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Abstract: Let - (-1)* +/72 fora+{0, 1} is Frobenius map from the set E(F, m) to it self for a peint (x, y) on
Koblitz curves E,. Let P and Q be two points on this curves. *-adic Non-Adjacent Form (TNAF) of » an element
of the ring Z(*) = {* = ctd*|c, d*Z} 18 an expansion where the digits are generated by successively dividing

*+ by ¢, allowing remamders of -1, O or 1. The implementation of TNAF as the multiplier of scalar multiplication
nP = Q is one of the technique in elliptical curve cryptography. In this study, we find the formulas for TNAF
that have specific patterns [0, ¢, ..., ¢, . [-1, ¢y, o, ], [1, € oo o] and [0, 0, O, ¢, €4, ..y €14 1.

Key words: Koblitz curve, *-adic non-adjacent form, Frobenius map, successively, TNAF, expansion, element

INTRODUCTION

The Koblitz curves are a special type of cwrves for
which the Frobenius endomorphism can be used for
umproving the performance of computing an elliptic scalar
multiplication (Koblitz, 1987). Tt is defined over F,m as:

E,: vitxy = X +ax’ +1

where, a an element of {0, 1} and P = (x, y¥) onthe
curve (Koblitz, 1992). The Frobenius map = (-1)" +/7 /2
from the set E, (F,") to itself for a point (x, y) on E,. Scalar
multiplication involves computing integer for multiple
times for an integer n and P, nP = Q where, P and Q are
points on Koblitz curve. Figure 1 by Yunos and Atan
(2016) gives an illustration of the scalar multiplication
mn this set but m this study, we are unplementing the
secret key n = ¢ in the form of TNAF (refer
defimtion 2.1).

TNAF was first developed by Solinas, 1997. The
digits of TNAF of ¢ are generated by successively
dividing * with +, allowing the remainders to-1, O or 1. The
following lemma is due to Solinas (2000) which explains
division of an element in Z(*).

Lemmal.l: Let* = ctde+7(*). Then:

+ + 15 divisible by ¢, if and only if ¢ 15 even. That
15, * /* = (d+tc/2)-¢/2 where, t = (-1)"" for. a* {0, 1. If
¢ 18 odd, then the remamder 1s chosen either 1 or -1

+ + is divisible by ** if and only, if ¢ * 2d (mod 4)

TNAF representation of * can be written as TNAF
(*)=|[cp €1, € ooy €z €] The coefficients, ¢, of TNAF are
generated repeatedly by dividing + with » until, ¢ and d
are equal to 0. If 1s not divisible by +, we choose
remainder either 1 or -1. The next coefficient (¢, +1) of
TNAF expansion after must be 0, since, cc,, = 0. The
division process, for example, TNAF (8) 1s in appendix A.
Based on lemma 1.1 (Solinas, 2000) developed algorithm
1 for finding TNAF (ctde+). This is one of the most
efficient algorithms of scalar multiplication on Koblitz
curve because 1t can eliminate the elliptic doublings in the
scalar multiplication and double the number of elliptic
additions. It can help us to list all the patterns of TNAF(c)
in Table 1.

Algorithm 1; TNAF expansion:
Input: integers ¢, d
Output: TNAF (ct+d+)
Computation:
1. Set ¢p* ¢, cl+d
2. Set 8o <>
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Scalar multiplication iiP = Q with secret key 1 in the form of pseudoTNAF,
P: plain text and Q: ciphertext

E, (F,"): y+xy = x'+ax’+1
where, a €{0, 1} and xey F,”

Frobenius

E, (F.")

mapping t
satisfying

TH2 =11

() =9(=cr)
=98V, .. +8(e,T)
= ¢ t9(e)9M, - +9(¢,)9G")
= ¢t T(PYH, .oy e, T (P)
= Zere(P)
no doubling operations,
there are addition and mapping operation

Fig. 1: An illustration of scalar multiplication in the set F,"

