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Abstract: A fixed step-size multistep block method for stiff Ordinary Differential Equations (ODEs) using the
2-pomt Block Backward Differentiation Formulas (BBDF) with improved efficiency 1s established. The method
18 developed using Taylor’s series expansion. The order and the error constant of the method are determined.
To validate the new method is suitable for solving stiff ODEs, the stability and convergence properties are
discussed. Numerical results indicate that the new method produced better accuracy than the existing methods

when sloving the same problems.
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INTRODUCTION

Many fields of applications such as science and
engineermng are often modelled by a system of Ordinary
Differential Equations (ODEs). These ODEs can be
classified into two classes which are stiff and non-stiff
ODEs. The non-stiff problems usually solved using the
explicit method while stiff problems are solved via. the
umnplicit method. In this study, we consider the first order
ODEs in the form of:

y' = f(x,y)y(a) = y,.x€ [a,b] (1)

The system of Eq. 1 1s called stuff, if the real
components of all the eigenvalues of Jacobian matrix of/dy
are negative (Semenov, 2011), 1e, Re (A)<0,1=1,2, ./ N

and the ratio S:max{|Re(jki)‘,i=1,2,...,N}
min{Re(},)|,1=1,2,...,N}

18 large where

parameter s 1s called stiffness ratio.

In the earlier researches, stiff problems are solved
using implicit one-step methods which consist of implicit
and semi-implicit Runge Kutta (RK) methods and the
trapezoidal rule (Lapidus and Semfeld, 1971). Rosser
(1967) proposed the RK in a block of N steps to reduce
the number of function evaluation when compare with the
classical RK method. Uses of the block method are then
extended by Gear (1988) to solve parallel solution of
ODEs. Studying about the block method 18 continued by
developing the one-step fourth order of block method
based on the composite Simpson rule (Voss and Abbas,

1997). The results obtained shows that the maximum
absolute error of the method is more accurate as
compared to the block predictor-corrector using
composite trapezoidal rule. The cne-step block method 15
then modified to the multi-step block method using the
idea from Gear’s method and block method to create a new
formula called fully implicit r-point Block Backward
Differentiation Formula ({BBDF) method (Tbrahim et af.,
2007). The advantage of tBBDF method 1s the method can
evaluate the solution more than one point at one time and
may have several points in each block depending on the
structure of that block (Nasir ef al., 2012). Regarding to
the statement an implicit 2-point block method with an
extra future point 1s introduced by upgrading the 1dea of
rBBDF methed called 2-point Improved Block Backward
Differentiation Formula (2IBBDF) (Musa et al., 2013).
Below we give the basic defimition of a block method
described by Chu and Hamilton (1987).

Definition 1: If r denotes the block size and h 1s the step
size then block size n time 1s th. Let m represent the block
number whenm = 0, 1, 2, ... and let n = mr then the general
b-block, r-point method is a matrix finite difference Eq. 2 of
the form:

Y = zb:ASYm_S +hzb:BsFm_s (2)
s=1 s=0

Where: Ym = [Yna ynﬂa R yn+r—1]T and fm = [fm fn+1: Rl fn+r—1]T are
vectors, A, and B, are r=r coefficient matrices. If r =1, then
Eq. 2 1s the classical methoed. In this study, we proposed
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a new implicit 2-point block method where adopted
from the definition of Linear Multistep Method (LMM)
(Lambert, 1973) as:

Ea Yoy = hE Bfus (3)

where, ¢; and f; are constant; by assuming that ¢, #0 and
that not both «, and P, are zero. If the P,#0, then the
method 1s said to be mmplicit. The purposes of derived
method are to approximate the solutions of problems
related to stiffness and to establish the improvement in
terms of accuracy and execution time. Therefore, this
study is organized as follows. In the following study,
derivation of the method 1s briefly explamed by extending
the strategy of the 2IBBDF method (Musa ef af., 2013).
The method is extended by increasing the order of the
method to improve the accuracy when compared with the
existing methods of same order. The following Eq. 4 show
the corrector formula of the 2IBBDF method.

