Tournal of Engineering and Applied Sciences 14 (21): 8039-8046, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Dynamic Voltage/Frequency Scaling for EDZI. Scheduling in
Multicore Real-Time Systems

Sangchul Han, Minkyu Park and Woojin Paik
Department of Software Technology, Konkuk University,
268 Chungwondaero, Chungju-si, 27478 Chungcheongbuk-do, Korea
wipaik(@kku.ac kr, +82-43-840-3598

Abstract: Under heavy workload mobile real-time systems make full use of system resources to meet timing
constraints of tasks. Under light workload they need to reduce energy consumption due to limited system
resources and a limited power source. EDZL (Earliest Deadline until Zero Laxity), one of multiprocessor real-time
scheduling algorithms can enable gher system utilization then EDF (Earliest Deadline First) and its scheduling
overhead can be restricted. However, there 1s little work on reducing energy consumption in EDZL scheduling.
This study proposes a DVFS (Dynamic Voltage/Frequency Scaling) technique in EDZL scheduling. The
technique includes two algorithms: one that calculates a uniform speed on full-chip DVFS platforms and the
other that calculates task’s individual speed on per-core DVFS platforms. We present simulation results that
show our technique 1s sumple but effective for reducing energy consumption in real-time scheduling.

Key words: Multicore, mobile real-time system, scheduling, EDZ1., dynamic voltage/frequency scaling, DVFS

INTRODUCTION

Mobile embedded including wearable
computers, smartphones and tablet PCs are powered by
batteries. Since, batteries have a limited energy capacity,

systems

reducing energy consumption 1s a sigmficant issue in
designing mobile embedded systems to provide reliable
operation, prelong service time and execute a wide
range of applications. In recent decades many techniques
have been developed to reduce energy consumption
of architectural components such as display,
processars and memory. The techniques include DVFS
(Dynamic Voltage/Frequency Scaling) and power-aware
scheduling-based techniques, DPM (Dynamic Power
Management) using low power modes, microarchitectural

energy-efficient techmiques in components such as

RAM, cache and TLB and techniques using
unconventional-cores such as DSP or GPU (Mittal,
2014).

DVFS 1s a technique that reduces energy

consumption in processors by altering processor supply
voltage and/or frequency depending on the situation.
Since, dynamic power dissipation of switching
components decreases as the supply voltage decreases,
the energy consumption of processors can be reduced by

lowering the supply voltage (Chandrakasan et al., 1992).

Many processor benders have developed DVFS
technology for their products. For example, Intel’s DVFS
technology is EIST (Enhanced Intel SpeedStep). EIST is
integrated into single/multi-core processors such as
Intel Pentium series and Intel Core M series (IC., 2018).
ARM’s DVFS technology 1s IET (Imtelligent Energy
Management) which is contained in ARMI176I7ZF-5
platform (Khan et al., 2012). AMD also, developed a
DVFS technology power. Now, It 1s unplemented in
multicore processors such as AMD FX processors and
Athlon processors (AMD., 2018).

The challenge of applying DVFS to embedded
real-time systems 15 that supply

voltage/frequency causes real-time tasks to execute for a

lowering

longer time. The prolonged execution time causes, in turn,
a change m the schedule of real-time tasks. If the supply
voltage/frequency is excessively lowered, the timing
constraints of real-time tasks may not be satisfied, 1.e,
they may not complete their execution by their deadline in
the changed schedule. Hence, in embedded real-time
systems, DVFS techmques should be properly mtegrated
with schedulers and the supply voltage and frequency
should be altered prudently.

Nowadays, many mobile embedded systems
adopt multicore processors to run high performance

real-time applications like computer vision, speech/motion

Corresponding Author: Woojin Paik, Department of Software Technology, Konkuk University, 268 Chungwondaero, Chungju-si,
27478 Chungcheongbuk-do, Korea, wipaik{@kku.ac kr, +82-43-840-3598
8039

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

recognition software and so on. Since, these complex
real-time apvplications consumes a considerable amount
of energy, mobile embedded systems require effective
processor scheduling methods for reducing energy
consumption as well as satisfying the timing
constraints.

