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Abstract: A near-k-factor of a graph G is a spanning subgraph in which exactly one isolated vertex and all other

vertices of order k. In this study, we employ the near-four-factor concept and (m,, m,, ..

., m,)-cycle system to

present a new method for constructing a cyclic 12-fold triple system. Firstly, we would like to propose a new
type of cyclic triple system called cyclic triple near factorization, denoted by CTNF(v). Then, we prove the
existence of CTNF(v) along with an algorithm for starter triples of CTNF(v) for v = 12n+2 when, n is even.
Finally, we use the construction of CTNF(v) to demonstrate the existence of [a, b] factorization of 12K, for a

a=8andb =4 (v-1).
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INTRODUCTION

All graphs under consideration are fimite, undirected

and without loop. An m-cycle, written C,, = (Cg, ...y Ct)s
consists of m distinct vertices {c,, ¢,, ..., ¢} and m edges
fce}, O<iem-2 and {cc, t. An (m,, m,, ..., m)-cycle

system of graph G is a pair (V, C) where, V is the vertex set
of G and C is the collection of {C,;, 1 <i<r} for whose edge
sets partition of the edge set of G and is called to be a
cyclicif V = Z, and we have C;+1€C whenever C;e€C. In
particular, if m, = ... = m, = m, 1t 1s called cyclic m-cycle
system (Wu and Lee, 2008).

Let dy(v) be a degree of vinG. A graph G 1s called
[a, bl-graph if azd.{v)<b for every veV(G) and bzaz0.
An [a, b]-factor of G is a spanning [a, b]-subgraph
and [k, k]-factor is abbreviated to an k-factor. While a
near-k-factor is a spanning subgraph in which all but
one vertex has a degree k with the remaining vertex having
degree 0 that 1is said vertex. The
decomposition of edge set of G into [a, b]-factors
(respectively, near-k- factor) is called a [a, b]-factorization

isolated

(respectively, near-k- factorization) (Mao-Cheng, 1991).
A balanced mcomplete block design, denoted by
(v, k, A)-BIBD 1s a pair (V, B) where, V 1s a fimte set of v
points and B 1s a collection of k-subsets of V such that
each pair of distinct points of V 1s contained m precisely
A blocks. It easy to see that any (v, k, 4)-BIBD can be
viewed as a decomposition of complete multigraph AK,,
the graph with v vertices in which every two vertices are
joined by A parallel edges into copies of K. An

automorplusm of BIBD (V, B) 15 a permutation T on
V such that B = {b, ..., b}eB if and only if ©(B) =
{tb,, ..., Th}eB. If there 1s an automorphism T of order v,
then, BIBD is called cyclic. Thus, the automorphism will
be represented by ©: (0, 1, ..., v-1). The orbit of the block
B, denoted by orb (B) is the set of all distinct blocks in the
collection {B+i|ieZ.}. The orbit of block B is said to be a
full if orb (B) = v and otherwise is said a short (Mathon,
1987). A cyclic A-fold triple system of order v, denoted by
CTS (v, A) 1s eyelic (v, 3, A)-BIBD. A CTS(v, A) is simple,
if 1t contains no repeated triple. When v=0 (mod 3) then,
there 1s no short orbit of block (Tian and Wei, 2013).

The existence of CTS (v, A) for v = 1, 3 (mod 6) have
been studied by Colbourn and Colbourn (1981). While
Colbourn and Rosa (1999) have given the necessary
conditions for the existence of CTS (v, A). The existence
of CTS (v, A) for any possible parameters v and 4 is an
interesting problem, since, this kind of design has a nice
combinatorics and algebraic properties and also has a
connection to the optical orthogonal codes (Chen and
Wei, 2012).

