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Abstract: The high consumption of garlic in Indonesia cannot be followed by an adequate supply of garlic, so
that, until now Indonesia still imports garlic. Policy formulation in the field of essential goods requires accurate
mnformation The study discusses modeling stages and develops of the average prices of garlic n Indonesia with
the ARTMA Box-Tenkins method. The monthly data of average prices of garlic in the January 2014 to June 2018
period obtained from the directorate of basic goods and essential goods of the Mimstry of Trade of the
Republic of Indonesia. Model development uses data from the period of January 201 4 to December 2017 which
were referred to as in-sample data while data from January 2018 to June 2018 period as out-sample data to
evaluate model performance. Modeling begins with the transformation of time series data into stationary time
series data, identification pattern of common models via. plot of ACF and PACF values, estimating and testing
of parameters to obtain a feasible model, then continued with a model diagnostic test and finally, gets the best
model is ARTMA Model (1, 1.0). Based on the best model, the comparison plot was made between the actual
and predicted values that were resulted by both of in-sample and out-sample data and also was calculated the
coefficient of determination (R*) as accuracy measure. The actual and predicted values plot in the in-sample
data are very comcident and produce R’ which is quite high at 91. 4%. However, the performance of the ARIMA

(1,1, 0) Model is moderate when forecasting cut-sample data whicch R? is 59.8%.
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INTRODUCTION

One of the staple goods which is always monitored
and managed by the Directorate General of Domestic
Trade of the Republic of Indonesia (Directorate General of
PDN RI) in particular the directorate of basic needs and
essential goods is garlic. Garlic is one of the basic needs
commonly used for cooking food. In everyday life, garlic
is consumed by almost all Indonesian people both in
urban and rural areas. Unfortunately, the consumption of
high garlic is not followed by an adequate supply. This is
caused by less suitable land, weather and climate factor
and the difficulty of finding the right seeds which
Indonesian farmers are accustomed to planting local
seeds and not believing in imported seeds. Therefore,
until now Indonesia has not been able to mdependently
fulfill the needs for garlic and still import garlic. The
largest import of garlic came from China (Anonymous,
2017).

Indonesia’s  dependence on  garlic-producing
countries such as China has caused garlic prices in
Indonesia to depend on imported garlic. The average
prices of garlic in Indonesia from January 2014 to June
2018 tend to increase and also, fluctuate. The right policy
formulation in the field of essential goods and essential
foods, then there will be price stabilization which ends the

community will benefit (Anonymous, 2018). Accurate and
timely information support will be absolutely necessary to
produce wise policy. Statistics modeling has an important
role to produce accurate forecast values.

The availability of time series data on the average
prices of garlic per month in the period January 2014 to
June 2018, mspired the researcher to do ARTMA modeling
in order to obtain accurate forecast values. Some
researchers have successfully applied the ARIMA
Model in various fields, namely forecasting prices and
productivity of the construction industry in Singapore by
Hua and Pin (2000), Tan et al. (2010) improving daily
electricity prices using a combmation of wavelets and
ARIMA-GARCH while improving accuracy forecasting
on annual rnoff data with the ARTMA method by
Wang et al. (2015). Many researchers also, compare
performance and hybridization between ARIMA methods
and neural networks mcluding Ho et af. (2002) and Zhang
(2003). Even, Rojas et al. (2008) applied soft-computing
method and Handoyo et al. (2017) applied particle swarm
optimization for estimating ARTMA Model parameters.
Even recently, Kusdarwati and Handoyo (2018) used the
identification mputs of a hybrid model of wavelet and
neural networks based on identification from the ARIMA
Model, the same research was done by Handoyo and
Marji (2018) as input of fuzzy inference systems. Some of
the above studies show that the modeling of time series
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data is rooted in the ARIMA method which has a
structured stage of the modeling process, so that, it is

easy to apply.
MATERIALS AND METHODS

A process can be said to be a stationary process, if
it produces a mean and variance constant at the same
mterval time of observation. According to Cryer and
Kung-Sik (2008), stationarity is an important assumption
in inferential statistics. Stationary in the time series means
that the data remains constant throughout the time of
observation. If a time series data is stationary, data
fluctuations will be around a constant mean value.