There are numerous researches about energy-aware
scheduling of real-time tasks on DVFS-enabled multicore
platforms. Many of them such as Chen and Kuo (2005),
Yang et al. (2005), Chen and Kuo (2007) and Aydin and
Yang (2003), devise DVFS techniques in partitioning
approach. In partitioning approach, tasks are partitioned
into subsets and each subset is statically assigned to a
processing core. Each subset is scheduled by a
uniprocessor scheduling algorithm like Rate Monotonic
(RM) (Liu and Layland, 1973), Earliest Deadline First
(EDF) (Liu and Layland, 1973) and Deadline Monotonic
(DM) (Audsley et al., 1991). The merit of partitiomng
approach is that it can deploy well-studied schedulability
analysis and DVFS techniques for umniprocessor
scheduling. The demerits are: task partitioning with
mimmized energy consumption is an NP-hard problem
(Aydin and Yang, 2003). Since, the processor utilization in
partitioning approach 1s not as high as global
approach, some applications that are schedulable in
global approach might not be schedulable 1n partitioning
approach. Adding or removing tasks requires task set
re-partitioning. On the other hand, there are some
research works on DVFS techniques in global approach
(Funaoka et al., 2008; Nelis ef al., 2008, Funk et af., 2012,
Han et al., 2015). In global approach, task migration is
allowed, that 13 preempted tasks can be resumed on any
available processing core. Global approaches can provide
higher processor utilization than partitioning approach
and tasks can be easily added or removed to/from a task
set.

One of global real-time scheduling algorithms for
multicore platforms 1s Earliest Deadline until Zero Laxity
(EDZL) (Cho et al., 2002). EDZL assigns the highest
priority to jobs (instance of tasks) whose laxity 13 zero.
The priority of the remaining jobs is given according to
EDF policy. The schedulability of EDZL 18 superior to
many scheduling algorithms while its runtime overhead is
acceptable. EDZL can schedule all task sets that are
schedulable by global EDF (Park et al., 2005) and can
schedule far more task sets than other EDF variants
(Cirinei and Baker, 2007; Baker et al., 2008; Lee and
Shin, 2013). In spite of the superiority of EDZL, there is
little research work on DVFS techniques for EDZI
algorithm.

In this study, we propose a DVFS technique for
EDZL scheduling algonthm on multicore platforms. Based
on the EDZL schedulability test presented by Lee and

Shin (2013), our technique computes the processing
core’s speed that can guarantee the timing constraints of
tasks while reducing their energy consumption. On
full-chip DVFS platforms where all cores share one clock
owr technique computes static uniform speed all cores
operate unmformly at the computed speed. On per-core
DVFS platforms where each core contains individual clock
our technique computes static individual speed for each
task. We also, present simulation results that demonstrate
that the proposed techmique can effectively reduce the
energy consumption of tasks in EDZL scheduling on
multicore platforms.

System model: Multicore platforms consist of m identical
processing cores P, P, ..., P, On full-chip DVFS
platforms, all processing cores share one clock and the
clock frequency of all cores is the same at any time. On
per-core DVFS platforms, each core contans an individual
clock and the clock frequency of each core may be
different from each other. The frequency range of clocks
18 [fuin fuwl and the execution speed of each core is
defined as the ratio of the current clock frequency to £,
that is if the current clock frequency of core P, is f, the
execution speed of P, 155, = £/£ . The maximum speed of
cores is s, = 1 and the minimum speed is s, = {,./f...
For example, if a job executes from tume t, to tune t, with a
clock frequency 0.5xf, ... the speed of the core during
(t,, t,) 18 0.5 and the amount of execution 1s (t-t,)=0.5.