Motivated by construction these designs, Tian and
Wet (2010) provided a new method for decomposing
all the triples of Z, into simple CTS(v, A) where,
1<A=<v-2,1=1,2 .. . nforodd cases v =1, 3, 5 (mod6).
They defined the large set of cyclic triple systems
to be a decomposition of all triples of Z, mto
indecomposable cyclic triple systems. On the other hand,
the near-one-factorization concept was employed to build
up a simple 3-fold triple system for the odd cases
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(Tbrahim, 2006). Moreover, Matarneh and Thrahim (2014)
utilized the near-two-factorization of a complete
multigraph to introduce a CTS (v, 6), called array cyclic
design.

In this study, we propose a direct method to
construct a new type of CTS (v, 12) with some conditions
for v = 12n+2 when n 1s even. This design is called cyclic
triple near factorization (briefly CTNF(v)). Then, the
construction of CTNF{(v) will be used to prove the
existence of [a, b]-factorization of 12 K.,

MATERIALS AND METHODS

Definitions and preliminaries: Throughout of this study
whenever we say AK,, (or m-cycle), we understand that
their vertices are in 7., with even order and 7", = Z -{0}. In
this study, we will obtain the main results by using the
difference set method. That already detected to be
successful in several cases for the construction of the
cyclic (m,, m,, ..., m,)-cycle system and cychc triple.

For {a, b}cZ, and a#b, the difference d of a pair
{a, b} 13 defined d = mm {|a-b|, v-|a-b|}, hence, 1<d<v/2.
Let, B is a k-subset of 7, the differences of B 1s the
multiset D(B) = {mmn{la-bl, v-ja-b}, a#zbeB. In general, the
list of differences of multiset A = {B, B, ..., B} of
k-subsets of 7, is defined as D{A) =D(B)UD(B,)u, ..., uD
(B,) such that the union must be understood between
multisets (elements must be counted with their respective,
multiplicities) (Tian and Wei, 2013).

Definition 1; Abel and Buratti (2006): Let, A be a
multiset of k-subsets of Z. An A 1s a (v, k., A)-difference
system if D(A) covers each element of 7,,,, exactly A
times except for the middle difference (v/2) appears A/2
tunes.

Theorem 1; Abel and Buratti (2006): Tet, A be a
multiset of k-subsets of 7Z,. Then A is a starter of cyclic
(v, k, A)-BIBD if and only if A is the (v, k, A)-difference
systerm.

Definition 2; Tian and Wei (2010): A (v, k, 1)-BIBD (V, B)
18 indecomposable if there does not exist A, <A such that
(V,Bp)1s (v, k, A)-BIBD and B,cB.

Lemma 1; Colbourn and Rosa (1999): Let, v = 2 (mod 4),
then, the necessary condition for the existence CTS(v, 4)
18 A= 0 (mod 12).

Definition 3; Alqadri and Ibrahim (2017): A (m",,m",, ...,
m’,)-cycle system of G is a decomposition of G into cycles
that have the lengths {m,, m,, ..., m,}.

Definition 4; Algadri and Thrahim (2017): A set of cycles
that generates all cycles of a cyclic (m', m",, ..., m")-cycle
system of G by repeated addition of 1 modular v which 1s
called a starter set.

The superscript notation shall be
describe a starter set of cyclic design. Therefore,

used to

a={cn, cx cnl means that there are n, cycles of length
m,, i, cycles of length m,, etc. as well as we consider
that €., be the ith m-cycle in starter set & (Tian and Wei,
2010).

Definition 5; Algadri and Ibrahim (2017): A differences
list from the cycle graph C, = (¢, ..., c,q) 18 the
multiset D(C,) = {min{lc.-c.,|, v-jec,|}, i=1,2, ..., m}
where, ¢, = ¢,

Theorem 2: Let, 5={c, . C,,...C, } be a set of cycles. A &
is a starter of (m,, m,, ..., m,)-cycle system AK, if and only
ifp(8)=Lr_, p(c, ) covers each element of Z,.,, exactly A
times except for the middle difference (v/2) appears A/2
times.

RESULTS AND DISCUSSION

Cyclic triple near factorization: In this study, we

define a new concepts as a base towards
constructing a new types of cyclic 12-fold triple system

and [a, b]-factorization.

