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Abstract: This study introduces a new generalization of the transmuted Marshall-Olkin Frechet distribution of
Afify using Kumaraswamy generalized family. The new model is referred to as Kumaraswamy transmuted
Marshall-Olkin Frechet distribution. This model contains 62 sub-models as special cases such as the
Kumaraswamy transmuted Frechet, Kumaraswamy transmuted Marshall-Olkin, generalized inverse Weibull and
Kumaraswamy Gumbel type 2 distributions among others. Various mathematical properties of the proposed
distribution including closed forms for ordinary and incomplete moments, quantile and generating functions
and Reny1 and 1-entropies are derived. The unknown parameters of the new distribution are estimated using
the maximum likelihood estimation. We illustrate the importance of the new model by means of two applications

to real data sets.

Key words: Moments of residual life, goodness of fit order statistics, maximum likelihood estimation, model,

generating functions, Gumbel type 2

INTRODUCTION

The procedure of expanding a family of distributions
for added flexibility or to construct covariate models 1s a
well-known technique in the literature. Tn many applied
sciences such as medicine, engineering and finance
amongst others, modeling and analyzing lifetime data are
crucial. Several lifetime distributions have been used
to model such kinds of data. The quality of the
procedures used in a statistical analysis depends
heavily on the assumed probability model or distributions.
Because of this, considerable effort has been expended
m the development of large classes of standard
probability distributions along with relevant statistical
methodologies. However, there
umportant problems where the real data does not follow
any of the classical or standard probability models. The
Frechet distribution is one of the important distributions
i extreme value theory and it has been applied to data on
characteristics of sea waves and wind speeds. Further
information about the Frechet distribution and its
applications were discussed by Kotz and Nadarajah
(2000).

Recently, some extensions of the Frechet
distribution are considered The exponentiated Frechet
(Kotz and Nadarajah, 2000), beta Frechet (Nadarajah and
Gupta, 2004; Barreto-Souza ef al., 2011), transmuted
Frechet (Mahmoud and Mandouh, 2013), Marshall-Olkin
Frechet (Krishna et al., 2013), gamma extended Frechet
(Da Silva et al., 2013), transmuted exponentiated Frechet
(Elbatal et al., 2014), Kumaraswamy Frechet (Mead, 2014),
Transmuted Marshall-Olkin Frechet (TMOF) (Afify ef al.,

stll remam many

2014a, b), transmuted exponentiated generalized
Frechet (Yousof et al., 2015), beta exponential Frechet
(Mead et al., 2017) and Weibull Frechet (Afify ef al.,
2016a, b) distributions. The cumulative distribution
function (cdf) of the TMOF distribution is given (for x>0)

by:
oYy ey
oL (1+A) exp {—{—] }(a)ﬁa-l) exp {-2(—] }
F(x) = : B
owel (2]
X
Where:
o, pand 6 = The positive
|4|<1,0 = A scale parameter
o, pand A = Shape parameters

The corresponding probability density function (pdf)

is given by:
a(1+h)-( ch+ort-1)

S ey
e 2]

In this study, we present a new generalization
of the TMOF distribution called Kumaraswamy
transmuted  Marshall-Olkin ~ Frechet (Kw-TMOF)
distribution based on the family of Kumaraswamy
(Kw-G) distnibutions  introduced by

generalized
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Cordeiro and de Castro (2011). The main motivation for
this extension is that the new distribution 1s a highly
flexible life distribution which contains as sub models 62
well known and unknown distributions, admits different
degrees of laurtosis and asymmetry and the Kumaraswamy
transmuted Marshall-Olkin ~ Frechet  (Kw-TMOF)
distribution provides a superior fit to real data than its sub
models and non-nested models.

MATERIALS AND METHODS

Definition 1: A random variable X 1s said to have Kw-G
distribution if its edf 1s given by:

1

F(x)=1-[1-6(x)"|

where, a>0 and b0 are 2 additional parameters whose role
15 to mtroduce skewness and to vary tail weights. The
corresponding pdf 1s given by:

fix) = abg(x) G(x)a’1 [1 -G (x)aT-1

where, G (x) and g (x) are the cdf and pdf of the baseline
distribution, respectively. Clearly when a = b = 1, we
obtain the baseline distribution.

Providing a new class of distributions 1s always
precious for statisticians. Thus, the aim of this study is to
study the Kw-TMOF distribution. The fact that the
Kw-TMOF distribution generalizes existing commonly
used distributions and introduces new lifetime models 1s
an important aspect of the model. Further, we demonstrate
that the proposed medel provides a significant
improvement compared to some existing lifetime models
and 1t 18 also a competitive model to the gamma
extended Frechet (Da Silva et al., 2013) and beta Frechet
(Barreto-Souza et al., 2011) distributions. In addition, we
mvestigate some mathematical properties of the new
meodel, discuss maximum likelihood estumation of its
parameters and derive the observed information
matrix.