5
Yorr = 7 ¥a

1 1
-y _+=hf +hf
4 4 Yn+2 2 n n+l

1 1 11 1 1
yn+2 :§yn-1_5yn+§yn+l+zhfn+l+5hfn+2 (4)

We will mvestigate the stability properties of
proposed method for the validity to solve stiff problems
in the subsection stability analysis of the method. The
convergence properties of derived method are also
discussed by determining its consistency and zero-stable.
Then, implementation of the method will be presented the
application of Newton’s iteration towards the proposed
method to solve stiff problems. To prove the
effectiveness of the method, we choose a few test
problems related to the first order stiff ODEs and the
numerical results obtamed will be compared with the
existing methods. The discussion will be made and a
simple conclusion will be prepared in the last chapter.

MATERIALS AND METHODS

Construction of the method: A detailed description on the
construction of implicit 2-point block method will be
presented m this section. The method will evaluate the
solution using four starting values which are v,., V.., ¥
and y,. The general formula of the proposed method takes
the form of LMM:

5
Yo vas =By (fPfhs ) k=i =12 &)

j=0

where, ¢ ; and P, ; are the parameters to be determined, h
1s the fixed step size and p 1s a value that must be chosen
in between -1 and 1 for the stability purposes
(Vijitha-Kumara, 1985). The linear difference operator, T,
associated with the general formula of the proposed
method Eq. 5 will be defined as:

s
L [Y(Xn);h] = Za],lym,z = th,1 (fn+k Pl 1) Q¥ ™
j=0
051 i¥na +O‘"2 i¥a- 1+0[4,1yn +a4,1Yn+1+a5,lYH+2_
th i ( n+k pfﬂ*k 1)
(6)

where, k=1=1, 2, v, is an arbitrary function and p = -7/8.
The Taylor’s series expansions are then applied to Eq. 6
and expand the v, and {, in terms of x, which yields:

) - 3h) YOx,

=y(x, 3yt (Xh}* A

) S 2h) YO,

=yix > th’(xn)+ Vi, L

:y@g)-hs/(xm%y"(xn ,...,+%y@<xn>,

=¥(x,),
B o B,
Vau *Y(Xn)"'h}/@%}*—'y (X, ---,+—,y‘ (%),
2 ) " L ) 4
Varz = y(><n)+2hy(xn)+ pAC S U (x,),
£, y(xn)+ktw”<>wﬂdl) YR ,+(kh) YO,

£, oo =¥+ Dy, >+((k LA +((k W ois,)

(7
where, q =3, 4, ..., N. Based on the set of Eq. 7, we collect
the coefficients according to y, and its derivative as
follows:

€Ly, ) C, hy'(x, 1+C, Py (x, )+

(8)
C, By (x )+, .., +C, Ky (x,) =0
Where:
Cﬂ,l = 0"'0,1—"_(11,1—"_0"'2,1-"_(13,1-"_0"'4,1-"_(15,11‘
Cy = Boy -20n -0, 0L, ; +20[5,1'(k'(k'1)p)81<,i>
3} 2y 1) 1
0.1 =( ') C(‘D,1+( ') a1,1+( ') (IZ, + 'C("tl 1+ (9)
q! q! q q
2 k(q-l) k_l(q-l)
70[,1_ 7_7p Bk,1
a " {a ) (g1
q=23..k=12
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To obtain the values of « and P for the first point,
Yo We letk =1=1and &, , = 1, into Eq. 9. We then
obtained the following:

Cn,l - O"'n,1+0"'1, 1+O[2,1+O[3,1+0‘"5,1 =-L
C1, - —30:0:1—20:1: 1'032,1 +054:1+20;5:1-(1-p)61:1 =-L
Cz,l _'Eau,1+2a1,1+5052,1+20:5,1'B1,1 _'E’
9 4 1 4 1 1
C3,1 ='Ea‘u,l'gaﬁ,l'gaz,1+§035,1'581,1 ='g’
27 2 1 2 1 1
C4,1 :?auJJrgal,1+74G‘2,1+§0:5,1'681,1 :'ﬂa
31 4 1 4 1 1
Co = Oy -0y - Oy T 0l - =-—
oo M s M 20 R s T 248“ 120

(10)
Then, the set of Eq. 10 is solved simultaneously
which produces:

g =Ll g =1 6, _8

R SRR P TR M R 8 1)
15 48

o, =2 p .28

146 B 73

Similar procedure is applied to obtain the coefficients
of the second point, y,., by substiuting k =1 = 2
and ¢; , = 1 mto Eq. 9, the values of ¢ and [ are obtained
as:

o :i o :% o =-1. :E

0,2 236, 1,2 59> 2,2 > 3,2 59> (12)
L

2 23677 59

Hence, the corrector formula of mplicit 2-point block
method is written as:

11 6

1
= -— + - +
Yas 7 Yo 126 Yoz = Yau

gyn-EYn+2+£hfn+§hfn+l7
737" 146 730 73 (13)
15 23 78

= - —+ R +
yn+2 236yn3 59yn—2 ynrl 59yn

389 21 24
2y +Shf  +ohf
236 yn+l 59 n+l 59 n+2

when the values of ¢; and B, ; in Eq. 11 and 12 are
substituted mto Eq. 6. The method Eq. 13 1s called an
Improved 2-point Block Backward Differentiation Formula
of fifth order (IZBBDF(3)).