In CMOS digital circuits like microprocessor circuits,
switching components 1s one of the main sources of
power dissipation. The power dissipation of switching
components, P, can be modelled as the following equation
(Chandrakasan et al., 1992):

P=C,-V,! T @
Where:
C,; = Constant that is determined by the characteristics
of circuits
Vg = Denotes the supply Voltage
f Denotes the clock frequency

The relation between the supply voltage and the
clock frequency 1s as follows:

1 e Ma= V) &
Vdd

T

delay

Ty = The circuit delay

Vy = Threshold voltage which 1s much <V,

d = Constant dependent upon hardware
characteristics and usually ¢ = 2 (Chandrakasan
etal, 1992)

8040

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

Thus, it is assumed that fo<V ;. From Hq. 1 and 2, we
say Pof’. Since, the execution speed of processing core,
say s is proportional to f, we have Pss’,

In this study, we consider scheduling a set of
periodic tasks T = {1, T, ..., T,}. Each task is represented
by two parameters and is denoted by 1, = (e;, p). & is the
worst-case execution time which 13 the amount of
time for a processing core to fulfil the worst-case
execution requirement of T, assuming it executes at speed
Spe [18 & period; T, repeatedly generates a job (or an
nstance) at every period. Suppose T, generates job T;; at
time a. T, requires the execution of at most ¢ time
units (at speed s,.,) and should be completed by absolute
deadline d;; = a+p. The utilization of T, is uy; = ¢/p, and the
total utilization of T1s U(t) = X, u. We define U__(1) =
max {u,|TET}.

The amount of remaining execution of job T; at time
t is denoted by 1, (). If T;; executes all the remaining
execution at speed s, the remaimng execution time is
r, (t)s. The laxity of a job is the amount of time for which
the job can idle (or may not execute) without missing its
deadline. This amount of time depends upon the
speed at which the job executes during its remaimung
execution. Suppose T, ; executes its remaining execution at
speed s, the laxity of T, at time t is defined as Eq. 3:

L (ts)=d-t 50 (3)
8

We assume preemption and migration are allowed.
That is any job can be preempted at any time by a higher
priority job and can be resumed on any available
processing core later. A job cannot execute on more than
one processing core at the same time and each
processing core cannot execute more than one job at the
same time.

EDZL scheduling: EDZL Cho et al. (2002) 15 a global
scheduling algorithm for multiprocessor real-time systems.
EDZ1. is a variant of EDF. Tt assigns the highest priority to
jobs whose laxity 1s zero. For jobs with positive laxity, it
assigns a higher priority to a job with the earlier deadline.
There are some researches on the dominance and
schedulability of EDZL. Park et al. (2005) proposed a
utilization-based schedulability test for periodic task sets
and showed that EDZL dommates EDF that 1s EDZL can
successfully schedule any task set schedulable by EDF.
Baker et al. (2008) extended, Cirinei and Balker (2007) and
presented an iterative EDZL schedulability test which 1s
called Baker's test. They demonstrated that the test is
superior to existing EDF schedulability tests. Lee and Shin
(2013) proposed another EDZI. schedulability test

(lemma 2) which is called T.ee’s test. This test utilizes
Goossen’s EDF schedulability test (lemma 1). They also,
demonstrated through simulation that their test 1s superior
to Baker’s test in terms of the number of schedulable
task sets.

DVEFS in EDZL scheduling: Piao ef af. proposed a DVFS
technique for EDZL algorithm. This technique determines
a uniform speed that reduces energy consumption on
full-chip DVFS platforms. Based on Baker’s test, the
techmque computes the mimimum uniform speed such that
the number of tasks with zero laxity is less than or equal
to m. Our technique presented in this research is different
from Piao’s technique in the following respects. First, our
techmque 1s based on Lee’s test. This makes our
technicque simpler and more effective because Lee’s test
is simpler but tighter than Baker’s test. Second, we
propose an algorithm for per-core DVFS platforms. The
algorithm can determine the speed of individual task when
each core contains individual clock.