The rest of the study 1s outlined as follows. In this
study, we demonstrate the subject distribution and the
expantions for the pdf and cdf. The statistical properties
include quantile functions, random number generation,
moments, moment generating functions mcomplete
moments, mean deviations and Renyi and 1-entropies are
derived in this stusy. The order statistics and their
moments are investigated in study. The characterization
of the Kw-TMOF in terms of a truncated moment of a
function of the random variable 1s given in this study. In

this study, we discuss maximum likelihood estimation of
the model parameters. In this study, the Kw-TMOF
distribution 1s applied to two real data sets to illustrate the
potentiality of the new distribution for lifetime data
modeling. Finally, we provide some concluding remarks in
this study.

Significance of study: The researcch demonstrate that the
proposed model provides a significant improvement
compared to some existing lifetime models and it is also a
competitive model to the gamma extended Frechet
(Da Silva et al, 2013) and Tbeta Frechet
(Barreto-Souza ef al., 2011) distributions. In addition, we
investigate some mathematical properties of the new
model, discuss maximum likelihood estimation of its
parameters and derive the observed information matrix.

The Kw-TMOF distribution: The Kw-TMOF distribution
and 1ts sub-models are presented in this study. A random
variable X is said to have Kw-TMOF with vector
parameters ¢ where (c, B, 0, A4, a, b), if its ¢df is defined
(for x=0) by:

z]

—[a(lme[?} - (OOﬁot-l)eiz[: J }
. 3
[(x-&-(l-ot)e_[g] ]

where, a, b are 2 additional shape parameters. The
corresponding pdf of the Kw-TMOF is given by:

Fix, 9y =1~

=]

(I(lJr?\.)e-[;j -(ax+a+x-1)e'2[§j .

O‘H(I—O\'.)e-[g}' ] a

f(x,j) = aboBe’x ™'

h-1

OL(lJr?\,)e{ST } (4)

7(00\.+0t-1)e-2g]‘

[(x-s-(l-a)e{g]n ]

cx(l+l)_(ozx+on—1)

ISR

A physical mterpretation of Eq. 4 1s possible when a
and b are positive integers. Suppose a system is made up
of b independent components in series and that each
component is made up of a independent subcomponents
in parallel. So, the system fails if any of the b
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components fail and each component fails ifall of its a
subcomponents fail. If the sub-component lifetimes
have a common Kw-TMOF cumulative function, then the
lifetime of the entire system will follow the Kw-TMOF
distribution (Eq. 4).

From another view, suppose a system consists of b
mndependent sub-systems functioming independently at
a given time and that each sub-system consists of a
independent parallel components. Suppose too that each
component consists of two units. If the two units are
connected n series then the overall system will have
Kw-TMOF distribution with A = 1 whereas if the
components are parallel then the overall system will have
Kw-TMOF distribution with A = -1.

Furthermore, we can interpret the system from the
redundancy view. Redundancy is a common method to
increase reliability in an engineering design. Barlow and
Proschan (1996) indicate that, if we want to increase the
reliable of a given system, then redundancy at a
component level 1s more effective than redundancy at a
system level. That is, if all components of a system are
available in duplicate, it is better to put these component
pairs in parallel than it 13 to build two identical systems
and place the systems mn parallel.

The proposed Kw-TMOF Model is very flexible
model that approaches to different distributions when
its parameters are changed. The flexibility of the
Kw-TMOF 1s explamned m Table 1 where it has 62
sub-models when their parameters are carefully chosen.
The reliability function (rf), hazard rate function (hrf) and
cumulative hazard rate function (chrf) are respectively,
given by:

Table 1: Sub-models of the Kw-TMOF distribution

E]

1-[(1 (140 eH {otae1) e-z[gj ]

R )= N
[a+(1-a) e{g]" ]
h (x j) _ aboePx o (1+) e_[g]“ Tt A1) e-Z[ST }
[()H(l—ot) e,@" ]
{a (1) e{gj {o+0-1) e.z[gj }
1-[(1 (143) e{ET ok ta1) 3'2@ ]
[()H(l—ot) e{ST ]
and:
1-[(1 (142 e'[ST {ahto-1) J[Sj ]
H(x, j) = -bln .
[O\'Hr(l-(l) e-[g]' ]
Figure 1 provides the some plots of the