Definition 6: A cyclic (m', m",, ..., m,)-cycle factorization
of AK, is a cyclic (m',, m",, ..., m",)-cycle system in which
its starter (briefly «) satisfies a near-four-factor denoted
by CCF(AK,, ).

Definition 7: A cyclic triple factorization of order v,
denoted by CTNF(v) 1s a vx2(v-1) array that satisfies the
following conditions:

»  The entries in row r form a near-four-factor with focus
T

»  The tiples associated with any row contain no
repetitions

The cyclic (m,", m;, ..., m, )-cycle factorization of 4 K,
will be employed to construct CTNF(v). Example 1
explains the construction method of CTNF(v) for v =
26.

Example 1: Suppose G =4 K, and e = {C.°, C* Cllisa
cycles set of G such that:
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Table 1: The list of differences of 4-cycles in o = {Cf, G2, G}

Cycles
(1,25,14,12)

Difference set
{2, 24, 11, 15, 2, 24, 11, 15}

(2,24, 15, 11) 4,22,9,17,4,22,9,17}
(3,23, 16, 10) {6,20, 7,19, 6, 20, 7, 19}
,22,17, 9 {8,18,5,21,8, 18,5, 21}
(5,21,18, 8 {10, 16, 3, 23, 10, 15, 3, 23}
(6,7,20, 19) {1, 25,13, 13, 1, 25, 13, 13}

Table 2: The list of differences of 7 and 6-cycles in & ={C%;, C%, %}

Cycles Difference set

(13,2,12,3,11,4,10) {11,15,10,16,9,17, 8, 18, 7, 19, 6, 20,
3,23}

(13,24, 14,23,15,22,16) {11, 15,10, 16, 9, 17, 8, 18, 7, 19, 6, 20,
3,23}

@, 1,5,17, 19, 18)
(20,25.21.9,7.8)

{5, 21, 4, 22,12, 14, 2, 24, 1, 25, 12, 14}
{5, 21, 4,22 12, 14, 2, 24, 1, 25, 12, 14}

Table 3: Construction of CTNF (26)

C G C C. C - Cg Cy Cy

0 1,25 25,14 14,12 121 9.7 7.8 820

1 20 015 1513 13,2 . 10,8 89 921

2 31 L16 1614 .3 1,9 910 10,22
24 25,23 23,12 12,10 10,25 7.5 56 618

25 0,24 24,13 13,11 11,0 8.6 67 719

=(1,25,14,12),C, =(2.24,15,11),C,, =(3.23,16,10)

C ,Cy,

C,, =(4,22,17.,9),C, =(5.21,18,8),C, =(6,7,20,19)
€ =(13,2,12,3,11 4,10), C; =(13, 24,14,23,15, 22, 16)
C, =(6,1,5,17,19,18), C; =(20, 25,21,9,7, 8)

An easy verification shows that each nonzero
mtegers m Z,, appears twice in the cycles of ¢. Since, a
cycle graph is the 2-regular graph, then each vertex in
Z.,5-10% has a 4°. Hence, the cycles of « satisfy a near-
four-factor with zero 1solated. Furthermore, the differences
lists of the cycles in « are listed in Table 1 and 2.

As can be seen from Table 1 and 2, the differences
list of @, D{w), covers each integer in Z',, exactly four
times and the middle difference 13 occurs twice. Based on
theoremn 2, the set of cycles « 1s a starter of a cyclic
(4", 7", 6")-cycle factorization of 4K,,, CCF(4 K, ).
Therefore, the construction of CCF (4K, «) can be
viewed as (26x10) array in which ¢ = {C,°, C}, C,?
generates all of its cycles by repeated addition of 1
modular (26).

In orderto form CTNF (26), we place the zero element,
1solated vertex m the first column then we split the edges
of the cycles in each row of CCF(4K,;, «) mnto separated
edges by setting each edge in a specific column. Here, we
have 26 rows and 50 columns with a column that has an
1solated vertex as illustrated m Table 3.