Table1: The TNAF expansion of integer from 1-21 and its HW and

length ()
o TNAF(c) HW Length (1)
1 [1] 1 1
2 [0,-1,0,-1] 2 5
3 [-1,0,1,0,0,-1] 3 6
4 [0,0,1,0,0,1] 2 6
5 [1,0,1,0,0,1] 3 6
6 [0,1,0,0,0,1] 2 6
7 [-1,0,0,-1,0,1] 3 6
8 [0,0,0,-1,0,1] 2 6
9 [1,0,0,-1,0,0,1] 3 6
10 [0,-1,0,0,-1,0,-1,0,-1] 4 9
11 [-1,0,-1,0,-1,0,-1,0,-1] 5 9
12 [0,0,-1,0,-1,0,-1,0,-1] 4 9
13 [1,0,-1,0,-1,0,-1,0,-1] 5 9
14 [0,1,0,-1,0,0,-1,0,-1] 4 9
15 [-1,0,0,0,1,0,0,0,-1] 3 9
16 [0,0,0,0,1,0,0,0,-1] 2 9
17 [1,0,0,0,1,0,0,0,-1] 3 9
18 [0,-1,0,1,0,1,0,0,-1] 4 9
19 [-1,0,1,0,-1,0,0,1,0,0,1] 5 11
20 [0,0,1,0,-1,0,0,1,0,0,1] 4 11
21 [1,0,1,0,-1,0,0,1,0,0,1] 5 11

3. Whileg » Oorg,* O

If ¢y odd then
set u* 2-(co-2¢; mod 4)
set cp* cg-u

else
setus O

9. Prependuto S

10. Set (¢g, €1)* (¢ Htey/2-6/2)

11. End While

12. Output

el BN

Moreover, Solinas (1997, 2000) gave the main properties
of TNAF as follows:

Z() = {r+s i, s€Z},
and Z(t)cE,

Theorem 1.3: Let + +Z(+) and *+ 0 then TNAF(+) 1s a
unique digit representation. If the length 1(+) is greater
than, 30 then:

log, N(@)-0.55 <1(a) < log, N{a)+3.52

where, N(+) is the norm of . The average density of
non-zero digits in the expansion of 1 is approximately 1/3.
Other properties of TNAF also have been studied and
developed by some researchers such as Avanzi et al.
(2006, 2011), Hakuta et al. (2010), Koblitz (1987),
Blake et al. (2008), Heuberger (2010), Avanzietal. (2011),
Heuberger and Krenn (2013) for scalar multiplication on
Koblitz curve and some type of the other curves.
Recently, PseudoTNAF of + modulo ++"-1/+-1 for
scalar multiplication on Koblitz curve was developed by
Yunos et al. (2014), Yunos et al. (2015a, b), Yunos and
Atan (2016), Yunos et al. (2018), Blake et al. (2008) and
Suberi and Yunos (2018¢). Besides that, they introduced
the following theorem which helps in the transformation
of pseudoTNAF expansion mto an element Z(*) by
implementing Lucas sequence (Definition 2.4).

Theorem 1.4: Ifa,=0,b,=1, a,=a,,+b., and b, = -2a,, for
10, then:
T =bttat™'t

This theorem can help in the conversion of TNAF
into an element of Z(+) as n the following theorem.
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Table 2: TNAF with ¢g,0; = +1 and ¢, = ¢ =, +, = ¢ = 0 with its r+s»

Table 4: TNAF with ¢y, ¢,./2, ¢y =+l and ¢, =¢; =, *, =¢; = 0 with

for 3-1- 15 its r-+s+ for | =579, ¢, 21
TNAF expansion rtse Length (1) TNAF expansion rtse Length ()
+[1,0,1] +(-1++) 3 +1,0,1,0,1] +(1-2¢) 5
+1.0,0.1] +(-1-+) 4 +1,0,0,1,0,0,1] £(1+4+) 7
+[1,0,0,1] +(3-30) 5 +[1,0,0,0,1,0,0,0,1] +(-11-6%) 9
£[1,0,0,0,1] +(7-+) 6 4[1,0,0,0,0,1,0,0,0,0,1] £41-12%) 11
£1,0,0,0,0,1] H(3H5) 7 +[1,0,0,0,0,0,1,0,0,0,0,0,1] +{43+500) 13
£[1,0,0,0,0,0,1] (T 8 +[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] +(-7-84) 15
+[1,0,0,0,0,0,0,1] £(-13-3%) 9 +[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] H165+90%) 17
+[1,0,0,0,0,0,0,0,1] (717 10 [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] H(-535+68) 19
+[1,0,0,0,0,0,0,0,0,1] £(35-11%) 11 £1,0,0,0,0,0,0,0.0.0.0.1.0,0.0.0.0.0.0,0.0.0.1]  +(049-636*) 21
£[1,0,0,0,0,0.0,0,0,0,1] (234239 12
£[1,0,0,0,0,0,0,0,0,0,0,1] H(45+450) 13 8. e ehy
+[1,0,0,0,0,0,0,0,0,0,0,0,1] +(-89-#) 14 9. See e
£[1,0,0,0,0,0,0,0,0,0,0,0.0.1] £(-3-91+) 15 10. return to {r, §)