Kw-TMOF density curves for different values of the

Distribution o B 5 A a b Researchers

KTF 1 B ) A a b New

KIMOIE o 1 3] A a b New

KTMOIR o 2 0 A a b New

KTMOGIW it B qc'®? A a b New

KTMOGuI s B p=0°F A a b New

KTMOIW it B i A a b New

KTGIW 1 B qc'® A a b New

KTGull 1 B p=0Ff A a b New

KTTW 1 B ct? A a b New

KTIE 1 1 3] A a b New

KTIR 1 2 0 A a b New

KF 1 B ) 0 a b Mead (2014)

KMOF o B 5 0 a b Afify et ad. (2016a, b)
KMOIE o 1 0 0 a b --

KMOIR o 2 0 0 a b --

KMOGIW s B qc'® 0 a b New

KMOGuII s B p=0°F 0 a b New

KMOTW s B ct? 0 a b New

KGIW 1 B qct? 0 a b Afify et af. (2016a, b)
KGull 1 B p=0F 0 a b Afify et af. (2016a, b)
KIw 1 B [ 0 a b Shahbaz et a. (2012)
KIE 1 1 0 0 a b Mead (2014)

KIR 1 2 0 0 a b Mead (2014)
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Table 1: Continue

Distribution o 8 5l A a b Researchers

TMOF o B B A 1 1 Afify et af. (2014, b)
TMOIE o 1 5 A 1 1 -

TMOIR o 2 5] A 1 1 -

TMOGIW o B qc'® A 1 1 New

TMOGuIL o [ p=0Ff A 1 1 New

TMOIW o B cHF A 1 1 New

TEGIW 1 [ qc'®? A 1 b New

TEGul 1 B p=0°F A 1 b New

TEIW 1 [ cl® A 1 b New

TGIW 1 B qc!®? A 1 1 Merovci et af. (2013)
Tgull 1 [ p=0p A 1 1 New

TIW 1 B clie A 1 1 Khan et a. (2013)
MOFD o B ) 0 1 1 Krishna ez @, (2013)
MOIE o 1 5 0 1 1 -

MOIR o 2 5 0 1 1 -

MOGIW o [ qc'? 0 1 1 New

MOGull o [ p=0Ff 0 1 1 New

MOIW o B cHF 0 1 1 New

TEF 1 [ g8 A 1 b Elbatal et af. (2014)
TEIE 1 1 5 A 1 b -

TEIR 1 2 5] A 1 b -

TF 1 B 5 A 1 1 Mahmoud and Mandouh (2013)
TIE 1 1 5] A 1 1 Oguntunde and Adejumo (2015)
TIR 1 2 () A 1 1 Ahmad et al. (2014)

EF 1 B 5] 0 1 b Kotz and Nadarajah (2000)
EIE 1 1 5 0 1 b -

EIR 1 2 5] 0 1 b -

TGF 1 B ) A a 1 New

TGIE 1 1 3] A a 1 New

TGIR 1 2 0 A a 1 New

GF 1 B 3] 0 a 1 New

GIE 1 1 0 0 a 1 New

GIR 1 2 3] 0 a 1 New

GIW 1 B qc!®? 0 1 1 De Gusmao et ai. (2011)
Gull 1 B p=0° 0 1 1 Gumbel (1958

W 1 B cl® 0 1 1 Keller ez . (1982)

F 1 B 5] 0 1 1 Frechet (1924)

IE 1 1 () 0 1 1 Keller et al. (1982)

IR 1 2 ] 0 1 1 Treyer (1964)

parameters «, P, 6, A, a and b Some plots
of the hrf of the Kw-TMOF are displayed n Fig. 2.

Useful expansions: Expansions for Eq. 3 and 4 can be
derived using using the series expansion:

ko () Tk
(1-z) = Zmzv

1=0

7 <1, k>0

The cdf of the Kw-TMOF in Eq. 3 can be expressed
n the mixture form:

(x,¢)=1 E Jlkex;{ aJ+k+1)( }}
X

where:
( )J+1 I—‘(bJrl)F(a.]Jrl)r
8§ ., = (2a-.|+k)(a}\‘+a-l)1 ( _l k
i, ik Jlﬂk'(]za] ]_—‘(221_])]-—‘(1)'_]-~_‘l)]'—‘L o
(@i +1) (ko)™

The pdf of the Kw-TMOF in Eq. 4 can be expressed
1n the mixture form:

f (x, 0) =B6"x ™

N gy (5)
2 by <OXP {'(aj"‘aﬂ-"k-*-w){—} }
’ X

Likw=0

where:

JHitw

ab(-1) " T(b)C(g+a)l

k
( 2aj +2a+k+1)(1_1} (COLJrOL)a(jH)—i—w
o

ioi koW

JikIw! T(b-) T(aj+a) T'(2aj+2a+1)T
(2-w)a U (oh+a-1) (oo A1)