Lemma 1: Goossens ef al. (2003) periodic task system T
can be EDF-schedulable upon m umt-speed identical
processors, provided its cumulative utilization is bounded
from above as follow:

U(t)sm-U m —1) 4

maz (1) (

Lemma 2: Lee and Shin (2013) On m-core platforms,
a task set T 1s schedulable by EDZL, if, there exists
m'(=1, 2, ..., m) satisfying the following equation:

EMTI u, <m*-(m*-1)- max <uj\ TeT,) (5)

where, T, = {167 | 14(mm-m") task with the largest u;}. Note
that T, = ©-T, where, T, is a set of (m-m") tasks whose
utilization is highest. In other words, T, is a set of
{n-m+m") tasks whose utilizaticn is lowest,

MATERIALS AND METHODS

Full-chip DVFS algorithm: This section proposes an
algorithm that determines a umiform speed for EDZL
scheduling on full-chip DVFS platforms where all cores
share one clock, so that, the cores operate at the same
speed at any time. This algorithm is based on Lee’s EDZL.
schedulability test (lemma 2). The followmng theorem
shows that there exists a umform speed with which
a task set is schedulable by EDZL, if the task set satisfies
Eq. 5.

8041

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

Theorem 1: Suppose a task set T is scheduled by EDZT,
on m-cere platforms. If there exists m” that satisfies Eq. 5,
then, T is schedulable with a uniform speed S(0<S<1) that
satisfies the following equation:

S > max {Umm ,ﬁ(U (T,)+{m*-1)- U, (T,))}

Proof: It 15 obvious that S should be no <U__(1). Let us
consider a task set v = {1,'= (e/S, p), T, = (&5,
Pi)s s T = (88, po}t where, the worst-case execution
time is scaled by 1/3. Let, u' denote the utilization of ©|.
Then, ' = w/S. Let, T,' be a subset of T such that T =
{t/et |t ¢(m-m") task with the largest u'}. Then:

. o
Zulizsg

g e LT,

By lemma 2, v 18 schedulable by EDZL on m
processing cores with the maximum speed. If the speed of
all the processing cores is S, the execution time of t, will
be e/3. The EDZL schedule of T with speed S 1s
equivalent to the EDZL schedule of T with the maximum
speed. Since, T 1s schedulable by EDZL with the maximum
speed as shown above, T is also, schedulable by EDZI.
with speed 3, Y.

Based on theorem 1, algorithm 1 computes the
minimum uriform speed for a given task set. For example,
consider T= {(1,12),(1, 6),(1, 2), (2, 3)} on 2-core full-chip
DVFS platform. Whenm'=1, T, = {(1, 12), (1, 6), (1, 2)}

and 8 = max {0.6667, 0.751=0.75. Whenm'=2, T,= {(1, 12),
(1,6),(1,2),(2,3) and S=max {0.6667,1.0417: =1.0417
which does not satisfies 0<S<l. Hence, the minimum
uniform speed for T is S,., = 0.75 when m’ = 1. Since,
Algorithm 1 calculates the sum of task utilizations for each

m'(=1, 2, .., m), its time complexity is O(mmn).

Algorithm 1; Calculate a minimum uniform speed:
function_calc uniform_speed(m, 1)

1 Syin= 1

2 for m*from 1 tom do

3 T, ~{Tetlt; e/m—m" tasks with the largest u;}

4 s { Uy, (1), 1 (U(T Hm* - 1U,,,, (T1)}
5 SN { Sy, 83
6 done
T retum S,

Per-core DVFS algorithm: This study proposes a
technicue that computes task’s individual speed, denoted
by S, 8., ..., S, for EDZL scheduling on per-core DVFS
platforms where each core contains individual clock and
its speed can be adjusted individually. On this platform,
when a job 1s about to execute on a core, the core’s speed
15 adjusted to the individual speed of the task of the job.
Suppose that there exists m’ that satisfies Eq. 5 for task
set T. We assign (m-m") cores to (m-m’) tasks with the
largest u,, 1.e., to tasks m T,(= t-T,). This 13 done by
setting the individual speed of tasks in T, as the same
value as their utilization, i.e., §; = u for 1, T,. Since, the
laxity of jobs of these tasks at their arrival is O by
definition (Eq. 3), the jobs are given the highest priority
and executed on (m-m") cores exclusively.

