group 4

Group 3

Group 5

v
Combined DNN

v

Model evaluation

Second part

Fig. 1. Framework of combined DNN for android malware
detection model

Table 1: Mathematical notion of dataset

Notions Discretions

N, A set represents the execution pattemns of normal
Android apps (this may include permission request
or API call sequence)

M, A set represents the execution patterns of malicious.
Android apps (this may include permission request
or API call sequence)

Fup A set of physical properties of each pattermn (element)
in the set NP

Fup A set of physical properties of each pattern in the set
MP

education, fun and games, GPS and travel, internet,
lifestyle, and weather, productivity, utilities,
business, commumnication applications, entertainment,
fitness and personalization). Different categories were
used because Android applications are designed for many
lifestyle applications and each category has a special way
to call mobile hardware and other mstalled applications
and different policies for misusing these calls. Figure 2
shows the number of malware families utilized by this
research.

Table 1 presents the mathematical notation of the
dataset. This notation describes the normal and malicious

news
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Fig. 2: Number of mobile malwares per malware’s family

patterns that should be extracted from the known Android
applications. Every element inside the FNP and FMP sets
has a corresponding element in NP and MP (ie., the ith
element of FNP is the physical characteristic of the ith
element in the NP and the same is true for FMP and MP).
The main idea for the combination process is identifying
the pattern of a suspicious application within Np or Mp
and the physical properties of the suspected application
should confirm that the first identification is true (i.e., if
the suspected app 1s classified mnto Np, then the physical
properties of that application should explain the same).
The normal and malware pattern sets should be updated
in case of any conflict and the model should be trained
with the new set.

Feature extraction and representation: The idea of
extracting features 1s to mvestigate which patterns are
visible in the malware and benign applications. The
challenge 1n statistical identification 1s the equal use
of some permissions and API calls by the malware
and benign applications. Such permissions include
mternet permission which 1s called by 4738 malwares
and 4823 nommal applications. Therefore, distinguishing
applications according to the misuse of permissions

decreases the reliability of the detection results. However,
many types of permissions are called by malwares at
higher rates than bemign applications. For example,
RESTART PACKAG, WRITE APN SETTING,
SEND SMS, READ SMS, RECEIVE SMS,
WRITE CONTACTSand CHANGE WIFI SETTING are
more frequently called by malwares. Therefore, such
permissions can be used in accurately distinguishing
clean applications from malicious ones. Malwares and
normal applications have different calling secuences
for APIs and normally such differences between the
calling sequence of APTs can be used for distinguishing
Android applications. API
sequences [socket (), bind (), getsockname (), connect (),
sendmsg ()] are more frequently used by normal
applications than malwares. Therefore, any abnormality
in the calling sequence m SMS activities can be
considered malicious.

Calling some services related to the device and
system is another security issue in Android devices.
Many Android malwares use GetDeviceld () to obtain
device numbers or Runtime.exec () to control devices and
root them. Such requests are rarely encountered during
the execution of a normal application. Other patterns of
calling and requesting can be used in

normal and malicious

services
circumventing malicious activittes (combining two
requests together). Many malwares that access private
information check user location through the APIs
(ACCESS FINE LOCATION) and (SEND SMS). Clear
patterns for normal applications and malwares can be
revealed through all these features and from 10,600
samples. The next step of our approach is to represent
features with Boolean expression. Each collected
application will be converted to v vector and each vector
will be labeled as (0), if it is a normal application or (1) if it
is a malware. For example, if a suspicious application
requests permission to send a message through (SEND
SMS)y while the status of screen 18 on
(android. permission WAKE LOCK) then this application
will be labeled as (1) because no user can send an SMS
while the screen of the mobile is off. Five types of
datasets were built according to the extracted features.
The first dataset 1s the combination between Np and Mp
with reference to the permission recquests. The second is
the combination between Np and Mp with reference to the
sequence of the APT calls. The third is the combination
between Np, Mp, FNP and FMP with reference to
permissions and the fourth is the same combination but
with reference to the API calls. The last one is the
combination of all dataset with the present of all
features.
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Fig. 3: A sample of the input dataset

Table 2: Size of vector (v) in each dataset’s group

Group No. Features No. of bits
1 Only permissions 256
2 Only AP calls sequences 256
3 Pemmissions+Physical properties 512
4 API sequence+Physical properties 512
5 (Permissions+Physical properties)+ 1024

(API sequencetPhysical properties)

Figure 3 shows a sample of the input dataset used in this
research. The length of the constricted vector (v) 1s
changed according to the group number. Table 2 shows
the vector (v) size in each group of the dataset.