The Kw-TMOF density function can be expressed as
a mixture of Fréchet densities. Thus, some of its
mathematical properties can be obtained directly from
those properties of the Frechet distribution. Therefore,
Eq. 4 can be also expressed as:
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------ a=1,B=17,4=2,0=0.1,a=1,b=5.75
—— o= 08,p=151=1,0=0.1,a=1,b=05
a=1,p=1.1,,=02,0=-0.1,a=1.5,b=8
a=4,B=15x1=2,0=2,a=1,b=38
@) a=1,p=1.7,A=2,6=0.1,a=6.5,b=10
12, =09 p=03,2=2,0=01,a=1,b=4

=4, B=42,L=2,0=-05,a=0.1,b=1
=0.1,p=3,.=2,0=-05,a=1,b=3
=4,=2,2=2,0=05,a=1,b=2
=37,p=8,1=3,0=-05,a=05,b=5
=37,8=03,L=0.050=05,2a=3,b=6
= 0.09,=08,1=2,0=00l,a=1,b=4

Fig. 1: a, b) Plots of the Kw-TMOF density function for
some parameter values

f(x ¢)= 2 b]’i‘k’w)g(x;ﬁ, 8*) ®)

ik,w=0 (aj+a+i+k+w

where, g (x; B, 6*) denotes to the Frechet pdf where 6* =
0 (ajtatitk+w)'"".

Properties
Quantile function: The quantile function (gf) of is
obtained by mnverting (Eq. 3) as:

B

1
K+Ja2 (1t +2n1) oG4
204141 ’

0<u<l

Q(u)=961ln

a=0.1,b=3
-05,b=3
025,b=2
a=006,b-2
@ a=0033,b=8
25 - a=0.1,b=3
20 4
154
%
<
10
5_
0 T T T 1
------ a=8 p=821=1,0=01,a=0.1,b=4
. —— o=10,p=10,2=1,0=05,a=0.1,b=3.5
30 o= 10,p=5,4=1,0=0.1,a=025.b=55
; o= 10,p=10,A=1,0=05,a=1,b=3.18
—mme = 10,B=10,A=,0=1,a=5,b=35
B o= 3,B=3,1-3,6-1,a-05b-20

Fig. 2: a, b) Plots of the Kw-TMOF hrf

where, = o (A+)-2a (l-a)fifl-kfl-_u.

Simulating the Kw-TMOF random variable is
straightforward. If U 15 a uniform varate on the
unit interval (0, 1) then the random variable X =
Q (U) follows Eq. 4, ie, X2 Kw-TMOF (a, B, 6,
A, a, b).

Ordinary and incomplete moments: The rth moment,
denoted by p’, of X (for r<p) is given as by:

b =E(X)=

o' i bhl,k.w
jik w=10 )F{l-r} (7)

(aj+atitk+w )1M
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Sitting r =1, we get the mean of X. The skewness and
kurtosis measures can be calculated from the ordinary
moments using well-known relationships.

Corollary 1: Using the relation between the central
moments and non-centeral moments, we can obtam the
nth central moment, denoted by M, of a Kw-TMOF
random variable as follows:

M =E e = B ()

r=10

where, E (X)) is the on-central moments of the Kw-TMOF
(a, P, 0, a, b, x). Therefore, the nth central moments of the
Kw-TMOF («, B, 6, a, b, x) if r<f is given by:

i DY
e Zﬂ[r J(_H) (aj+a+i+k+w)"%) F(I_EJ

The moment generating fimction (mgf) of X say M,
(t) =E (&%), (for r<P) is given by:

M ()= 3

= r!(aj+a+i+k+w)"%

(te)'w,g: nbj,l,k’w) F(I-L}

B

The sth incomplete moments, denoted by g (t) of X
is given by:

@,(t) =j;xsf(x)dx

Usmng Eq. 6 and the lower incomplete gamma
function, if s<f3, we obtain:

bi.i, k, wo’

= (ajtatitkrw) !

00= 3 ory @
bikw= ”(1 _%, (aj+a+i+k+W)(t} }

The first incomplete moment of X, denoted by, ¢,(t)
1s immediately calculated from Eq. 8 by setting s = 1.

Renyi and T-entropies: The Renyi entropy of X
represents a measure of variation of the uncertainty. The
Renyi entropy 1s defined by:

L,(X)=

1-111 logJ-_f:f71 (x)dx, n>0andn #1

Therefore, the Renyi entropy of a random variable X
which follows the Kw-TMOF (x, &) is given by:

log(Babo®)"

Lo = 8

-(-an-aj-n+itw)

Eills

E 1, 1, k, WJ.:X_”(”B) exp

joik w=0

A
where:
-1 rinb —n+DT
ik w = (ajtan-n+DI'(2aj+2Zantntk)

Jlitk!wID(mb — (n++ 1T
(ajran-n-i+DC(2aj+2an+n)
. 1 -2ajtzantn
F(,n+1)(ab)ﬂ(o‘:)\d+o‘:)aﬁar17w (1__)
0.
F(nJrl_w)aza(n+j)(ak+a_1)'i(a)\ﬂrcﬁr?\,-l)'w

But:
A g n(1+8)-1
B(-an-aj-n+i+w)'(I'MHB))IE B
and then:
L (X) = o
A = 2

0 - ) 1:j. ikow
{(B] Zz(aww%)}

The n-entropy, say H (X) is defined by:

1

H00 = 5

log {1] £ (x)dx}, n>0and m #1

1

(8" 3. oz

where, p = (Ap+A-1)/B.