The remaining (n-m+m’) tasks, ie., T,’s tasks,
execute on m’ cores. Since, T, satisfies BEq. 4, T, is
EDF-schedulable on m” cores by lemma 1. Since, any task
set schedulable by EDF is also, schedulable by EDZL
(Park et al., 2003), T, is also, EDZL-schedulable cn m’
cores. We set the mdividual speed of tasks in T, as the
uniform speed of T, on m" cores. For 1€, 3§ =
calc uniform speed (m", T)).

Algorithm 2 finds such m"that minimizes the uniform
speed for T, and determines the individual speed of each
task. Since, it invokes calc uniform speed() for each m’,
its time complexity is O(m*n).

Example: Consider a taskset 1= {1, = (6, 10), 1, = (2, 4), T;
=(1,5), 1, =(2, 20)} on a per-core DVFS platform with 3
cores. Equation 5 is satisfied when m’ = 1. Algorithm 2
determines the individual speed of tasks as follows: T, =
{7, T4} and the umiform speed of T, on 1 core 1s 0.3. The
speed of 1, and T, is set to the same value as their
utilization, respectively. Thus, the individual speed is
5,=0.6, 5,=0.5and 5,= $,= 0.3.

8042

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

Algorithm 2; Calculate individual speeds:

function calc individual speed(m, T)

1 Spin= 1, Mype =M

2 form'from 1 to m do

3 T; ~{t et |t ¢m-m’ tasks with the largest u;}
4 if Brers iy = m'-(m" -1 U, (T)) then

5 s—calc_uniform_speed(m ,T))

6 if § < 8, then

7 Spuine 85 Mg I

8 fi

9 fi

10 done

11 T, ~{tit [tgm-m,,, tasks with the largest u,}
12 for 1T, do 8-S, done

13 for t,¢1-T; do S, done

14 retum S;, S4, ..., 8,

Algorithm 1 vs. 2: Now, we compare the energy efficiency
of the proposed algorithms in terms of task execution
speed. We show that, the execution speed of each task
determined by Algorithm 2 13 always lower than that of
Algorithm 1.

Let us define T, (M) = {t,et|tygm-M tasks with the
largest u;} and S*(M) = cale_uniform_speed(M, T,(MD)). It
1s trivial that T (m) = T and S%(m) 13 the uiform speed of
T onm cores determined by Algorithm 1.

Theorem 2: Suppose a task set T 1s EDZL-schedulable on
m-core platform. The individual speed determined by
Algorithms 2 is lower than the uniform speed determined
by Algorithm 1 for each task.

Proof; Suppose S*(M) is minimized when M = m’,,, in
Algorithm 2. Then, the individual speed S, can be denoted
as follows:

5 ke (m:mn) forteT, (m;m)

0, for t,e Tl(m;m)

In case T,eT (m’,,.), $(m’,.) is the minimum among
SYM) for M =1, 2, ..., m. Hence, Si= S%(m";)<S%m). In
case T,¢T (m’,,), from Algorithm 1, it is obvious that
Sm)=U, (1) Since, u<U, (1) for all e, S=u=U__(1)
<3*(m). Therefore, for every 1,67, the individual speed 3,
15 always lower than or equal to the wuform speed
Sm) .

RESULTS AND DISCUSSION

We evaluate the proposed DVFS algorithms through
periodic task scheduling simulations. We generate
periodic task sets as follows. For each m (= 4, &8, 16) that
denotes the number of cores, we vary the total utilization
of task sets in the range of 0.25-0.90 m with a step of 0.2.
Then, for each total utilization we generate 100 task sets.
The period (p;) and utilization (u) of tasks are randomly

Table 1: Processor characteristics

Frequency (MHZz) Voltage (V) Speed Power (mW)
1000 1.80 1.00 1600
800 1.60 0.80 00
600 1.30 0.60 400
400 1.00 0.40 170
150 0.75 0.15 80

