Tournal of Engineering and Applied Sciences 14 (21): 7828-7840, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

CPN-based Test Case Generation Approach for Testing BPEL-based Web Services
Composition

L *Hosney Jahan, >*S M. Hasan Mahmud, *Md Altab Hossin and “Sheak Rashed Haider Noori
'College of Computer Science, Sichuan University, Chengdu, China
*Faculty of Science and Information Technology, Daffodil International University,
Dhaka, Bangladesh
*Department of Management Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China
*SEEDSlab (Software Intelligence and Data Science Research Group), Dhaka, Bangladesh
hasan swe(@daffodilvarsity.edu.bd

Abstract: Business Process Execution Language (BPEL) 1s an up-and-coming language which depicts the
composition of web services in the structure of business processes. However, the interaction among the
participating services can make the BPEL code significantly complicated. Therefore, it is necessary to find the
mnteraction mconsistencies among the BPEL processes. Testing provides a solution to improve the quality of
the BPEL code. The formal method that can handle all the requirements for testing BPEL-based web service
composition is Colored Petri Net (CPN) which provides a strong mathematical background for the modeling,
verification and testing of the BPEL structures. This study presents an approach to generate test cases for
testing BPEL-based web services composition using CPN n an effective and feasible manner. Our approach
combines a reachability graph and a control flow graph to generate feasible test cases by reducing the
associated time cost. A prototype tool has been implemented based on our proposed approach and its validity
is empirically evaluated with two case studies. The effectiveness of the prospective approach is measured in
terms of its fault detection capability. Furthermore, the results of the proposed approach are compared with
state-of-the-art approaches which demonstrates that the approach is both effective and feasible than existing
approaches.

Key words: BPEL, web service composition, CPN, test path generation, test data generation, test case

generation

INTRODUCTION

Web services are self-governing and self-describing
standard applications which can be invoked, published
and located over the web. However, in many cases, a
single service is not sufficient to respond to the user’s
recquest, it is desirable to develop new functionalities that
integrate the existing web services in order to accomplish
the business requirements. This limitation has triggered
the notion of web services composition. BPEL is an
industry standard language to model the behavior of web
services composition to describe high level business
processes (Aalst and Stahl, 1999). Since, the composition
of web services is an error prone task, the BPEL structure
may contain defects or faulty behavior which can cause
inconsistencies from its expected behavior. Therefore,
testing is mandatory to avoid the inconsistent interaction
among the BPEL processes and ensure its quality.

However, BPEL itself does not provide a proper formal
description which makes it difficult to formally verify the
composition of business processes accurately. The
dynamic features related to BPEL processes also make the
behavior analysis and testing task significantly
complicated.

There are several formal methods Bernot et al. (1991),
Stocks and Carrington (1996), Liuand Nakajima (2011) that
have been used for software testing or more specifically
testing BPEL processes. The popular modeling formalisms
(Hierons et al., 2009) include FSMs, LTS and Petri nets
(Murata, 1989). In comparison with other modeling
techniques, CPN (Tensen, 1996; Jensen and Kristensen,
2009) is more scalable and expressive. Moreover, some
formal method such as FSM (Rao et al., 2016) is typically
only control-oriented (Xu et al., 201 5) and variants require
a large computation cost (Watanabe and Kudoh, 1995)
while CPN provides both control and data dependencies.

Corresponding Author: S.M Hasan Mahmud, SEEDSIlab (Software Intelligence and Data Science Research Group),
Dhaka, Bangladesh, hasan.swe(@daffodilvarsity.edu.bd
7828

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

Furthermore, CPN is capable of minimizing the
computation cost and size of the test suite. CPN provides
a strong formal semantics which is able to handle the
dynamism, synchronization and concurrency of the
BPEL-based web services composition. Colored Petri
net’s high expressive power and better formal capabilities
to define and inspect complicated behaviors of a system
motivate us to use CPN for the modeling of the BPEL
processes. Moreover, a CPN Model has the ability to
simulate dynamically, directed by the data-dependent
control flow of system behaviors which provides a strong
foundation in this research to generate test cases. This
study presents a test case generation approach for testing
BPEL-based web service composition applying colored
Petri net and presents a prototype tool demonstrating the
feasibility of the approach.

Besides CPN, we also used the notion of two other
approaches, Control Flow Graph (CFG) and Reachability
Graph (RG). Both these approaches acquire some
advantages and disadvantages. For example, CFG based
techniques may contain infeasible paths which leads to
extra work in order to handle the problem and malces the
approach time consuming and expensive. On the other
hand, though, reachability graphs contain only the
feasible paths, the size of a reachability graph can become
very large which may mcrease the required time to
generate test cases. In this study, we combined these two
approaches and taken only their advantages to generate
feasible test cases by reducing the associated tune cost.
We firstly, constructed a Reachability Graph (RG) from the
CPN Model of the BPEL for generating only the
feasible paths and then comstructed a CFG from the
reachability graph, based on some proposed guideline in
order to minimize its size and speed up the test case
generation process.