Variation fluctuations can be seen visually through
time series data plot. If the fluctuations of the variance in
time series data are not too large (homogeneous), the time
series data is said to have been. stationary against the
variance. Box-Cox transformation 1s a method for checking
stationary variance n a time series data (Wei, 2006). If the
value of A =1 then the data is stationary to the variance
and if the value of A is not the same as 1 then the data is
transformed by raising the data with the value A obtained
in the Box-Cox plot. Stationary against mean testing can
be done using the Augmented Dickey-Fuller wnit root
test. Cryer and Kung-3Sik (2008) facilitates the notion of
unit root testing by looking at the AR(1) Model as
follows:

Y, -Y, :(afl)YH X

=aY,_ +oX _+ ... +0.X_ t+e
=ay, +¢ (YH Y, )+= sty (Yt—k Y ) Te
(1
Based onEq. 1 above, the hypothesis used in testing
stationary against mean with the roottest of Augmented
Dickey-Fuller unit is:

¢ H; o= 0(time series is not stationary against mean)
V8.
¢ H;: ¢<0 (stationary time series against mean)

If the time series data 1s not stationary against the
meary, the differentiation process is done until the time
series that is stationary against the mean. The steps in
modeling the ARIMA (p, d, q) in general are as follows:

Model identification: According to Wei (2006), most time
series data are not stationary while the autoregressive (p)
and moving average (q) determunations m  ARIMA

modeling can only be done on stationary data.
Determination of the p order is done by looking at the
PACF plot while determination the ¢ order is done by
looking at the ACF plot. According to Cryer and Kung-Sik
(2008), the general characteristics of ACF and PACF for
the ARTMA Model with a degree of difference equal
to 0 ({d = 0) can be seen in Table 1.

Parameter estimation and significance testing:
According to Cryer and Kung-Sik (2008), there are several
methods for estimating of parameter in a mode] including
method of moment, least square estimation, maximum
likelihood and unconditional least square. Properties of
the estimates, illustrations of parameter estimation and
bootstrapping of ARTMA Models. Handoyo et al. (2007)
estimated the parameter of ARMA Model using Particle
Swarm Optimization (PSQ) method which resulted in
parameter estimator values which were not significantly
different is compared parameter estimator values by the
ordinary least square or maximumlikelihood method.

The parameter estimation method commonly be used
is the maximum likelihood method. According to Wei
(2006), the log-likelihood function for ARTMA (p, q) can
be written as follows:

2 2 S(q),uﬁ)
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lnL(q),;_goj) = _gln(moi) B S(zq’pz“)
c

a

To obtain the value #t | the log-likelihood function for
AR (1) m Eq. 2 18 maximized by differences of partial and
finally, the estimator parameters p as follows:
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So that, i can be calculated using Eq. 3 below:
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In addition, in order to obtain a value of § then the
log-likelihood function for AR (1) m Eq. 2 18 maximized by
partial differences agamst the parameters ¢, to be
expected to be as follows:

Table 1: General characteristics of ACF and PACF for the ARIMA Model withd =0

Process AR (p) MA (q) ARIMA (p, @; p, g=0
ACF Decreases exponentially or sine wave Disconnected after the g-lag Decreases exponentially or sine wave
PACF Disconnected after the p-lag Decreases exponentially or sine wave Decreases exponentially or sine wave
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So that, 1f Eq. 4 1s sumplified, it can be calculated using the
following equation:
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6, = =ptl

5 (v -5

t=p+1

Parameter significance testing aims to determine the
parameters that can be ncluded n a model with the t-test
statistics as follows:

The testing criteria used 1s if t>t (at/2, n-q) then reject
H,. In addition, the testing criteria that can also be used is
comparing the p-value with the real level used (@). Reject
H,, if the p<ec means the parameter in the model is
significant at the sigmficance level of a.