Table 3: TNAF with ¢ =+ 1, ¢y ==l and ¢; = ¢; =, *, = ¢;5 = 0 with its
r+se for 3+1+15

TNAF expansion I+ Length (1)
+[-1, 0, 1] +(-3+0) 3
+[-1,0,0,1] +(-3-+) 4
+[-1,0,0,1] +(1-3+) 5
+[-1,0,0,0,1] +(5-+) 3]
+[-1,0,0,0,0,1] +(1+5+) 7
+[-1,0,0,0,0,0, 1] +(-11+7+) 8
+[-1,0,0,0,0,0,0, 1] +(-15-3%) 9
+[-1,0,0,0,0,0,0,0, 1] +(5-17+) 10
+[-1,0,0,0,0,0,0,0,0,1] +(33-11+) 11
+[-1,0,0,0,0,0,0,0,0,0, 1] +(21+23+) 12
+[-1,0,0,0,0,0,0,0,0,0,0, 1] +(47+45¢) 13
+[-1,0,0,0,0,0,0,0,0,0,0,0, 1] +(-91-) 14
#-1.0.00,00.00.00,000 1] +(181-89+) 15

Theorem 1.5: Ifa, =0, b,=1,a =4a,+b_ and b = -2a_,,
then:

-1
¢,T =T1+sT

i=10

Where:

1-1

T o= E.=u°1 b, t

= 11 i+l :
E) ToiooG @t fori, 10

Based on theorems 1.4 and 1.5 (Solinas, 1997)
developed the following algorithm for converting
TNAF(ZH Ha) to an element of Z(+) and its

i=ni

programming in Maple 15. Tt helps them in listing all the
TNAF’s with patterns [co, O, ..., 0, ¢] and [¢, 0.0, ..,
c./2, ..., 0 ¢ ] for e, 0,0, ... ¢,/2 ¢ *{-1, 1}, In this
research, we can consider r+s* = ct+ds.

Algorithm 2; (Converting to * ,_;"'¢c;*' to r+s*+z(*)):
Input: Coefficient of TNAF([cp, ¢y, ..., €12 01]). tracet = (-1} fora=0 or
a=1
Output: r+s==Z(*)
Computation:
1. ag* 0, bge 1
2. for i from 1-1 do
3. a;* a,1+by,
4, by -2a,
3. gia® at
6. hipe byt
7. end do

As a result, they developed propositions 1.7 and 1.8
by Solinas (1997) for describing the TNAF’s with patterns
(refer to Table 2 and 3) and [c,. 0, ..., ¢.,/2, ..., ¢, (refer to
Table 4), respectively.

Proposition 1.7: Tet 1+ 3,2, =0 and b, = 1. If «' = bf+at"'s
for a, =a, b, and b, = -2a, ,, then:

oo, T = (CD+C171 by, t171)+(C171a1—1t1)1:
fort ¢, o, e{-L1}

Proposition 1.8: T.et,1 =3+ 2+ for * be a natural number,
a, =0, b, =1 and te {-1, 1% If » = bt*"'s for a_+b,
and b; =-2,, then:

) ) 1,
+[1+’|:2 +IHJ = 1+b1_1 t erlrltl_1 J{alltz antl}f
z 7

Hence, we already know the two patterns of TNAF’s
as mentioned above. Meaning that, we should avoid to
choose the secret key n (such that nP = Q ) with such
expansion for cryptographic purposes. To achieve the
similar objective, we examine another four patterns of
TNAF expansion mn the form of [0, ¢,, ..., 6] [-1, ¢, ..., €1
[1,c, ... ]and [0, O, 0, ¢y, C,, ..., ¢ ] It can help the third
party to trace the first, second and third coefficients of n.

MATERIALS AND METHODS

Preliminaries: The following are some definitions can be
found by Hankerson et al. (2006), Yunos (2015a),
Yunos et al. (2014, 2015b, ¢), Hafizah and Yunos (201 8a),
Yunos and Suberi (2018b, c), Suberi et al. (2016a),
Yunos and Atan (2016) and Solina (2000} that will be used
throughout this study.