H, (X) =

lo
1%

Moments of residual and reversed residual lifes: The nth
moments of residual life, denoted by m,, (t) = E ((X-t)X=t),

n=1, 2, 3, .., 1s defined bymn(t):%(t)_[i(x-t)ndF(x).

Therefore, the nth moments of the residual life of X given
that r<f is given by:

8152



J. Eng. Applied Sci., 14 (22): 8147-8159, 2019

2 bj.i,k,w

(-1)" I (n+) e
1 - i, k,w=0

m, (t)= R (t)rZu rgr(n-r+1)(qj+ali+k+w)l'(%)

¥ 1—£,(aj+a+i+k+w) 9 ’
B t

Here, we can use the upper mcomplete gamma
function defined by y ¢, 1) - J‘ “ylevay - Another interesting
b

function 1s the Mean Residual Life function (MRL) or the
life expectancy at age t, defined by m, (x) = E((X-x)|3>x%)
and 1t represents the expected additional life length for a
unit which is alive at age x. The MRL of the Kw-TMOF

distribution can be obtained by setting n = 1 in the last
equation. The nth moments of the reversed residual life,
denoted by Mn(t) = B((t-3X)"X<t)=0,n=1, 2, 3, .., is given
by ) _mj fox ) dF(x) Therefore, the nth moments of

the reversed residual life of a Kw-TMOF (i, B, A, 1)) given
that r<f is given by:

| o YT
M. {1)= F(t) ZE r!r(n_r+1)(aj+a+i+k+w)l'(%)

y[l-é,(qj+a+i+k+w){?} J

Here, we can use the lower incomplete gamma
function defmed by, )= Cytevdy . The Mean Inactivity
Time (MIT) or Mean Wamng Time (MWT) also called
mean reversed residual life function, defined by M,(t) =
E((t-X)|X<t) and 1t represents the waiting time
elapsed, since, the failure of an itemon condition that
this failure had occurred mn (0, x). The MRRL of the
Kw-TMOF distribution can be obtained by setting
n=1.

2 ink,w
ck,w=

0

Order statistics: The order statistics and their moments
have great importance in many statistical problems
and they have many applications in reliability analysis
and life testing. The order statistics arise in the study
of reliability of a system. The order statistics can
represent the lifetimes of umits or components of a
reliability system. Let X, X, .., X, be a random sample
of size n from the Kw-TMOF (¢, x) with cdf and pdf as
mn (3) and (4), respectively. Let X, X ... X, be the

Then the pdf of j th
1<j<n, denoted by f,(x) is

corresponding order statistics.
order statistics, say Y = X
given by:

nys

nlaboRelx FY

£y (X) (J 1)( ,

(1) exp{ [2” o exp{ {2”
s (3]
o (1) exp Hgﬂ-@ma_l) exp{'z(zﬁ a

| bl ]
ool {2 o]
(]

The pdf of Y in Eq. 9 can be expressed as a mixture of
Frechet densities as:

ped

o (1+Ah) {oEA+0-1)

oo 3]] =[]

b (n4+1)-1

URER

i Suta 8 (X; B.© (ai+a+i+l+h+w)1m)

r,L,Lhw=10

£, (x)=

where, g (x; B, 6 (aitati++h+w)'") denotes to the Frechet
pdf with parameters [, 0 (ai+at+i+l+h+w)"®) and:

ntab (-1 T (2ai+2a+14w) o (o ra-1)

- ( i1:. (ntr+1) -1} { il} ( E(m) -1} [1_ é JW

(7-1){(n ) UWID(2-1) [ 2ai+2a+1)
(e +a+i+l+hw ) (o +o+A L) (oo =)

Therefore, the qth moment of Y can be expressed as:

L
2 E_vr,i,Lh,WE (Yﬁ,e(al+a+1+1+h+w)1m

i, Lhhw=10
where, Y g s Frechet (B, 8 (aitaitl+htw)').