Literature review: We divide the state-of-the-art
approaches based on BPEL and CPN mto three parts. The
first part contains the related worlks on software testing
using CPN, the second part containg the works done on
testing BPEL-based web services composition and the
third part contains the works done on testing BPEL based
web services composition using CPN.

Related work on software testing using CPN: CPN based
techniques can be successfully applied to various
mformation processing systems such as asynchronous,
parallel, concwrrent, distributed, dynamical and so on
(Murata, 1989). Many researchers have worked on this
topic and several tools and techmiques have been
proposed to facilitate the test case generation process
using CPN. By Xu et al. (2015) presented an automated
test case generation tool MISTA for real world software
systems based on reachability analysis. Watanabe and

Kudoh (1995) proposed two conformance based test suite
generation techniques for concurrent systems: CPN-tree
and CPN-graph. The advantages of the two methods are
shown through the evaluation of the test suite length
reduction by equivalent markings. Zhu and He (2002)
proposed a methodology of testing high level petri net on
the general theory of concurrent systems. Four types of
testing strategies are mvestigated m this study based on
reachability analysis. Another simple test case generation
method for model-based testing is proposed by Cai et al.
(2011) where the test cases are generated directly from the
state space of the CPN Model. Unlike these methods our
approach firstly constructs a CFG from the state space to
minimize its size and then generates test cases from the
CFG which expedites the test case generation and reduces
the required time.

Farooq et al. (2008) presented a control flow based
test sequence generation method from the colored Petri
net model. The proposed method converts the AD
{(Activity Diagram) activities to a CPN Model. Afterwards,
a random walk algorithm is applied to create test
sequences from the CPN Model. However, this approach
tends to be mefficient for covering a large graph quickly.
Besides, it could also generate redundant test cases due
to randomly covering the model. Our proposed approach
does not generate redundant test cases, since, it covers
one path only once by using a depth first search
algorithm. Reza and Kerlin (2011) proposed a method in
which test cases are generated from various scenarios of
a system. These scenarios are then converted into
Constraint based Modular Petri Net (CMPN) and finally,
test cases are generated from the CMPN. This method
works fine with component based testing but when it
comes to integration testing it shows some inefficiency
with redundant tests. Liu et al. (2011) presented a
technique where the ioco theory and CP-nets modeling
technicue is integrated to develop a CP-nets model based
conformance test case generation approach.

Related work on testing BPEL-based web service
composition: Yan ef al. (2006) proposed an approach to
generate test cases directly from BPEL. They modeled a
BPEL process as an Extended Control Flow Graph ({CFG)
where the XCFG edges contan BPEL activities and
maintain the execution of activities. Afterwards, they
generated test cases from the CFG by applying several
coverage criteria. Sunilarly, Yuan et @l (2006) used
another extension of CFG and named it BPEL Flow Graph
(BFG) to represent a WS-BPEL program as a graphical
model which contains both the control and data flows
of a BPEL program. Test paths are then generated by
traversing the BFG based on some coverage criteria
and test data are generated by solving the constraints.
Ni et al. (2013) presented atest case generation method

7829

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

where a test case is represented as a sequence of
messages received by the BPEL. They modelled the
BPEL program as a Message-Sequence Graph (MSG) and
generates test cases from the MSG.

All these methods are prone to generate redundant
and infeasible paths and require further research to solve
this 1ssue, thus, the approaches become time consuming.
Our approach, on the other hand could avoid the
infeasible path problem by constructing a reachability
graph from the CPN Model as the reachability graph
contains only the feasible paths which makes our
approach time effective and feasible.

Related work on testing BPEL-based web service
composition using CPN: There are several methods
that have been proposed for the transformation and
verification of BPEL processes into CPN Model
(Yang et al., 2005a, b; Kang et al, 2007; Dong et al.,
2006). However, all these proposed approaches are mainly
based on the composition and transformation of BPEL
mto CPN Model but gives less attention to the
verification process. Our approach provides a solid
foundation of transformation, verification and testing of
the BPEL processes by using CPN. Several tools
developed for the modeling and verification of the web
services composition includes CPN Tools (Ratzer et al.,
2003) (poses++ 2010) and (Schmidt, 2000), etc.