Diagnostic testing of model: After estimating of the
parameters, then only the models with significant
parameter values will be diagnostic to find out the
feasibility of model. Diagnostic testing of the model can
be done in three ways, namely by the Ljung-Box test,
dentifying the ACF residual plot in white noise and the
normality of the test. According to Wei (2006), the value
of the residual (error) generated after ARTMA modeling is
expected to be only a random disturbance. Therefore, if
the autocorrelation has been obtained, it is expected that
there will be no sigmificant autocorrelation. The feasibility
of the model can be tested using the Ljung-Box test with
the Q statistics as follows:

2

Q=n{n+ 2)2@%‘1{)

2
- xkfm

According to Cryer and Kung-Sik (2008), if the value
of ¥ where m is the number of parameters estimated,
results in a decision to accept H;. In addition, the testing
criteria that can be used is by comparing the p-value with
the significance level used (o). Accept Hy, if the pzo
that means the ARIMA Model 1s sutable for
forecasting.

Measures of model accuracy: A model can be said to
have a high accuracy, if the model can predict the actual
values by producing the predicted values with the small
gap. Therefore, a calculation method is needed how it can
produce a value which can describe the accuracy of the
model. One method that can be used in measuring the
accuracy of a model is the coefficient of determination
{(R*). According to Handoyo and Marji (2018), the
coefficient of determination can be calculated by using
equation as follows:

If the coefficient of determination (R”) gets closer to
one, the better the match of the data with the model or in
other words the predicted values are very close to atual
values. Whereas if the coefficient of determination (R?) is
closer to zero, then the worse of the data matching with
the model or m other words the predicted values are
almost incorrect. The coefficient of determination (R) is
more often presented in percentage form, meamng that the
percentage of the total diversity of data can be explained
by the model used while the residual may be due to other
factors that fail to be taken mto account in the model.

RESULTS AND DISCUSSION

In this study, a model will be built from data of the
average price of garlic n Indonesia from January 2014 to
June 2018 which 1s presented in Fig. 1.

The information that can be obtained from the time
series data plot m Fig. 1 is the average price of garlic in
Indonesia tends to fluctuate. The average price of garlic
1in Indonesia has increased from September 2015 to May
2016. In addition, starting in June 2017 there was a
decrease 1n the average price of garlic i Indonesia until
around the end of 2017. To model the average price of
garlic in Indonesia, the data will be divided into two parts,
namely in-sample data and out-sample data. In-sample
data is the average price of garlic in Indonesia from
Tanuary 2014 to December 201 7 while the out-sample data
1s the average price of garlic in Indonesia from January
2018 to June 2018. In-sample data 1s used to build the
model (curve fitting) while the out-sample data will be
used as a model performance test in forecasting.

Before identifying the ARTMA Model, data must
be stationary in terms of both variance and mean. Based
onthe time series data plot in Fig. 1, it indicates that
the data 1s not stationary on variance and mean. To form
stattionary data on the wvamance, the Box-Cox
transformation is performed with A = -1 against all datum
inthe in-sample data. The following is the Box-Cox chart
after being transformed.
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Fig. 1: Plot of average garlic prices in Indonesia (Anonymous, 2017)
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Fig. 2: Plot Box-Cox for in-sample data after transformation with 4 = -1

From the Box-Cox plot in Fig. 2, we geta A value of 1.
Thus, it can be concluded that after the transformation is
done by lifting the entire datum by -1, the in-sample data
has been stationary in the variance. Because the -
sample data is not stationary in the mean, then the first
differencing is done, then a correlogram analysis is made
through the Auto Correlation Function (ACF) plot and the
Augmented Dickey-Fuller umt root test. The following 1s
ACF plot results for in-sample data after the first
differencing.