Characterization: Characterizations of distributions 1s
an umportant research area which has recently attracted
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the attention of many researchers. This study deals with
a characterization of Kw-TMOF distribution. This
characterization 1s in terms of a truncated moment of a
function of the random variable. Our characterization
result employs a special case of a theorem due to Glanzel
(1987), Theorem 1 by note that the result holds also when
the mterval H 1s not closed. Moreover, it could be also
applied when the cdf F does not have a closed form. As
shown by Glanzel (1990), this characterization is stable in
the sense of weak convergence.

Theorem 1: Let (€, F, P) be a given probability space and
let H = [d, €] be an interval for some d<e (d = -5, e = oo
mightaswellbeallowed). Let X: Q~H be a continuous
random variable with the distribution function F and let g
be areal function defined on H such that:

Elg X)X=zx]=&(x),xec H

Is defined with some real function £ Assume that
geC(H), EeCHH) and F is twice
differentiable and strictly monotone function on the set H.
Finally, assume that the equation £ = g has no real

continuously

solution in the mnterior of H. Then F 1s uniquely
determined by the functions g and £, particularly:

where, the function s i1s a solution of the differential
equation s’ = £'/E-g and C is the normalization constant,
such that _[HdF =1. Here is our first characterization.

Proposition 1: Let X: £2-(0, ) be a continuous random
variable and let:

a-1

a(12)e ™ (arra- et

[ow(l-on)e'(a’x)E Ta

, for x>0

The random variable X belongs to Kw-TMOF family
(Eq. 4) £ if and only, if the function £ defined in theorem 1
has the form:

i Y o (e)
£(x) = b L a{l+h)e (oh+a-l)e o0

P
b+l [O{Jr(l-()!) o185 :|

(10)

Proof: Let X be arandom variable with pdf (Eq. 4), then:

(1 (x)) E[g (x)[x2x] =

[a(lu) e (omnra) O }

a-1

rf(u) 1- — du =
: [oﬁ(l—a)e'(e’“) J
L1
b | oy e qoran et ||
b+l (ol [ ’
[ow(l-a)e }

and:

£(x)e (x)=

1 o) e® (anror)e
g 1 2
b+1 [C(.Jr(l—(l) e-(efx)n :|

<0, forx=0

Conversely, if € is given as above, then:

o E
™ el

bac e x ™! [a(H;L) alonf —(ak+0t+k_1)e'2(e’“)ﬁ }

[ow(l-on)e'(a’“)E }

X

2atl

a(141) ¢ @ {antarl) 2

[ow(l-a) o) T

[a(m) ™ (onrarn1) j

a-1

and hence:
(o) Y et
S(x) = -blog |- a(l+h)e (aA+o 1)2 e ,
[oﬁ(l-a) to) J
x>0

Now m view of theorem 1, X has density (Eq. 4).

Corollary 2: Let X: Q~(0, «) be a continuous random
variable. The pdf of X 1s (Eq. 4) if and only if there exist
functions g and £ defined in theorem 1 satisfying the
differential equation:
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baO{Beﬁx'B'l
E_’I (X) _ |:0'.(1+;\,) e'(efuf} _ (G)\,"F()‘!"F}\,—l) e—z(efu)” ]
g (X)'g (X) [OtJr(l-o;) e_(emﬁ Taﬂ

Py

(1+;\,) et’x)E ((l}\,""a-l) e-z(efx)“
Mt
[a+(1—ot)e'(efx) J

p -l
[ (1+)\,) efu (0:.}\,‘"(1-1) -2(8a) }

The general solution of the differential equation in
corollary 2 1s:

(1+)\,) efx ((l}\ﬂ‘(] 1) -2( efx)

S(x)=1- ;
[owr(l—a)e'(efx) }

baoex ™ a12) e (airasn)e 1

- >4

—(E)fu)ﬁ Za+1
a+(l-a)e

[ (1_"_;\,) efu ((1;\..4‘(1 1) 2(!':iJ’u)E Jarl w

bl

a

(1+)L) et’x (C(.)\HFC(. 1) Z(E)t’x)ﬁ

[a+(1-a)e'(m) T

1- g(x)dx+D

where, D is a constant. Note that, a set of functions
satisfying the differential Eq. 10 18 given in proposition 1
with D = 0. However,it should be also noted that there are
other pairs (g, £) satisfying the conditions of theorem 1.