Stability analysis of the method: Tn this subsection,
stability properties of the derived method are analysed.
The linear stability properties of the corrector Eq. 13 are
obtained by applying the scalar test Eq. 14

y' =Ay, h<0 (14)

And gives the following matrix Eq. 15:

11
1 O}PM}_ 73 146 {Y“}r
0 1 [ ¥aes A5 23 Vas
236 59
|6 = o 13
7373 {ynl}r 146 {Ym} (15)
1 Bllyal |38 4 e
L 59 236
0 B{ly 1} % 0 Fyﬂ}
h 73 " +h ®
0 0 Ay, 21 24 AYoeg
50 59

By applying hi = h, into Eq. 15 we have:

48 — 15 6 82 42—
1-—h — -— —+—h
73 146 {ynﬂ}_ 73 73 73 {m}
389 21— 24— 78
____h 1_ h yn+2 1 - yn
L 236 59 59 59
Lo
73 146 || Yus
15 23|y,
L236 59
(16)
which is equivalent to AY, = BY_ +CY,_ , where:
LBy 1B 6 B 42y
A 3897321 1;1;5 ’Y{YMI}B_ 73 73 7;3 :
kit N Wi Yarz 1 8
236 59 59 59
1 11
v o[ Y ol| B OME |y Ve
Ya 1523 Yoo
236 59
(17

Stability polynomial of the I2BBDF(5) method can be
obtained by substituting the matrix A, B and C into the
following formula:

R(L, 1) = det{ At -Bt-C) (18)
And yield:

gle2
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Fig. 1: Stability region of the I2BBDF(5) method

1By 15
R{t.h) = det 3897321 155
389 2l g
236 59 59
6 8 2] 1 1
-— —+—h - =
P EEEREE R E N N I F R VT
L] 151 (19)
59 236 59
40291 . 8853 oo 1152 oo 1484,
34456 8614 4307 4307
19389 - 882 ., 12555 , 7443 0
8614 1307 17228 8614
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Then, the boundary of stability 1s plotted by letting,
t=¢e"® 0=0<27 into Eq. 19. The stability region is given in
Fig. 1. As presented in Fig. 1, the absolute stability lies on
the entire outer part of the circle and the regions of
stability covers the left-half plane. It can be concluded
that the method is A-stable, since, it satisfies the
definition below (Thrahim et al., 2003).

Definition 2: A numerical method 1s said to be A-stable,
if its region of absolute stability contains whole left plane.
To determine the convergence of method, we consider the
theorem of convergent (Ken ef af., 2011) in this study.

Theorem 1: The necessary and sufficient conditions for
a LMM (3) to be convergent are that it be consistent and
zero-stable.

14 (22): 8160-8167, 2019

Definition 3: The LMM (3) is said to be consistent, if it
has order, p=1.

Definition 4: The difference operator (6) and the
associated LMM (3) are said to be order p, if C; =
C, =, ..,=C,=0and C,,#0 where:

k
Co =20 G = D0ty B )

=0

(20)

By substituting the coefficients of « and P into
Eq. 20, we determined the order of the method as follows:

5. 0
(j1 = E(JCLJI Blm) = |:0:|,
=0
5 ;2 0
] .
C, :2 _'O[J,l'.]Bk,l _|:0:|=
1=0 :
5 ;3 -2 o]
j i 0
Co=) | =a -, |=| |
’ ;[3! ol “*} 0] 21)
5 -4 -3 T
v, da |9
04‘2[4;% 3!61“J 0]
5 -5 -4 ’O’
i i
O = Lo -1 B |=
’ Z‘[S!a“ 4!61‘-‘} ol
o
5 jﬁ js % 0
c=%1qg - = *
3l im 5
| 590

Therefore, the Eq. 13 15 of order five with the error
constant as displayed in C; = C,,#0. Hence, its proved
that the method 13 consistent, since, the order of the
method, p = 5:1. Next, we further the analysis by
determining the zero-stable of the method. Equation 13 is
said to be zero-stable, if no root of the first characteristic
polynomial, R(t, h ) is having a modulus greater than one
and every root of modulus one i1s simple (Kuboye and
Omar, 2015). By referring to the first characteristic
polynomial of the Eq. 19, we replaced h = 0 and solve for
t to determine the roots of the stability polynomial as
follows: t, =1, t, = 0.0055-0.00044, t,= 0.5563-0.0001 461 and
t, = -0.1547+0.0005461.