To form triples, we append C, with C, for 2<1<52. For
example, in the first row, we have {0, 1, 25}, {0, 25,
141, 40, 14, 12} and by continuing in the same fashion in
the remaining rows, we will generate the desired design.

In fact, the construction of CCF(4K, «) is the
fundamental question of the existence of CTNF(v). To
address this question, Algadri and Tbrahim (2017)
provided the starter of CCF(4K,, a). They constructed the
m-cycles for m>4 by connected paths as C,, = (v,, Py, Py
such that v; 13 a vertex and {P,, P,} are a paths of even
order. For even paths {P,, P,.} in C,, it can be written as:

P, = [a1> b.a, b, ...a, bn] = [U?:lal’ bl}

b, = [Cl’ d,c,,d,. ... c, dr] :[szlci’ dl]
where, the edge set of P, will be represented as:

{a, b}, 1<i<n,
E(P, )=
() {{am, b}, l1<i<n-l

{Cl’ dl}, 15151’,
{CH-I: d,}, 13121‘-1

E(P“)—{

Thus, the edge set of C,, = (vq, Py, Poy) will expressed
as follows:

E(cm) = E(PZn)UE(PZr)U{Vu’ al}u{bn’ CI}U{VU’ dr}

The starter set of CCF (4K, «) is shown in
construction I below.

Construction TI: Let, n be an even integer, n>2.
Suppose & = {C.*, C,..% Coy't is a cycles set of 4K ;..
where the list of 4-cycles is:

. . . L . Sn+d
C, = (i, 12024, 601+, 6n+14), 1 <i <3n, i 7
wheni= 5n+4/2, let:
Sn+4 Sn+d Sn+4 Sn+d
c, o 20 en+1- 20 12n+2-20 0 ens1+ 2t
2 2 2 2

Whereas C, "= (4n+2, P, .,V and C,," = (&n, P,.,")
are (4n-1)-cycles in which the paths {P, ., P, } are
represented as follows:

P, , =[6n+12,6mn 3, .., 4n+3, 2n] =

*H

[Uzlen+2-i,i+1 |
P,., =[6n+1,12n, 6n+2,12n-1, ..., 8n-1, 10n+2] =

(U2 6nH, 120+ |
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Furthermore, C,,," = (9n, P, P,,,) and C,,," =
(3n+2, P,", P,.,") are (2n+2)-cycles such that the paths
{P'. P, P, P",.} are represented as follows:

*

P, =[2n+2, 1, 2n+1]

P, , =[8n+1,10n-1,8n+2,10n-2, ..., 9n-1, 9n+1] =
(U 8+, 1004 |

P, =[10n,12n+1,10n+1]

=[4n+l, Zn+3, 4n, 2n+4, .., 30+3, 3n+]]

ok
In-2

(U2 dn2-4, 202+ |

We will use the cycles in construction T to prove the
next theorem and also to formulate an algorithm for a
starter of 12-fold triple system.

Theorem 3: There exists a cyclic triple factorization of
order 12n+2 forn = 0 (mod 2).

Proof: We split the proof into two cases as follows:
Case 1: n = 2, see example 1.

Case 2: For n>=2. There exists CCF (4K, ) for v = 12n+2.
Then, the construction of CCF (4K,,.,., @) can be
represented as (vx|g|) array m which the cycles 1 each
row satisfy the near-four-factor. For producing the CTNF
(12n+2), we need to have 12n+2 rows and 2 (12n+1)
columns and a column with an isolated vertex. In the
construction of CCF (4K, ,,.,, &), we place the isolated
vertex in the first column and then partition the edge set
of the cycles in each row into separated edges by setting
every edge in a column. On the other hand, the number of
columns equal to the edges cycles of @ = {C™, C,..}
C,r’ } which is calculated as follows:

43 (3n)+2x(4n-1)+2%(2n+2) = 2(12n+1)

In order to form triples, appending the first column
with each other columns. Since, there are no identical
edges m each row, then all the associated triples in each
row will be distinct. The triples in the first row in the
construction of CTNF (12n+2) 1s considered a starter
triples (briefly A).