Estimation: The Maximum Likelihood Estimators (MILEs)
for the parameters of the Kw-TMOF is discussed in this
study. Let x,, ..., x, be a random sample of this distribution

with unknown parameter vector ¢ = (@, B, 0, A, a, b)".
Then, the log-likelihood function for ¢, 2 = ¢ () is:

£ = n{Ina+inb+no+nB+Bln6) -
(B+l)ilnx1 —Bﬁixfj+

E a 1 Zlnk a+1
E]nzi +(b -1)21nq

ey =

where:

1, = o(1+-h-{A+p)s,, k, = o(1+h)s,-ps’,p = ah+a-l,

a B
z, = o+(l-a)s, q, = 1—[%} ands, = exp[—[eJ ]
z; X,

The elements of score vector, U{¢) = 30/0¢ = (980w,
D3P, AYOA, N30, F/Fa, 20/0b) are given by:

0% () (142)
a 121(1-5) Ek(l—s)
(+oyln| — o
(2a41)) al(a)x
E i=1 Z q1
X

n n (p+l)ln—
LN N ST s 6
aB B i=1 171(8Xi) 1:11 1 5]
o1 2
171 X1
0
L 2 pst -k, (L+ajin| =

9 B ., Pty B (ps k)
— = — B Y X+ O _ifa1)= S
0 o0 XML el g
1131-1 - kl -
Xl Xl
i}
E E a-l
X & L{l-q)-

_7_+21n1< 221112 ooy Ak, )
g gy
o o-(a1) s, o{ls)
— =y ——~ ~+(a-1} y ———+ac (b-]
a)\d = 11 (a )1:21 klsl-l aa( )
al
& (1)
lzlqisirlzﬁz(sl_l)rl
and:
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df n &
Z = Z4+Y Ing,
TR
where:
d, = o (A1, -2k,

We can find the estimates of the unknown parameters
by setting the score vector to zero, U(¢)=0 and solving
them simultaneously yields the ML estimators
& p.8 % andb . These equations cannot be solved
analytically and statistical software can be used to solve
them numerically by means of iterative techniques such as
the Newton-Raphson algorithm. For the five parameters
Kw-TMOF distribution all the second order derivatives
exist. Setting these above equations to zero and solving
them simultaneously also yield the MLEs of the 6
parameters.

For interval estimation of the model parameters, we
require the 6x6 observed information matrix I (db) = {J..}
{forr,s =, B, 6, 4, a, b} given in Appendix A. Under
standard regularity  conditions, the multivariate
normal N,(©, 3(¢)") distribution can be used to construct
approximate confidence intervals for the model
parameters. Here, 1() is the total observed information
matrix evaluated at ¢ . Therefore, approximate 100 (1-$)%
confidence intervals for «, P, 6, A, a and b can be
determined as:

diZ%JE, B+ z%‘jf, O+ z%\/ﬂ,

AAZ T, G 2T, andbE 7,

2 2 2

th

where, Z{/2 is the upper ¢th percentile of the standard
normal distribution.

RESULTS AND DISCUSSION

Data analysis: In this study, we provide two applications
of the Kw-TMOF distribution to show its importance. We
now provide a data analysis in order to assess the
goodness-of-fit of the new model. For the two real data
sets we shall compare the fits of the Kw-TMOF Model
with 6 of its sub models: the KMOIE, KMOQIR, TMOF,

Table 2: The statistics and for data set 1

MOF, TF and Frechet distributions to show the potential
of the new distribution. Moreover, we shall compare the
proposed distribution with two non-nested models:
Gamma Extended Frechet (GEF) (Da Silva et al, 2013)
and Beta Frechet (BF) (Barreto-Souza et al., 2011)
distributions with corresponding densities given (for

x>0) by
[ N h—1
B—BBX(—B—DG_{;] [1 76‘{;] ]
B{a,b)
GEFr: f(x) = ?Beﬁ X—ﬁ—le‘@ [16U ]

loglle-(:f ]

where, B, 0, a and b are positive parameters.

BFr: f(x)=

Data set 1; Glass fibres: The first data set 1s obtained
from Smith and Naylor (1987). The data are the
strengths of 1.5 cm glass fibres, measured at the National
Physical Laboratory, England. Unfortunately, the units of
measurement are not given in the study.

Data set 2; Carbon fibres: The second data set
corresponds to an uncensored data set from Nichols and
Padgett (2006) on breaking stress of carbon fibres (in
Gba). This data set was previously studied by Afify et al.
(2014a, b) to fit the transmuted complementary Weibull
geometric distribution.

Model The model
out using goodness-of-fit measures mcluding the
Akaike Information Criterion (AIC), Consistent Akaike
Information Criterion (CAIC), Bayesian Information
Criterion (BIC), Hamnan-Quinn Information Criterion
(HQIC) and -2¢ (where, ¢ is maximized log-likelihood).
Table 2-4 list the numerical values of the -2¢, AIC,
BIC, HQIC and CAIC using the first data set, whilst the
MLEs and thewr comresponding standard emrors (in
parentheses) of the model parameters are shown in

selection: selection 1s carried

Table 3 and 5. These numerical results are obtained using

Model _np AIC BIC HQIC CAIC
Kw-TMOF 43.775 55.775 68.634 60.833 57.275
TMOF 48.46 56.46 65.032 59.831 57.149
KTMOIE 54.572 64.572 75.287 68.786 65.624
BF 60.63 68.63 77.202 72.002 69.32
GEF 61.557 69.557 78.13 72.929 70.247
MOF 05.738 101.738 108.168 104.267 102.145
TF 94.078 100.078 106.507 102.606 100.484
F 93.707 97.707 101.993 99.392 97.907
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Fig. 3: The estimated pdf and cdf of the Kw-TMOF Model for data set 1: a) Kw-TMOF and b) Kw-MOF
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Fig. 4: The estimated pdf and cdf of the Kw-TMOF model for data set 2: a) Kw-TMOF and b) Kw-MOF