Therefore, the IZBBDF(5) method i1s zero-stable,
since, all the values of t satisfied the defimtion of
zero stability stated by Kuboye and Omar (2015).
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From the above discussion, the proposed method is
stable,
method 1

consistent and zero hence, we conclude

that the IZBBDF(35)
theorem 1.

converged by

Implementation of the method: This subsection deals with
the effect of Newton’s iteration to approximate the
solutions of y,,, and y,., concurrently m each step size.
The method (Eq. 13) are expressed in the form of:

_ . 15 42 48 hf . -
1 yﬂ+1 146 yﬂ+2 73 n 73 n+l 1, (22)
389 21
2 :yn+2'_yn+1'_hfn+1 hfmz My

236 59

where, the back values for each point 1s given below:

1 11 6 82

u = %Yna*@yn,z'%ynﬁgyna (23)
15 23 78

“2 :%yn 3 Yn—2+ynrl_EYn’

The application of Newton’s iteration for the implicit
2-point block method will take the form:

YO0 Y e = B (v )] TE (v 00) @

where, j = 1, 2 and (i+1)th is the iterative value of y,,, ...
We let:
=E! (25)

n+l n+2

1
YooY
The Eq. 24 where E{.., are mtroduced to be the

increment value from (i+1)th to (i)th iterations. By
replacing the Eq. 22-24, the method is presented mto
matrix mode as:

48, of 15
739y, 146 {efj:q
of,, . 24 of G |
I

n+i

236 ayn+1 59 %, (26)
a0 15 (1) hf(i)Jr hf(i) +“(1)
n+l” 146 n+2 1
5 389 4 21 ; . ;
__Yi12_236 r(lil 50 hfn(+)1+ hfn(+)2 ﬂ-t()

Then, solve the Eq. 26 for ¢ ., as the values can be

approximated and the solutions values of y,,, 18 computed

from y&» = y& +eib and y,, is figured out from
yirh = yO 4 i+ The absolute error of the calculation

can be defined as:

EITOI" = YEXEEt-YBpprDXImﬁtE (27)
And the maximum error can be calculated as:
MAXE = max (error) (28)

02n=TS
where, TS 1s the total step taken.

RESULTS AND DISCUSSION

In order to study the efficiency of the proposed
method, we select some numerical examples and the
results will be compared with the 2-pomt implicit block
method with an off-stage function with { = -1/4
(2P4BBDF) (Zainal, 2013) and fifth order of Block
Backward Differentiation Formula (BBDF(35)) (Nasir ef ai.,
2012) methods. The selection of those existing methods is
based on the order of method for fair comparison. Below
are the selected tested problems that we will consider in
this study.

Problem 1: Ibrahim (2006):
y'=-10y+10, y (0) = 2,0<x <10 (29)

The exact sclution is y (x) = 1+e'™. The eigen value
is 4 =-10.

Problem 2: Voss and Abbas (1997):

y'= @_50% v(0) = JE, 0<x<1 (30)
¥y

The exact solution is y@)= 1+e™ . The eigenvalue is
A =-50 (1/14e"™+1).

Problem 3: Burden and Faires (2004):

y; :32y1+66y2+2x+§, y‘2 = —66y1-133y2-%x—%,

1
v, (0) = =Y2(0)—5 0=x=1

(31)

The exact solutions are: y,(x) = 2/3x+2/3e*-1/3e'"™,

v,(x) = -1/3x-1/3e™+2/3e'"™ The eigenvalues are A, = -1
and }, = -100,
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Table 1: The numerical results for problem 1-3