Table 2: Nomenclatures

Symbols Discription

T Periodic task set

T ith task

Ty jth job of ith task

g Worst-case execution time of task T;

m Number of processing cores

n Number of tasks

P Period of task T;

8 Uniform speed for periodic task set ©

8 Minimum unitorm speed for (n-m+M) tasks whose
utilization is lowest

B Minimum uniform speed for periodic task set t

Si Individual speed of task T;

8 Execution speed of core P;, (0<5;<1)

T, Set of (n-m+m") tasks whose utilization is lowest. m if a
parameter

T, Set of (m-m") tasks whose utilization is highest. T, = t-T,

Ulr) Tatal utilization of periodic task set ©

UexT) Maximurn utilization of tasks in periodic task set ©

W Utilization of periodic task t, 5, (= e/py)

chosen from a uniform distribution over (10, 1000] and
(0.1, 1], respectively. The worst-case execution time (e;) of
a task is given by poay. The total number of task sets, we
generated 13 9,400. The schedulability of every task set 1s
tested using both Baker’s test (Baker ef al., 2008) and
Lee’s (Lee and Shin, 2013). If a task set does not pass
both tests or the number of tasks in a task set 1s <m, we
reject the task set.

The processor model of this simulation is Tntel Xscale
processor. Table 1 shows its characteristics. In this model
the processor’s frequency and supply voltage is altered
to one of levels listed in Table 1. The table also, shows
the speed and power of each voltage level. In our
simulation when we alter the speed of a core to S, the
frequency and supply voltage of the core are adjusted to
the lowest level whose speed is higher than or equal to S.
For example, when a job with individual speed 0.73 is
about to execute on a core, the core’s speed is adjusted to
0.8 (1.6 V-800 MHz-level). When the job finishes or is
preempted, the energy consumption is calculated using
the speed and power value of the level. If a job executes
for C time units and the speed and power value of the
voltage/frequency level are S and P, respectively, the
amount of energy consumed is calculated by (C/S)P
Table 2.

For each task set, we estimate the energy
consumption of all tasks in the task set for hyper-period
(the least common multiple of task periods) and
normalize it to the energy consumption without any DVFS
technique. Then, we average the normalized energy
consumption of task sets of a total utilization. Figure 1-3

8043

Fig. 1. Average

Average normalized energy consumption . .
Average normalized energy consumption

Average normalized energy consumption

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

1.0+
0.8
0.6
0.4+
—& Piao
0.2 —&— Our full-chip DVFS
—&- Our per-core DVES
0 T T 1
2 3
Total utilization
normalized energy consumption when m = 4
1.0
0.8
0.6
0.4
0.2 —&=Piao
—&— Our full-chip DVFS
—&- Our per-core DVFS
0 T T T T T
3 4 S 6 7
Total utilization
Fig. 2: Average normalized energy consumption when m = 8
1.0
0.8
0.6
0.4
—&Piao
02 —— Our full-chip DVFS
- —8- Our per-core DVFS
0 T T T T T T T T T

6 7 8 9 10 11 12 13

Total utilization

Fig. 3: Average normalized energy consumption whenm = 16

8044

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

show the average normalized energy consumption of
our algorithms and Piao’s for m = 4, 8, 16, respectively.
Owr algorithms are denoted by ouwr full-chip DVFS
(Algorithm 1) and our per-core DVFS (Algorithm 2). To
the best of our knowledge, there is no research work on
DVFS techmques m EDZL scheduling other than Piac’s
research. Thus, we compare our technique with Piao’s,
which 1s a full-chip DVFS technique.

As shown in Fig. 1-3, our per-core DVFS algorithm
can save a significant amount of energy on per-core DVFS
platform. And our full-chip DVFS algorithm can save a
little more energy than Piao’s. For mstance, when m = 4
and the total utilization is 2.0, our per-core DVFS algorithm
saves 41.5%, our full-chip DVFS one saves 20.1% and
Piao’s saves 13.5% of energy in average.