Table 3: MLLEs and their standard emrors (in parentheses) for data set T

F(x)

(b)
10 -

0.8

06 -
04 - /i

02 -

0.0

Estimates
Models & i 5 i i h
Kw-TMOF 1.0017 0.9451 2.3330 -5.4912x10° 34721 142.4414
(©.961) (0.244) (1.498) {0.024) (0.046) (9.162)
TMOF 376.268 6.8744 0.65 0.1499 - -
(246.832) (0.596) (0.049) {0.302) - -
KTMOIE 0.4057 - 1.8859 -10x10° 4.788 21.8011
(0.064) - (0.766) {0.396) (2.401) (8.284)
BF - 0.6466 2.0518 - 15.0756 36.9397
- (0.163) (0.986) (12.057) (22.649)
GEF - 0.7421 1.6625 32112 13.2688
- ©.197) (0.952) (17.397) (9.96T)
MOF 04816 2.3876 1.5441 - -
(0.252) (0.253) (0.226) -
TF - 2.7898 1.3068 0.1298
- (0.163) (0.034) {0.208)
F - 2.8876 1.2643 -
(0.239) (0.059)

the Mathcad program. Based on these criteria in
Table 2 and 4, we conclude that the Kw-TMOF
distribution provides 0Oa superior fit to these data
than its sub models and non-nested models. Figure 3
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and 4 display the fitted pdf and cdf the Kw-TMOF
model to both data sets.
plots that the Kw-TMOF provides close fit to the
two data sets.

It 15 clear from these
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Table 4: The statistics and for data set 2

Models Y, AIC BIC HOQIC CAIC
Kw-TMOF 291.292 303.292 318.923 309.168 304.195
KTMOIE 301.016 311.016 324.022 316.288 311.645
BF 303.133 311.133 321.553 315350 311.554
GEF 303.960 311.960 332.381 316.178 312.381
TMOF 301.973 309.973 320.393 314.190 310.394
MOF 345.328 351.328 359.143 354.491 351.578
TF 344.475 350.475 358.290 353.638 350.725
F 344.308 348.308 353.519 350417 348.432
Table 5: MILEs and their standard errors (in parentheses) for data set 2
Estimates
Models i i B i 3 A
Kw-TMOF 1.0766 0.5893 4.5252 -5.5611x10° 3.0559 67.2623
(0.53) (0.088) (5.293) {0.509) (1.669) {46.922)
KTMOIE 1.4565 - 2.9071 -0.0002 1.7674 9.6266
(0.416) - (1.967) (0.336) (0.892) (2.585)
BF - 0.4046 1.6097 - 22.0143 29.7617
- (0.108) (2.498) (21.432) (17.479)
GEF - 0.4776 1.3692 27.6452 17.4581
- (0.133) (2.017) - (14.136) (14.818)
TMOF 101.923 3.3313 0.6496 0.2936 - -
(47.625) (0.206) (0.068) (0.27)
MOF 0.5988 1.579% 2.3066 -
(0.3091) (0.16) (0.498) -
TF - 1.7435 1.9315 0.0819
- (0.076) (0.097T) (0.198)
F - 1.7766 1.8705 -
(0.113) (0.112)
CONCLUSION Afify, A7, HM Yousof, G.M. Cordewro, EM.M. Ortega

In this study, we propose a new six-parameter
distribution, called the Kumaraswamy transmuted
Marshall-Olkin Frechet (Kw-TMOF) distribution which
extends the transmuted Marshall-Olkin Frechet (TMOF)
distribution (Afify et al., 2014a, b). We provide some of its
mathematical and statistical properties. The Kw-TMOF
density function can be expressed as a mixture of Frechet
densities. We derive explicit expressions for the ordinary
and mncomplete moments, Renyi and 1-entropies. We also
obtain the density function of the order statistics and
their moments. We discuss maximum hikelihood estimation
and calculate the information matrix. Two applications
illustrate that the Kw-TMOF distribution provides better
fit than other competitive distributions. We hope that the
proposed extended model may attract wider applications
in survival analysis.
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