Based on the ACF plot in Fig. 3, it appears that the
autocorrelation 1s only significant (out of the confidence

limit) in the first lag. Therefore, it can be concluded that
the in-sample data has been stationary against the mean
after the first differencing. To be more convineing about
the results of the correlogram analysis, then the root test
of the Augmented Dickey-Fuller unit was carried out. Tt
shows that the p-value is close to zero on both lag 0 and
1 and the result of p-value 13 0. 0108 1n lag 2. Because the
p-value of all the lags 1s smaller than ¢ = 0. 05, it results in
a decision that there is no unit root in the in-sample data
after the first differencing. Thus, it can be concluded that
the m-sample data is stationary against the mean after the
first differencing.
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Fig. 3: Autocorrelation Function (ACF) plot of m-sample
data after the first differencing (5% significance
limits)
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Fig. 4: ACF plot of m-sample data after stationary (5%
significance limits)

After the data is stationary on variance and mean,
then the model identification is based on correlogram
analysis through ACF and PACT plots on the stationary
data. The following are the results of the ACF and PACF
plots on in-sample data that have been stationary against
variance and mean.

From the ACF and PACF plots, the order of the
ARIMA Model can be determined based on significant
autocorrelation and partial autocorrelation (out of the
confidence limit) which will be used as a general model. In
the ACF plot in Fig. 4, it can be seen that the
autocorrelation is only significant in the first lag, so that,
it can be determined that q order is 1. Whereas in the
PACF plot in Fig. 5, it can be seen that partial
autocorrelation is only significant in the first lag, so that,
it can be determined that p-order is 1. Previously, the first
differencing has been carried out to achieve stationary in
mean of n-sample data, so that, it can be determmed that
d-order 1s 1. Thus, the general model that be obtamed 1s
ARIMA (1,1,1). By using the ARIMA (1, 1, 1) model as a
benchmark, some tentative models can be determined
mcluding ARTMA (1, 1, 0) and ARIMA (0, 1, 1). The next
step is to estimate the parameters in the three models.
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Fig. 5: PACF plot of m-sample data after stationary (5%
significance limits)
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Fig. 6: Plot ACF of residual for ARTMA Model (1, 1, 0
with 5% significance limits)
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Fig. 7. Plot ACF of residual for ARTMA Model (0, 1, 1
with 5%  sigmificance linits  for  the
autocorrelations )

There are several ways that can be used to estimate
parameters inthe ARTMA Model, one of the methods that
can be used 1s the maximum likelihood method. After
estimating the perameters in the ARIMA Model, the
parameter sigmficance testing for the three models 1s
conducted using the t-test. The following are the results
of the estimation and parameter significance testing for all
tentative models based on the general ARTMA (1, 1, 1)
Model (Fig. 5-7).
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Fig. 8: Comparison curve between actual in-sample data and ARIMA prediction results (1, 1, 0)

Table 2: Results of parameter significance testing of the ARTMA Model

Moadel Estimation Model

ARIMA of parameters t-stat. p-values feasibility

ARIMA,1,1) & =—0.2164 -0.86 0.397 not feasible
él = _0.7029 -3.82 0.000™

ARIMA(LLO)  § =03457 250 0016 feasible

ARIMA(OLD - gsss:2 -4.57  0.000" feasible

Based on the results of parameter significance
testing in Table 2, two models with all the significant
parameters are ARIMA (1, 1, 0) and ARTMA (0, 1, 1). A
model that 15 feasible to use in forecasting 1s a model with
all significant parameters. Therefore, the ARTMA Model
(1,1, 1) 1s elirinated from the selection of models that are
suitable for use in forecasting.

Diagnostic testing is carried out on the resulting
residuals and is useful to determine the feasibility of the
models, so that, the model obtained 1s capable/feasible to
be used in forecasting. A model 15 said to be feasible for
forecasting, if it produces uncorrelated residuals.
Diagnostic testing is carried out by identifying the ACF
residuals plot. The residuals of models that are suitable
for forecasting are white noise with the characteristics of
not having a significant autocorrelation (out of the
confidence limit) on the ACF plot. The following is an
ACF plot agamst the residuals of the model that has been
feasible, according to the Ljung-Box test, namely the
ARIMA (1, 1, 0y and ARTMA (0, 1, 1) Models.

In both of Fig. 6 and 7, it can be seen that there is not
significant autocorrelation (out of the confidence limit) in

the ACF plot of the residual generated by the ARTMA (1,
1, 0) and ARTMA (0, 1, 1) models. Thus, it can be
concluded that the ARIMA (1, 1, 0) and ARIMA (0, 1, 1)
Models are suitable for forecasting because they can
produce white noise.