For a fixed number of cores, on the whole, more
energy can be saved as the total utilization of a task set
gets lower. When m 1s 4 and the total utilization 1s
1 (= 0.25 m), the average normalized energy consumption
of the three algorithms 1s 35~42% which mplies that
58~65% of energy can be saved in average. For task sets
with high total utilization, the algorithms can save less
energy because there is less room to disperse task
execution.

The normalized energy consumption of our per-core
DVFS algorithm increases almost proportionally to task
set’s total utilization. Meanwhile, when the total utilization
becomes higher than a certain value, the normalized
energy consumption of our full-chip DVFS algorithm and
Piao’s one approach to 1, 1.e., there 1s little energy saving.
As the total utilization increases, it is more likely that there
will be a ligh-utilization task in random task sets. Since,
U,.(T) 18 a dominant factor in determining a uniform speed
(note that a uniform speed should be greater than or equal
to U,..(1)), the performance of umform speed techniques
may degrade owing to one high-utilization task.

CONCLUSION

In tluis study, we propose a dynamic
voltage/frequency scaling technique for EDZL, a global
real-time scheduling algorithm. We present two algorithms
based on an existing EDZI. schedulability test. Our
full-chip DVFS algorithm computes a wniform speed all
tasks in a task set execute at the computed uniform speed
on full-chip DVFS platforms. Our per-core DVFS algorithm
calculates individual speed of each task, each task
executes at its own individual speed on per-core DVFS
platforms.

The simulation results show that full-chup DVFS
techniques including our algorithm and Piao’s can save
significant energy only, 1if there 13 no high-utilization task.
We can say that full-chip DVFS platforms suffer from

high-utilization task. Since, a uniform speed should be
greater than or equal to U__ (1), the uniform speed will be
high, if a high-utilization task exists in a task set, resulting
1n little energy saving. Per-core DVFS platforms do not
have such a problem. On per-core DVFS platforms, if
scheduling algorithms and DVFS algorithms are properly
coupled much more energy can be saved and the energy
consumption increases moderately as the total utilization
increases.

In our experiment we assume that all tasks require
worst-case execution. In most cases, however, the actual
execution time of real-time tasks 1s less than thewr
worst-case execution time. Many techniques, called online
DVFS techniques, make good use of this feature. And
they show that significant further energy saving is
possible. We plan to extend our research to devise online
DVFS algorithms for EDZI, scheduling.

ACKNOWLEDGEMENT
This study was supported by Konlkuk University in 2018.
REFERENCES

AMD., 2018. AMD Radeon VII the worlds first 7nm
gaming GPU. Advanced Micro Devices, Inc., Santa
Clara, California, USA. http://Awww.amd.com/en

Audsley, N.C, A Bums, MF. Richardson and
AT Wellings, 1991. Hard real-time scheduling: The
deadline-monotonic approach 1. IFAC. Proceed. Vol.,
24:127-132.

Aydin, H. and Q. Yang, 2003. Energy-aware partitioning
for multiprocessor real-time systems. Proceedings of
the 2003 17th International Symposium on Parallel
and Distributed Processing, April 22-26, 2003, TEEE,
Nice, France, pp: 1-9.

Baker, T.P., M. Cirinei and M. Bertogna, 2008. EDZT.
scheduling analysis. Real Time Syst., 40: 264-289.

Chandrakasan, A.P., S. Sheng and R.W. Brodersen, 1992.
Low-power CMOS digital design. TEEE. . Solid State
Circuit, 27: 473-484.

Chen, I.I. and C.F. Kuo, 2007. Energy-efficient scheduling
for real-time systems on Dynamic Voltage Scaling
(DVS) platforms. Proceedings of the 13th TEEE
International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA 2007), August 21-24, 2007, TEEE, Daegu,
South Korea, ISBN:978-0-7693-2975-2, pp: 28-38.

Chen, J.J and T.W. Kuo, 2005 Multiprocessor
energy-efficient scheduling for real-time tasks with
different power characteristics. Proceedings of the
2005 Tnternational Conference on Parallel Processing
(ICPP'05), Tune 14-17, 2005, TEEE, Oslo, Norway, pp:
13-20.