Definition 2.1: +-adic non-adjacent form (also called
*- NAF or TNAF) of nanczero * in Z(*) is equal to * ;_ '
¢+ where, ¢ {-1, 0, 1) and ¢, = O for all i. If ¢ * O then
1 is said to be the length of TNAF.
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TNAF(+) in the form of «,_ " ¢;*'is an expansion
where, the digits are generated by successively dividing
* by « allowing remainders -1, O or 1.

Definition 2.2: The norm of, *+ = ctde is the integer
product of ¢ and its complex conjugate & Explicitly,
N(*) = c*+ted+2d* where, t = (-1) 2 and « + {0, 1}.

Definition 2.3: A Hamming Weight (HW) is defined as
the number of coefficients 1 and -1 n the expansion of an
element of Z(+).

Definition 2.4: Given two integer parameters P and Q, the
Lucas sequences of the first kind UP, Q) and of the
second kind VP, Q) are defined by the recurrence
relations:

UU(P: Q) = 0’ UI(P’ Q) =1 ﬂI]dUn(P, Q) = PUnrl(P’ Q)'QUn—Z(P’ Q)
And:
WP, Q=2 V(P,Q)=Pand V,(P, Q) = PV, (P, Q]-QV,,(P.Q)

for n=>1. In our case, we refer to the Lucas sequence of the
first kind defined and U, =0, U, =1 and U, = tUU, ,-2U, , for
i* 2 where, t = (-1)"* for a* {0, 1}.

Definition 2.5: An average of Hamming weight among
TNAF expansion for an element in Z(+) that have length
1is defined as the Hamming weight among TNAF divided
by the number of combination of ¢ and t where, ¢ 15 the
coefficient of TNAF expansion and t is the trace of
Frobenius endomorphism.

Definition 2.6: An average density among TNAF for an
element of 7(+) having length 1 is defined by the average
Hamming weight among TNAF divided by the length 1.

RESULTS AND DISCUSSION

The coefficients ¢, can have the values -1, 0, 1. We
identify cases for integers that have different value for ¢;.
We begmn first by observing the TNAF expansions of
integers varying from 1-21. The TNAF expansion for
each c+d* 1s attained based on lemma 1.1. By referring to
this lemma, we have ctdes = ¢+0+ in element of Z.(+). Let
TNAF (¢) = [c;, ¢, ..., ©.y] where 1 15 the length of the
expansion and ¢, fori=0, 1, 2, ..., 1-1 are the coefficients of
TNAF expansion. The coefficients, ¢, of TNAF (c) are
generated by dividing ¢ with +, allowing the value of ¢
can be either 0 or+l. The steps are repeated until the
quotient of each division with * equals to 0. Table 1

shows TNAF expansion of integer ¢ starting from integer
¢ =1l uptoc =21, respectively with its HW and length of
the expansion. In Table 1, we consider four patterns of
TNAF expansions mn the form of [0, ¢, ..., ][-1, ¢ ..y
¢ ], cp..nc,]and [0, 0,0, ¢, €4, .. €]

Based on Table 1, we have three categories of ¢, the
first coefficient of each TNAF expansion. The first case is
when ¢, = 0. The sequences having the first coefficient
equal to Oare as follows: [0, -1,0,-1]1[0,0,1,0,0,1][0, 1,
0,0,0,110,0,0,-1,0,1][0,-1,0,0,-1,0,-1,0,-1][0, 0, -1,
0,-1,0,1,0,-11[0,1,0,-1, 0, 0, -1, 0,-1][0,0,0,0, 1,
0,0,0,-11[0,-1,0,1,0,1,0,0,-1]and [0,0,1,0,-1,0,0,1]
forc=2,4,6,810,12, 14, 16, 18, 20. Proposition 3.1
explains the TNAF expansion of the first case.

Proposition 3.1: Let k be a non-negative mteger. The
TNAF expansion of 2+2k is equal to [0, ¢, ..., ¢, ] Where,
c*{-1,0,1},1=1,2, .., I-1 and | 1s the length of the
expansion.

Proof: From lemma 1.1, since, 2+2k 1s even, then, 2+2k 1s
divisible by +. That 1s:

2+2k
T

t{t+tk)-(1+k)t=Z(1)

It implies that the first coefficient, ¢; 15 0. Then, TNAF
expansion of 2+2k is [0, ¢, ..., ¢;]. The following example
1s an illustration of proposition 3.1.