Problems/h Methods TS MAXE Time
1072 2PABBDF 5,000 1.00128e-02 -
BBDF(5) 5,000 2.56073e-04 6.53216e-05
I2BBDF(5) 5,000 2.37551e-04 2.81388e-05
10° 2P4BBDF 500,000 1.03537e-04 -
BBDF(5) 500,000 2.69869¢-08 3.59375e-03
12BBDF(5) 500,000 2.50500e-08 8.22420e-4
107 2PABBDF 50,000,000 1.03571e-06 -
BBDF(5) 50,000,000 3.60687e-10 1.39051e-01
I2BBDF(5) 50,000,000 1.92962e-10 5.43618e-02
107 2P4BBDF 500 2.82446e-02 -
BBDF(5) 500 4.88893e-03 1.90019e-05
12BBDF(5) 500 4.50402e-03 4.44133e-06
10° 2PABBDF 50,000 3.65253e-04 -
BBDF(5) 50,000 7.13439¢-07 2.21668e-04
I2BBDF(5) 50,000 6.62190e-07 4.99637e-05
107 2PABBDF 5,000,000 3.66172e-06 -
BBDF(5) 5,000,000 7.15947e-11 1.00759e-02
12BBDF(5) 5,000,000 6.64568e-11 T.01645e-03
1072 2PABBDF 500 4.93545e-02 -
BBDF(5) 500 1.04842e-02 1.24915e-05
I2BBDF(5) 500 9.68471e-03 6.43562e-06
10° 2P4BBDF 50,000 6.88147e-04 -
BBDF(5) 50,000 1.79049¢-06 5.04412e-04
12BBDF(5) 50,000 1.6618%-06 4.34397e-04
107 2PABBDF 5,000,000 6.90456e-06 -
BBDF(5) 5,000,000 2.26481e-10 7.31401e-02
I2BBDF(5) 5,000,000 1.79400e-10 3.10261e-02
A7 »  h Step size used
AY . . - .
\ »  2P4BBDF: 2-pomnt implicit block method with an
A\ off-stage function
A\ s BBDF(5): Fifth order of Block Backward
-5 ! Dafferentiation Formula
» [2BBDF(5): New 2-pomnt Block Backward
Differentiation Formula of fifth order derived in this
study
-6] » T3S Total Steps taken
= +  MAXE : Maximum Error
% . Time: Execution time in seconds
=
E
= 74

BBDF(5)
————————— 12BBDF(5) o

Log time
Fig. 2: The efficiency curves for problem 1

Therefore, the selected tested problems can be
classified as stiff problems, since, the eigenvalues for all
the problems are negative number. Below are the
abbreviations that will be used in Table 1:

All the tested problems are solved using C code
programming with h = 107, 107 and 107, The results are
tabulated in Table 1.

In addition, the efficiency curves are plotted to show
the effectiveness of the method when compare with the
existing methods. The graphs of log MAXE against log
time are given in Fig. 2-4. The numerical results presented
in the previous section are discussed. Referring to
Table 1, we observed that the I2BBDF(5) method give a
better accuracy, MAXE when compared with the
2P4BBDF method Tt is because the value of p = -7/8
considered in the derived method compute the solutions
accurately as compared to the value of { = -1/4 in the
2P4BBDF method. For the BBDF(5) method, the MAXE
produced are comparable but still the I2BBDF(5) method
outperformed the results in terms of execution time. This
15 due to the extra future point considered n the new
method. Based on Fig. 2-4, the figures demonstrate the
efficiency curves for the IZBBDF(5) and the BBDF(5)
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BBDF(5)
————————— I2BBDF(5) N

Log time

Fig. 3: The efficiency curves for problem 2

Log (MAXE)

BBDF(5)
————————— 12BBDF(5) \

Log time

Fig. 4: The efficiency curves for problem 3

methods only. This is because the execution time for the
2P4BBDF method cannot be computed, since, the code is
not available. From the graphs it is clear that the
I[2BBDF(5) method converge faster than the BBDF(5)
method for all tested problems.

CONCLUSION

In this study, we have proposed an implicit 2-point
block method that can approximate the solution at two
points a time called improved 2-pomt Block Backward
Differentiation Formula of fifth order (I2BBDF(5)) method
to solve stiff ODEs. Stability of the method is proved to
be A-stable indicate that the method is suitable for
solving first order stiff ODEs. One of the most important
benefits of using the new method over the methods of
comparison is that its effectiveness in increasing the
accuracy of the approximation and reducing the number
of mtegration steps. Numerical results suggest that the
method IZBBDF(5) 1s recommended as an alternative
solver for solving stiff ODEs.
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