Deep neural network detection model: The goal of a Deep
Feedforward Neural Network (DFNN) is to estimate
function f" in order to classify malicious applications from
clean ones in Android mobile devices. The classifying
function y = f'(x) maps an input x to category y which is
defined as f'(x; *) where * is the result of the mapping
process. The structure of any DFNN consists of some |
layers (mput, hidden and output), each of which has
several interconnected umts (nodes). This study
proposes four layers 1= (0, 1, 2, 3) where input values of
the layer y' is from y"'. The number of nodes at the input
layer 1s changed according to the size of * wlich is the set
defined as input dataset i section 4.2. A total of 1024
nodes are m the hidden layer which provides the optimum
approximation. Parametric Rectified Leaner Umt (PReLU)
15 the activate function employed for nodes i the
hidden layer. The PReLU activate function considerably
mcreases the speed of network trammg over the
traditional sigmoid function (Krizhevsky ef al 2012;
Sakthivel et al., 2019). Thus, using PReLU function 1s
preferred than sigmoid m the nodes of the hidden layers.
The transform function at each umt which maps input x to
a computable output could be illustrated as in Eq. 1:

y' =F(W'y" b)) (1)
Where:
W' = The associated weight’s value with the layer 1
Iy = Denotes the associated biase’s value with the layer
1

All nodes at the hidden layers (1, 2) will perform
computation based on the function shown in Eqg. 1.
However, the following function (sigmoid) is used for the
nodes laid in the output layer. Finally, the following
indicators (Rashid and Abdullah, 2018; Rashid et ol
2016) are evaluated:

*  True Positives (TP): this index measures the number
of successfully classified malicious applications

*  False Negatives (FN): this index measures the
number of misclassified malicious applications

*  False Positives (FP): this index measures the number
of benign applications distinguished correctly from
malicious group

+  Some important indicators also utilized by this
study are false-positive rate (FPR = FP/FP+TP),
false-negative rate (FNR = FN/FN+TP) and accuracy
(ACC = TP+TN/P+N)

*  Precision (P): the percentage of positive prediction
(1.e., the percentage of the detected malware out of all
sample applications): P = TP/TP+FP

+  Area Under the Curve (AUC): this parameter shows
how the time complexity of the model is changing
over the change of feature dimensionality:
ACC = TP+TN/TP+TNA+FP+FN and thus, crucial to
case detection

+  Recall (R = TP/TP+FN): the percentage of correct
classification of malicious behaviors among the
scanned malware samples

* F1 score (F1 = 2xPxR/P+R). the measure that
combines precision and recall

RESULTS AND DISCUSSION

The evaluation step starts with a cross-validation
experiment which have been done by many works that
utilized deep learning neural network (Rosyda et al., 2019,
Choi, 2019). The study depends on k-fold validation
method with (k = 2, 3, 5 and 10). Accordingly, the dataset
1s partitioned into five parts where four parts were used
for training and the other (20%) for testing.

The dataset has a dimension size of mxn where, m
represents the number of samples used in this study
(10,600). Meanwhile, n changes within the change in the
groups of the dataset (256, 512 and 1024). For the
cross-validation, n = 1024 and the tested DNN structure
will be 1024 nodes at mput layer and two hidden layers
with 150 nodes at each. Table 3 shows the summary of the
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cross-validation process. The results show significant
similarity among the dataset portions. The training phase
of DFNN 1s applied individually to each group of the
dataset. The subsets have different numbers of attributes,
however, the sub-datasets have the same number of
samples (9600). The rate of AUC at each epoch of
training recorded for the measurement training
process performance. Fig. 4 shows the relationship
between AUC rate and epoch in each feature subset. The

18

Table 3: k-fold cross-validation testing

Folds Fl (%0) P (%) R (%)
2 96.921 97121 96.982
3 97.631 97.778 96.896
5 97.748 97.867 97.687
10 98.091 98.208 98.139

0 10 35 60 &5
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figure shows that the process of training for all the
dataset subgroups are smooth and no sharp gradient
appears 1n all cases. However, the feature combmation
affects the accuracy of the (AUC) rate. The highest rate
obtamed 1s 98.78% when all features have been combined
in the trained dataset. The lowest rate (84.11%)
obtamed when the
considered as the only feature for detection because
malwares often attempt to malke their call behaviors similar

is
sequence of the API calls 1s

to those of normal applications as possible (Fig. 5).

A total of 1000 randomly selected individuals from
each sub-dataset
performance indicators mentioned in section 4.3 are

is used for model testing. All

employed in the testing process.
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Fig. 4: Tramng process for individual sub-datasets
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Fig. 5: a-e) AUC rate of detection model with feature combination
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Figure 5 shows the AUC rate of the detection model
in each sub-dataset in the form of TPR-FPR relationship.
Figure 5a shows the relation between the TRP and FPR for
our detection model that 1s trained with all combination
features. The obtained AUC rate is 98.87%. Figure 5b
shows the AUC of the model when trained with two
feature combinations (permission request and physical
hardware accessing features). The rate 1s 95.34%.
Figure 5¢ shows the AUC rate for the APT calls and
physical properties features (i.e., 93.08%). Figure 5d
shows the permission request feature with 88.87% rate
and Fig. 5e shows the API call feature with 84.10%
rate. The sub-figures highlight the impact of feature
combination of Android applications on increasing the
accuracy rate of detection or classification of Android
mobile malwares.

CONCLUSION

Most Android malware detection models depend on
the features of applications to distinguish malwares from
benign applications. This study combines two interrelated
features. The study showed that the combination of
different features has mmpact on getting better accuracy
rate of malware detection and classification.

A total of 10,600 samples are collected and divided
equally between malware and benign applications. Five
groups of mput datasets are prepared and each group
represents a unique combination of features. The
collected dataset is validated. Then, a DFNN is structured,
tramed and tested. Most mobile malwares mteract
differently with system software, hardware and other
installed applications. Malwares can be different from
bemgn applications in many aspects, although, similar to
benign applications.
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