Example 1: By referring Table 1, we choose TNAF(20).
Since, 20 is in the form 2+2(9), it is proven that by
proposition 3.1, the first coefficient 1s 0.

The next proposition shows that second case 1n
which the first coefficient of TNAF expansion ¢, = -1.
From Table 1, the sequences having the first coefficient
equal to -1 are as follows: [-1,0,1,0,0,-1][-1,0,0,-1,0, 1]
[-1,0,-1,0,-1,0,-10,-11[-1,0,0,0,1,0,0,0,-1] end [-1, O,
1,0,-1,0,0,1,0,0, 1] forc=3,7,11,15and 19.

Proposition 3.2: Tet k be a non-negative integer. The
TNAF expansion of 3+4k 1s equal to [-1, ¢, ..., ¢4 ]
where ¢* §-1,0,1},1=1,2, ..., -] and 1 is the length of the
expansion.

Proof: From lemma 1.1, * = ¢+d* where ¢ = 3+4k and d =
0. Then:

34k _ 3+4k 3tk
T 2

gZ(1)

We choose, ¢; = -1 such that ¢,c,, = 0. Thus:
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3-(-1)+4k  4+4k

T T
_2(2+2k)
=T
_ 2t(2+2k) i 2(1+k) .
2 2

= 2t(1+k)-(1+k)te Z(1)

Thus, the first remainder ¢, is so that, 3+4k is divisible
by +. The TNAF expansion of 1s 3+4k 15 [-1, ¢y, ... €3, €,
¢.;]. Example 2 describes proposition 3.2.

Example 2: By referring Table 1, we choose TNAF(19).
The value 19 is in the form of 3+4(4), then, it is proven that
by proposition 3.2, ¢; = -1. The second coefficient of 19
must be 0, so that, ¢y = 0.

The next proposition explams the third case in which
the first coefficient ¢, = 1. From Table 1, the sequences
having the last coefficient equal to 1 are as follows: [1], [1,
0,1,0,0,1][1,0,0-1,0,1][1,0,-1,0,-1,0,-1,0,-1, 0, -1] 1,
0,0,0,1,0,0,0,-1]and[1,0,1,0,-1,0,0,1,0,0,1] forc =
1,5,9,13,17 and 21.

Proposition 3.3: Let k be a non-negative integer and
TNAF(1) = [1]. The TNAF expansion of 5+4k 15 equal to
[1,¢p,¢p .oy ¢ ] Where, ¢ 4-1,0,131=1,2, .., 1-1 and 1is
the length of the expansion.

Proof: By lemma 1.1 a = ¢+d* where ¢ = 5+dk and d = 0.
Then:
Stk 5+4k t_5+4k .
T 2

eEZ('l:)

We choose ¢, =1 such that ¢c,, = 0. Thus:

5-1+4k  4+4k
T - T
_2(2+2k)
==
_ 2t(2+2k) i 2(1+k) .
2 2

= 2t{1+k)-(1+k) = Z(1)

Thus, the first remainder ¢, is 1, so that, 5+4k is
divisible by +. Therefore, TNAF expansion of 5+4k 1s
[1,¢p,¢p ..y ¢ ] Where, ¢ $-1,0, 1 fori=1,2, .., 1-1. We
give the following example to explamn proposition 3.3.

Example 3: By referring Table 1, we choose TNAF (21).
Since, 21 is in the form of, it is proven that by proposition
3.3, then the first coefficient 15 1. The second coefficient
is 0, ¢1 = 0 for the expansion satisfying c;* {-1, 0, 1}.

Table 1 shows Hamming weight of TNAF(3+4k)
is equal to Hamming weight of TNAF(5+4k) for
non-negative integer, k. For example, HW TNAF(7) = HW
TNAF(9), HW TNAF (11) = HW TNAF(13) and HW
TNAF(15) = HW TNAF(17). Obviously, HW for TNAF
(2+2k) 1s less one than the HW for TNAF(3+4k) or TNAF
(5+4k). Now, from Table 1 we deliver the last case in which
the first, second and third coefficients of TNAF expansion
are 0, 0 and 0, respectively. The sequences are as follow:
[0,0,0,-1,0,1]and [0, 0,0,0,1,0,0, 0, -1] for ¢ = 1,5.
Proposition 3.4 describes this patterns.