8045

J. Eng. Applied Sci., 14 (21): 8039-8046, 2019

Cho, 8., SK. Lee, S. Ahn and K.J. Lin, 2002. Efficient
real-time scheduling algorithms for multiprocessor
systems. IEICE. Trans. Commun., 85: 2859-2867.

Cirmnei, M. and T.P. Baker, 2007. EDZL scheduling
analysis. Proceedings of the 1%h Euwomicro
Conference on Real-Time Systems (ECRTS'07), July
4-6, 2007, IEEE, Pisa, Italy, ISBN:0-7695-2914-3, pp:
9-18.

Funaoka, K., A. Takeda, S. Kato and N. Yamasaki, 2008.
Dynamic voltage and frequency scaling for optimal
real-time scheduling on multiprocessors. Proceedings
of the 2008 International Symposium on Industrial
Embedded Systems, June 11-13, 2008, IEEE, Le
Grande Motte, France, ISBN:978-1-4244-1994-4, pp:
27-33.

Funk, S., HO. Clhuahsun, V. Berten and J. Goossens, 2012.
A global optimal scheduling algorithm for
multiprocessor low-power platforms. Proceedings
of the 20th International Conference on Real-Time
and Network Systems, November 8-9, 2012,
ACM, New York, USA., ISBN:978-1-4503-1409-1, pp:
71-80.

Goossens, J., S. Funk and S. Baruah, 2003. Priority-driven
scheduling of periodic task systems on
multiprocessor. Real-Time Syst., 25: 187-205.

Han, S., M. Park, X. Piao and M. Park, 2015. A dual speed
scheme for dynamic voltage scaling on real-time
multiprocessor systems. J. Supercomputing, 71:
574-590.

IC., 2018. Intel product specifications. Intel Corporation,
Santa Clara, California, TUSA. https: /ark.intel.com/
content/www/us/en/ark html

Khan, T., S. Bilavarn and C. Belleudy, 2012. Energy
analysis of a DVFS based power strategy on arm
platforms. Proceedings of the 2012 TEEE International
Conference on Faible Tension and Consommation,
June 6-8, 2012, IEEE, Paris, France, ISBN:
978-1-4673-0822-9, pp: 1-4.

Lee, J. and I. Shun, 2013. Edzl schedulability analysis n
real-time multicore scheduling. IEEE. Trans. Software
Eng., 39: 910-916.

L, CL. and I.W. Layland, 1973. Scheduling algorithms
for multiprogramming i a hard-real-time environment.
J. ACM.,, 20: 46-61.

Mittal, S., 2014. A survey of techmiques for improving
energy efficiency in embedded computing systems.
Intl J. Comput. Aided Eng. Technol.,, 6: 440-459.

Nelis, V., I. Goossens, R. Devillers, D. Milojevic and
N. Navet, 2008. Power-aware real-time scheduling
upon identical multiprocessor platforms. Proceedings
of the 2008 IEEE International Conference on Sensor
Networks, Ubiquitous and Trustworthy Computing
(sutc 2008), Tune 11-13, 2008, TEEE, Taichung,
Taiwan, pp: 209-216.

Park, M., S. Han, H. Kim, S. Cho and Y. Cho, 2005.
Comparison of deadline-based scheduling algorithms
for periodic real-time tasks on multiprocessor. TEICE.
Trans. Inf. Syst., 88: 658-661.

Yang, CY., IJ. Chen and T.W. Kuo, 2005 An
approximation algorithm for energy-efficient
scheduling on a chip multiprocessor. Proceedings of
the 2005 TInternational Conference on Design,
Automation and Test in Europe, March 7-11, 2005,
IEEE, Munich, Germany, pp: 468-473.

8046

	8039-8046 - Copy_Page_1
	8039-8046 - Copy_Page_2
	8039-8046 - Copy_Page_3
	8039-8046 - Copy_Page_4
	8039-8046 - Copy_Page_5
	8039-8046 - Copy_Page_6
	8039-8046 - Copy_Page_7
	8039-8046 - Copy_Page_8

