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Abstract: The most important demands for a power system is operating with a minimum cost with suitable
system constramts. The system constraints which kept within a satisfactory limits such as voltage magmtudes
of all load buses, real power, reactive power at each bus. This study proposed two optimization techniques: bird
swarm optimization and Genetic algorithm. These optimization techniques are implemented on TEEE 30 bus test
system. The model of proposed system 1s developed in the MATLAB and its simulated results have

demonstrated the satisfactory values.
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INTRODUCTION

An Optimal Power Flow (OPF) plays an important role
i electrical power system due to the keys of system
operation and planning must be economic and secure.
Recently, there are many considerations have been
supplemented by researches and industrial countries
(Weedy et al., 2012). The capability to gain a satisfactory
amount of power flow with a minimum losses, particularly
an optimal power flow based on optimization techniques
has been developed (Zhang and Li, 2010). Different
optimization techmques have been involved to solve the
power flow problems such as Optimal Power Flow (OPF).
Even though the optimization problem is a mathematical
model the main objective is to minimize undesirable things
such fuel costs, errors and energy system losses in
contrast the maximum desirable things such as efficiency
and system stability (Hoolimath ef al., 2012; Bansal, 2005;
Mohamed et al., 2009).

To provide better economic dispatch as well as to
reduce the total generation cost, an optimal power flow
model with the transmission line impedance considered as
a flexible model that 1t 1s formulated as a mixed mteger
quadratic programming 1s presented (Ding et al., 2015).
The generation cost will be mimmized according of
mcreasing the range of impedance and consequently it
will be appeared difficulty with large networks.

To solve the OPF problems, a local solutions of OPF
is presented (Bukhsh et al., 2013). This method is
interested to find a voltage profile within its limits for a
stressed network and this local solution is close to global
values. In contrast, a global optimal solutions have been
discussed by Wang ez al. (2007). However, the proposed

techniques 1n this study can be implemented in real time
applications to solve commutation issues of large scale
market based OPF. In order to emphasis and concentrate
of optimal generation cost by integrating new
formulations and optimizing algorithms. Combing the non
convex optimization algorithms to achieve an adequate
voltage profile for OPF constraints.

In this study, a Bird Swarm Optimization (BSO) and
Genetic Algorithm (GA) have been introduced to
investigate in order to deal with an optimal power flow. In
spite of GA requires tremendously high time but 1t has an
advantages such as a set of solutions from one
generation to the next and not a single solution, thus,
making 1t less likely to converge on local mimima. In
addition, GA based on mutation and crossover that the
solutions are developed randomly (Ding et al, 2015
Bukhsh et al, 2013; Wang et al, 2007; Bhavani and
Kumar, 2014). As well as GA necessity is only involves
rough information of the objective function. B3SO has
been considered due to simplification of the social
behaviors and social interactions in bird swarms. It mimics
the bird’s foraging behavior, vigilance behavior and flight
behavior. Thus, the swarm mntelligence can be efficiently
extracted from the bird swarms to optimize problems
(Bansal, 2005).

Since, the constraints in the electric power system 1s
inherently nonlinear then the proposed objective function
1s nonlinear under contingency conditions (Ding et al.,
2015). Tt is also, the research (Bukhsh et al., 2013) has
developed a modified bacterial foraging algorithm
incorporated with FACTS to solve the optimal power flow.
However these FACTS devices force the power system to
operate in a complex manner.
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MATERIALS AND METHODS

Optimal power flow problem: The undesirable factor fuel
cost 13 adjusted to a mmimum to be an objective function
for optimal power flow problem. This minimal fuel cost is
stated as:

.
Minimize F = Zg(AiP;i +BP, +C)$/h (1)

where, A-C are the cost parameters as given in Appendix.
Equation 1 is balanced due to active power P, (V, 8)-P P,
=0i=1,2, ..., N, and reactive power Q, (V, 8)-Q+Q,; =0
1=N,, Ny, -, Ny, limits on real power, voltage magitude

and voltage angles, respectively, I <P, <PI™:

vV—lmin < \[1 < \[lmax
Fon<d <8 i=1,2, ., N,
Where:
P, = The active power from bus g to bus 1
V, = The voltage magnitude at bus i

The real power flow Eq. 2 1s:

I8!
P (V,8)= % Vv (G, cos8,+B,sin, )
1=1

Q.(V. 8)= 3V, (G, sin (8,8, cos (5,)) @

Case study; TEEE 30 bus test system: The proposed
method was tested in the TEEE 30-bus, 6 generator test
system that has a total load 283.400 MW, 126.200 MVAR
MVAR and MVA base is 100 MVA. The active and
reactive power losses of the system are 18.403 MW and
29.125 MVAR, respectively. The single line diagram of a
30 bus test system 18 shown mn Fig 1. Appendix gives the
details of TEEE 30 bus test system data.