Proposition 3.4: Let k, and k, be a natural number, then:

TNAF( 8k, +8k,t) =[0.0,0,¢,,¢,, ..., |

where, ¢, ¢,, ¢, = Osuchthat ¢ {-1,0, 1} fori=3,4,..,1-1
and 1 is the length of the expansion.

Proof: Suppose ¢+ = ct+d* where ¢ = 8k, and d = 8k, We
proceed with finding TNAF (8k,+8k,*).

Step 1: Since, * = 8k +8k,* is divisible by *, then ¢, = O:

o _ 8k +8k,T
T T
4k t+8k2-4k,te Z (1)

Thus, TNAF(8k +8k,*) = [0, ¢, ¢y ..., ¢ ]
Step 2: Since, 4k t+8k,-4dk,* is divisible by *, then ¢, = O:

4k t+8k, -4k T

= 4k t+ 4kt + 2k t*-( 2k, k, +4k, )te Z(1)
T

Thus, TNAF(8k +8k,*)=[0,0, ¢, ¢, ... ¢ ]

Step 3: Since, -4k, t+4k, t4+2k t*-(2k k +4k)* is divisible by
*, thenc,=0:

-4k t+ 4k, t+2k P -( 2k k +4k )T
2
—k, -2k Jo, -2k tP 42k, R4 2k £
(21{1 2k, tk, )'ce Z(t)

Then, TNAF(&l,+8l,*) =10, 0,0, ¢,, ..., ¢;]. The value
8k +8k,* is divisible by * for t =-1 ort = 1. Therefore, the
first coefficient, ¢, 18 0. For the second division,
4k t+8k,-4k, + 18 divisible by +, therefore, the remamder, ¢,
is 0. Element -4jt-+dkt+2jt*{2kj+4k)e is also divisible by e,
hence, the third remainder ¢, is 0. Therefore, TNAF
expansion of 8k +8k,» 15 [0, O, O, c;, ..., ¢, 4] The
following 1s the example of proposition 3.4.
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Example 4: By referring Table 1, we choose TNAF(8) = [0,
0,0,..,1,0,1] Since, 8 1s n the form of B(1)+8(0)* by
proposition 3.4, then the first three coefficients are 0.

CONCLUSION
From propositions 3.1-3.4, we conclude that the

expected patterns of TNAF with certain form of integers
¢ are as follow:

Tnteger ¢ FExpected patterns of TNAF (c)
242k for ke W [0 ¢ o]

3+4k for ke W [-1, cqp ooy o]

S5+4k for ke W [1, s ]

8k +8k;y * forky, ky* N [0, 0,0, cs, €4, ...y €11]

It can help the attackers to trace the first, second and
third coefficients of the secret key n (such that nP = Q)
where, n 15 in the form of TNAF’s expansion.
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APPENDIX A

Example 5: Consider «+ = 8+0+* ¢ = 8 d =0, a = 1
and T =1- + is the conjugate of *. First, ™ = 2 is shown:

1T=1(l-1)=2
Next, the steps in obtaiming TNAF (8) are shown.
Step 1: Since, 8 1s divisible by, *, we choose ¢, = 0. The

remainder 18 0. Therefore, the next coefficient may be 0, -1
or 1. That is ¢,* {-1, 0, 0}:

Therefore, TNAF(8) = [0, ¢,, C;, ..., Cz» G-
Step 2: Since, 4-4+ 1s divisible by *, then, ¢, = 0:

Adt 4 47
L B LA 2
T T T T

Then, TNAF(B) = [0, ¢,, ¢ ..., Cp, C1q)- Step 3 -2-20 i
divisible by ». Therefore, ¢, will be O

221 2%
A, S
T T T

Therefore, TNAF(8)=[0, 0, 0, ¢4, €4, ..., Cpa» €11 ]-
Step 4: Since, -3+* 1s not divisible by 0, we choose ¢, = -1.
The remainder can be either 1 or -1. Therefor, the next

coefficient must be 0. That 1s ¢, = 0:

—3+1:-(—1)

T T

— +1=1

all al

Then, TNAF®)=[0,0,0,-1 ¢, ..., G5 G ). Step 5. ¢ 1s
divisible by *. Then, ¢, = O

L
T

Therefore, TNAF(8)=1[0,0,0,-1,0, ¢.. ..., ¢4, ©, ]
Step 6: Since, 1 1s divisible by * then¢; = 1:

11

a|l<o

Therefore, TNAF(8)=[0,0,0,-1,0,1].
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