Based on the diagnostic test of model, it can be
concluded that the ARTMA (1, 1, 0) and ARTMA (0, 1, 1)
Models are models that are suitable for using in
forecasting. Furthermore, one of the two models will be
chosen as the best model using the Mean Squared Error
(MSE) indicator. The MSE value for the ARTMA Model
(1,1, 0)1s 8.72x10" and the MSE value for the ARIMA (0,
1, 1) Model is 8.04x10" which both models have MSE
values close to zero. The model chosen as the best model
18 ARIMA (1, 1, 0) whach 1s the sumpler one.

The performance of ARIMA Model (1, 1, 0) n
predicting m-sample data (the average price of garlic in
Indonesia from January 2014 to December 2017) 1s
presented graphically in Fig. 8 and the coefficient of
determination is calculated. A model has a high accuracy
because the model produces the small gaps which
the predicted valuesare very close to the actual values.
Figure 8 is a comparison between the actual in-sample
data and the predicted values using the ARIMA
Model (1, 1, O},

In Fig. 8, it can be seen that the prediction curve uses
ARIMA (1, 1, 0) and the actual mn-sample curve 15 very
close, so that, it can be indicated that the ARIMA (1, 1, 0)
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Table 3: Results of forecasting out-sample data with the ARIMA

Model (1, 1, 0)
Date Actual Predicted Residual
Jan. 18 23150.380 23108.622 41.758
Feb. 18 26737.115 23127.062 3610.053
Mar. 18 30575.052 23133.445 7441.608
Apr. 18 33079.374 23135.652 9943.722
May 18 27966.033 23136.416 4829.618
Jun. 18 27669.457 23136.680 4532778

model can predict in-sample data (average price of garlic
in Indonesia from JTanuary 201 4 to December 2017) is quite
accurate. This is supported also, by the coefficient of
determination (R?) of the ARIMA (1, 1, 0) Model of 0.914
or 91.4% which means that 91.4% of the total diversity of
in-sample data can be explained by the ARTMA (1, 1, 0)
Model. The results of the forecast of the average price of
garlic in Indonesia from January 2018 to June 2018 using
the ARIMA (1.1.0) Model can be seen in Table 3.

The ARIMA (1, 1, 0) Model produces out-sample
forecasts that tend to be constant and produces a large
enough residual, so that, it 1s less precise or less accurate
in forecasting out-sample data. The coefficient of
determination (R®) of out-sample data is 59.8% which
means that 59.8% of the total diversity of out-sample data
can be explained by the ARTMA (1.1.0) Model while the
remaining 40.2% caused by other factors that are not
taken into account in the model. Thus, the ARTMA (1, 1,
0) Model 13 a good enough model to be used in
forecasting the average price of garlic mn Indonesia
because it produces a fairly ligh determination coefficient
of 59.8%.

CONCLUSION

The best model for predicting the average price of
garlic in Indonesia is the ARTMA (1, 1, 0) Model which
can produce a small MSE value (close to 0) and produce
a high determination coefficient (R*) equal to 91.4% in
predicting in-sample data. The following is equation of the
ARIMA (1, 1, 0) Model produced:

®

(1+9)Y_, -9.Y_, +a,

17t=2

=(1+0.3457)Y,, - 0.3457Y, + a,

Y,

Based on equation, it is known that the average price
of garlic in Indonesia on the current month was influenced
by the average price of garlic in Indonesia of the previous
1 month and the previous 2 months. Although, it cannot
produce accurate predictions, the ARTMA (1, 1, 0) Model
can produce a coefficient of determination (R*) of 59.8%
in forecasting out-sample data. The R’ yielded in
forecasting out-sample data is not as high as the R’

yielded in predicting in-sample data. Therefore, it can be
concluded that a model that produces a high measure of
accuracy in predicting in-sample data will not necessarily
produce a high measure of accuracy in forecasting
out-sample data.
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