Bird swarm optimization for OPF: The basic steps fora
bird swarm optimization 1s summarized m the flowchart as
shown in Fig. 2. Each bird searches for food according to,
its experience and the swarms as follows:

= xfﬁ(plj-xfj)xcxrand (o, 1)+(g1—xfj)xs><rand (0,1)

1]

3)
where, p,; is the best previous position of the ith bird and
g; the best previous position shared by the swarm. The
flight behavior can be described mathematically as
follows:

=+

Fig. 1: IEEE 30 bus test system single line diagram
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Fig. 2: Bird swarm optimization flowchart
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xf_}'l = Xf_ﬁ(x;j—xf_j)XFL =xrand (0,1)

where, randn (0, 1) denotes Gaussian distributed random
number, C, S, al, a2, FL: five constant parameters, taking
C =3 =15, al = a2 = 1,Pe(08 1), Fle(0.5, 0.9) and
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FQ = 3, initialize the population and define the related
parameters. Evaluate the N individual’s fitness value and
find the best solution. If the new solutions are better than
their previous ones, update them to find the current best
solution. The individual with the best objective function
value in the population. The parameters in BSO are
presented as follows:

¢ Set the default parameters: lower and upper bounds

*  Formation of Y bus

¢  Formation of the diagonal elements

*  Imitializing Jacobian matrix

+  Initialization the individual’s best fitness value

¢ Divide the bird swarm into two parts: producers and
scroungers

*  Update the individual’s best fitness value and the
global best one

*  Objective function y = Sphere( x )

¢ The obtained simulation results are fuel cost =
822.9344 $/h

This fuel cost can be improved by changing bird
flight behavior dynamically.

RESULTS AND DISCUSSION

Genetic algorithm for OPF: The flowchart in Fig. 3
summarized the execution processes of the GA that
includes the steps of initialization, selection, crossover
and mutation then finally, the new generation. The
generation and the fitness values as follows. F =
801.9463 $/h with the active generating power for each
generators as Pgg = (178.2460, 50.3148, 21.9006, 21.1074,
11.4689, 9.8821) MW as shown in Fig. 4 a when the
generations are 200. The total losses 1s 9.5197 MW.

When the optimization 18 repeated when the
generations is 50 then the following results will be
obtained, F = 823.2186 $/h, Pgg = (192.1325, 24.7690,
16.4970, 15.9747, 30.0000, 13.8644) MW as shown in
Fig. 4b. The total losses 13 9.8375 MW. It can be observed
from Table 1 and 2 that the obtained different expected
objective function values due to uncertainty level of the
inputs corresponding to get minimum fuel cost for various
No. of generations. Knowing that base = 100 MVA and
the accuracy is 0.0001. Tt can be seen that as taking the
fuel cost as an objective function then after OPF with a
minimum objection function has to be considered.

However, these obtained values are a little bit lngher
than the results when a bacterial foraging algorithm is
used, since, the active power loss 1s 8.4625 MW and the
fuel cost is 800.1585 $/h due to significant of
mcorporating the FACTS in the system (Bukhsh et al,
2013) (Tablel and 2):

Read input data
From Y-Bus by sparsity

[ Initialize random ]

population set Gen = 1

—P(Chromosome count ii = l]
v

Decode the chromosome and
assign it to variables, modify
Y-Bus and run NR load flow

|Gen = Gen+j v
4 Calculate and assign fitness
for the chromosome

4—|

'ii = ii+1'

v
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Gen<Genmax? Problem converged
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Fig. 3: GA flowchart

(a)

5 x10°
+ Best fitness
E] 4 * Mean fitness
<
g,
[ R T
0 L TN et s

0O 20 40 60 80 100 120 140160 180 200

(b) Generation
x10*
15 + Best fitness
g * Mean fitness
<10+
>
g
1) NS T U ST S S DS S 4SS S S S TT T T TP
0O 5 10 15 20 25 30 35 40 45 50

Generation

Fig. 4: Fittnes values with respect to generation: a) When
generations is 200; Best: 801.946; Mean: 882.292
and b) When generations i1s 50; Best: 823.219;
Mean: 1394.87

»  The steps for simulation:

*  Read input data: bus data line data generator cost
s Test for max. power mismatch