Theorem 4: For v = 12n+2 where, n = 0 (mod 2), there
exists a cyclic 12-fold triple system has cyclic triple near
factorization of order v.

Proof: Tn order to prove this theorem, we need to
calculate the differences list of the starter triples A of

CTNF(12n+2). Depending on theorem 3, all triples in A
have formed as {0, e;}, 1 <i<2 (12n+1) where ;= {c, ;, ¢;;}
1s the edge set of . Then, the differences list of A 1s
calculated as follows:

B(4) _U{d(el)Ud(O, cj,l),léié} W

2(12n+)and 1<j <2

Indeed, the cycles of ¢ in the construction I 1s the
starter of cyclic (4%, (4n-1)*, (2n+2)*)-cycle system of
4K 2 (Algadri and Ibrahim, 2017). Based on theorem 2
Dfoy= " d(e,) covers each nonzero element of Z;,., four
times and the middle difference {6n+1} occurs twice.

Furthermore, « satisfies the near-four-factor of 4K ,,,,
with isolated zero integer, ie., {1, 2, ..., v/2, (v/2+]),
(v/2+2), ..., 12n+1} appear four times as end points of the
edge set of ¢. Hence, for any end point ¢ ; of an edge e,
1<1<2 (12n+1)and 1 <522, we find out:

Thern, every mteger of {1,2, ..., v/2,(v/2-1),(v/2-2), ...,
2, 1} occcur four times inlJ,.di0,¢,)and this means
U, .19{0, ¢; ) contained all integers of Z' i 8 times and the
integer {6n+1} four times. From Eq. 1, we conclude that
D(A) covers each nonzero element of 7., 12 times and
the middle difference {&n+1} occurs 6 times. Therefore, A
is a starter of cyclic 12-fold triple system based on

theorem 1.

Lemma 2: A CTNF(v) 1s indecomposable (v, 3, 12)-BIBD
for v =12n+2.

Proof: Based on lemma 1, the smallest A for the existence
of A-fold triple system of order v = 12n+2 15 12. Then,
there is no A<12 such that CTS(v, 1) exists.

Algorithm of starter triples of CTNF(12n+2): In this
study, we use the starter cycles of CCF(4K,,,,,, ) to
construct and formulate the algorithm of starter triples A
of CTNF(12n+2). The process of formulating an algorithm
for the starter triples A will be split mnto two cases
depending onn = 2 or n>2.

Case 1: For n = 2. By virtue example 1, it follows that a
starter triples of CTNF (26) is:
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A=A UA,
Such that:
{01,264} U{0, 26,134} 1<i<5
{0,13+,13-}U{0,134,i} 1<i<5

L=

0,144, i+1}U{0, 134, i+1}  1=i<3
{0,124, 254} U0, 13+, 254} 1<i<

{0, 6,7},{0,7, 20}, {0, 20,19},
{0,19, 6},10,13,10}, {0, 13,16}

;=

Case 2: n = 0 (mod 2) where, n>4. The generated triples
by appending zero integer isolated vertex, to each
edge in the edge set of the cycles in the construction I are
formed as subsets. We begin with the 4-cycles (C,™) as
follows:

+ - +
{0, Sutd 7o 2}’ {0, n 2,19_11},

2 2 2 2
" [[p 190 1706] [ 17046 Snd
e E AR

[0,1,120+24} 121 <3n,i#

1=<i1<3n,1 #

{0, 1, 6n+14}

+
10,1202+, 6014 10 <3n,i# 20 4}
1<i<3n,i }

|
|

S, {{0 6n+l4, 6n+1+}
5|

{0,1,12n+2-i}

{O, 6n+, 12n+1-i}
{0, 6024, i+1}

{0,12n+24, 6n+1+}U{0, 6n+14, 1}

{0, 6n+14,i+1}U{0, 6n+1+1, 12n+14}

According to, the edge set of (4n-1) -cycles, the list
of generated triples from {C,.,", C..,"} will be as follows:

S, =1{{0,it1, 6n+2-i} 1<i<2n-}
s, ={{0,i+1, 6n+14} 1<i €2n-2}
S, ={{0,12n+14, 6n+1+} 1<i<2n-2}
S, ={{0, 12n+14 6n+i} 1<i<2n-1}
{0, 4n+2, 2n},{0, 4n+2, 6n+1},
710, 10n+2, 80}, {0, Sn+6n+1}
Meanwhile, the following subsets represent the

preduced triples from the cycles {C.uy’ Cons

S, =110, 10n, 8n+i} 1<i<n-}
8., ={{0, 10n, 8n+1+i} 1=i<n-2}
Si; =110, 2n+2+, 4n+2-} 1<isnd}
S, = {{0, 20424, 4n+14} 1<i<n-2}

{0, on+1, 9n},{0, 9n,2n+2}, 10, 20+2, 1,40, 1, 2n+1},
= {0, 2n+1, 8n+1}, {0, 3n, 3n+2}, {0, 3n2,10n},
{0, 10n, 12n+1}, {0, 12n+1, 10+1}, {0, 10n+1, 4n+1}
For simplicity, we will combine the subsets together
which have a relationship between their triples. As a

result, the algorithm of the starter triples A of CTNF
(12n+2) can be formulated as:

A=A UA,

Such that A, and A, are computed below:

+ R
1<i<én,ifig {Sn 47 2}

2
5n+4}

1£i£3n,ifie{

1<i<3n-, ifig {2n, 2n+1}

1<i<3n-, ifig {2n, 2n+1}
1<i<2n2
1<i<2n-

{0, 80+, 10n-i} {0, 4n+2-i, 2Zn+2+}

S5n+4 Tn-2 n-2 19 19n 17n+6 17n+6 5n+4
A, = fo 2000 A2l U s DR g TR STTRL o 2R 2RTRL 4G an+2, 2n)
2 2 2 2 2 2 2 2

{0, 4n+2, 6n+1}, {0, 8, 6n+1}, {0, 8u+10n+2}, {0, 9n+1, 9n},{0, 9n, 2n+2}, {0, 2n+2, 1},
{0,1, 2n+2}, {0, 2n+1, 8n11},{0, 3n, 3n+2},{0, 3n+2, 10n}, [0, 10n, 12n+1},
{0,120+1, 10041}, {0, 10n+1, 4n+1}}
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Theorem 5: There exist [8, 4 (v-1)]-factorization of 12K,
for v=12n+2,n = 0 (mod 2).

Proof: From the construction of CTNF(12n+2), it can be
viewed the triples m CTNF(12n+2) as vx2 (v-1) array in
which the vertex r is included in 2(v-1) distinct triples
and each another vertex in Z,,,., occurs m exactly four
triples in row r. As pomted out in the ntroduction,
the (v, 3, A)-BIBD can be regarded as a decomposition of
AK, mto copies of K. Since, any vertex in K, has a degree
two, then any vertex has a degree either 8 or 4 (v-2) in
every row 1 for O<r<-1. So, we can consider each row r; in
CTNF(12n+2) 1s [8,4 (v-1)]-factor of 12K where, the
element v, has a degree 4 (v-1) and ancther vertex has a 8°.

CONCLUSION

In this study, we have defined a new method to
construct a new cyclic 12-fold triple system. We
employed a cyclic (m',, m",, ..., m')-cycle system and
near-four-factorization of 4K, to construct cyclic triple
factorization, CTNF(v). We have also, proven the
existence of CTNF(v) for v = 1242 when n is even besides
an algorithm for its starter triples. Therefore, we used
the related results of CTNF(v) to demonstrate the
existence of [8, 2 (v-1)]-factorization of 12K.. We expect
the construction of CTNF(v) 1s a simple design and can be
extended for v=124+2 whennis odd and also for v =6, 10
(mod 12).
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