»  Imtializing Jacobian matrix

8036



J. Eng. Applied Sci., 14 (21): 8034-8038, 2019

Table 1: The active power generation for each generator

Gen. No. Active power generation (MW
Gl 178.2460

G2 50.3148

G3 21.9006

G4 21.1074

G5 11.4689

G6 9.8821

Total losses 9.5197

Total cost 801.9463 $/h

Table 2: The active power generation for each generator

Gen. No. Active power generation (MW)
Gl 1921325

G2 24.7690

G3 16.4970

G4 15.9747

GS 30.0000

Go 13.8644

Total losses 9.8375

Total cost 823.2186 $h

*  The Mvar of generator buses are tested. If not within
limits Vm(n) 1s changed m steps of 0.01 pu to bring
the generator Mvar within the specified limits

+  Power flow solution by Newton-Raphson method

¢ Set GA parameters: population size = 50

»  Crossover: explores new generations

* Mutationr avoids premature convergence of the
population (Tablel and 2)

CONCLUSION

Despite advances in mathematical optimization
techniques have yet to accomplish firm and dependable
applications in power system plamming and operation. The
objective is formulated as an optimization problem to
minimize the total system losses in the system as well as
total fuel cost. A knowledge based system can improve
the facilities of a power system where GA can obtain
knowledge through well-established models. Tt is simple
in implementation but has slow convergence for OPF. A
satisfactory simulation results for OPF using bird swarm
optimization can be improved with a dynamic change of
frequency of bird flight behavior.

NOMENCLATURE
Parameters
A, Band C Cost parameters
PV, 8) Active power
QV. 8) Reactive power
F Minimal fizel cost
Y g R Voltage magitude limits
B §, = T Voltage angles limits
randn (0, 1) Gaussian distributed random number
C, 8, al, a2, FL Five constant parameters
APPENDIX

IEEE 30-bus test system
busdata
Bus bus voltage angle load generator injected

N
1 1 106 00 00 0.0
2 2 1043 00 2170 127
3 0 10 0.0 24 1.2
4 0 106 00 7.6 1.6
5 2 101 00 942 19.0
g 0 1.0 0.0 0.0 0.0
7 0 1.0 0.0 228 10.9
8 2 101 00 300 30.0
@ 0 1.0 0.0 0.0 0.0
10 0 1.0 0.0 58 2.0
11 2 1.082 00 0.0 0.0
12 0 1.0 0 11.2 7.5
13 2 1071 0 0 0.0
14 0 1 0 6.2 1.6
15 0 1 0 8.2 2.5
16 0 1 0 3.5 1.8
17 0 1 0 9.0 58
18 0 1 0 32 0.9
19 0 1 0 9.5 34
20 0 1 0 2.2 0.7
210 1 0 17.5 11.2
22 0 1 0 0 0.0
220 1 0 32 1.6
24 0 1 0 8.7 6.7
25 0 1 0 0 0.0
26 0 1 0 3.5 2.3
27 0 1 0 0 0.0
28 0 1 0 0 0.0
200 1 0 2.4 0.9
30 0 1 0 10.6 1.9
Line data:
Bus bus R+1/2 B Line
1 2 0.0192
1 3 0.0452
2 4 0.0570
3 4 0.0132
2 5 0.0472
2 3] 0.0581
4 6 0.0119
5 7 0.0460
6 7 0.0267
6 8 0.0120
6 9 0.0
6 10 0
9 11 0
9 10 0
4 12 0
12 13 0
12 14 0.1231
12 15 0.0662
12 16 0.0945
14 15 0.2210
18 17 0.0824
15 18 0.1073
18 19 0.0639
19 20 0.0340
10 20 0.0936
10 17 0.0324
10 21 0.0348
10 22 0.0727
21 22 0.0116
15 23 0.1000
22 24 0.1150
23 24 0.1320
24 25 0.1885
25 26 0.2544
25 27 0.1093
28 27 0
27 29 0.2198
27 30 03202
29 30 0.2399
8 28 0.0636
6 28 0.0169
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Cost coefficients

Cost coefficients

Startup Shutdown
A B C Pmax Pmin Min up Min down Rampup  Ramp down ramp ramp
Units Bus  ($/MWh*) ($/MWh) $) (MW) MW) time () time (h) (MW) (MW) (MW) (MW)
Gl 1 0.0200 15.00 0 80 15 2 2 25 25 70 50
G2 2 0.0175 14.75 0 80 15 2 2 25 25 70 50
G3 13 0.0250 16.00 0 50 10 3 3 15 15 70 60
G4 22 0.0625 14.00 0 50 10 4 4 15 15 70 60
G5 23 0.0250 16.00 0 30 5 3 3 10 10 70 60
Gé 27 0.0083 15.25 0 55 10 4 4 15 15 70 60
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