Dong et al. (2006) presented a systematic approach
for testing web services from WSDL specification based
on the fault coverage. A prototype system is developed
for automatic test sequence generation using the existing
tool poses++. Wang and Yang (2014) introduced a new
approach of test case generation of web service
composition which can deal with the BPEL features. The
proposed method simplifies the CPN Model of the BPEL
program as one which only has control flows and then
generates test cases from it. Yi and Kochut (2004)
proposed a unified model for the specification of the
conversation protocol and process the composition based
on CP-nets. The model enables a comprehensive analysis
of the service process. The conversation protocol can be
derived automatically where the verification is based on
the CPN state space tool.

Among the above techniques, reachability analysis
is the most common and effective one for test case
generation. However, it suffers from a fimdamental
problem of state space explosion. On the other hand, CFG
based test case generation methods may contain
infeasible paths. To make the best of advantages of the
reachability graph and control flow graphs in thus
research, we proposed an approach to generate test cases
for BPEL-based web service composition using CPN by

combining the reachability analysis and control flow
graph together in order to avoid the mfeasible path
problem and reduce the time cost associated with the test

case generation.

Test case generation approach: One of the most
critical components of software testing (Myers, 2004;
Miller et al., 1992; Ammann and Offutt, 2008) is the
construction of test cases. In this research, we proposed
a test case generation approach based on CPN which is
able to generate test cases in a more formal and
systematic way. This section presents our proposed test
case generation approach.

Overview of the approach: As shown m Fig. 1, the
approach consists of four steps which are described in
details in the following subsections. Here, we give an
overview of the approach.

Transformation of BPEL into CPN: The objective of this
step 1s to unfold the complex structures of the BPEL code
more explicitly. To do, so, we transformed the BPEL
processes mto CPN as CPN provides more formal and
graphical notation.

Reachability graph construction and verification of the
CPN Model: Tn order to ensure the generation of feasible
test cases, the CPN model should be verified first. To
achieve this goal, we constructed a reachability graph

BPEL specification

v

Model
transformation

v

CPN Model

v

RG construction Is the mode]
and verification correct?

No

v RG

CFG construction

Yes Defined

guidelines

AL

v CFG

Test path
generator

¢ Test paths

Test case
generator

v

Test case

_/—\
Fig. 1: Schematic diagram of the proposed approach

A 4 Test
Test data | data o
generator

N

7830

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

from the CPN Model and verified its properties to check
and repair the design errors by using the CPN Tool
(Ratzer et al., 2003).

CFG construction from the reachability graph: In this
step, we propose four guidelines to construct a CFG from
the reachability graph. These guidelines construct the
CFG by eliminating some internal unimportant states and
transitions from the RG which can avoid the state space
explosion problem.

Generation of test cases: This step contains three parts;
generation of test paths, generation of test data and
generation of test cases. Firstly, we generate the test
paths by traversing the CFG then generate the test data
by solving the constraints specified in the BPEL code
afterwards, the test cases are generated by combining the
test paths and test data together. Since, the generated test
cases are abstract we transformed them into a specific
programming language to make them executable.

Transformation of BPEL-based web service composition
into CPN: A colored Petrinetis a tuple CPN=<X P, T,
A, E, My> (Jahan et al., 2016) where:

* X is afinite set of non-empty types, called color sets.
The color sets are associated with the term token
where each token value belongs to a type

¢ Pis a finite set of places, denoted by the circles

* T 15 a finite set of transitions, denoted by the
rectangles

« A is a finite set of directed arcs which connects
places to transitions and transitions to places, Le.,
Ac PxTUT=P

* Eis an arc expression function

+ M, is the initial marking, i.e., the initial allotment of
tokens

Several tools have been developed to practically
construct a CPN Model from the BPEL-based web
services composition and formally verify the constructed
CPN Models. Among them, mn this research, we used the
CPN tool for the construction and verification of the CPN
Model from the BPEL. The transformation process is
summarized into the following three steps.

Step 1: Firstly, the data types or color sets of the tokens
are determined based on the part types specified in the
WSDL file of the BPEL specification. For example, the
color sets used to model the loan approval process are
defined as follows:

colset amount = with<10000>10000
var s: armount

colset name = string

colset request = product name*Name
var req : request

colset state =bool

var t, m, n:state

colset risk:with low|high

var risk: risk

colset approval = with yesjno

var approve, a:approval

Here, the color set “Amount” is declared as the
enumerated type which includes two values in order to
denote the two different inputs (1.e., one input 15 <10000
and other one 15 >10000) of the process. The color set
“Request” denotes the product of the color set “Name”
where, the first color set represents the information of the
customer and the second one represents the amount
being requested. a“State” is a color set of bool type. “t”,
“m” and “n” are the variables of type “State” which
represents the flow of resources within the model. The
other color sets are determined accordingly, however, we
also used some low level data types in order to simplify
the transformation and model the characteristics of the
BPEL program more accurately.

Step 2: In the second step, we constructed CPN Models
for each of the activities of the BPEL code based on theirr
input-output message relations i.e., the input message of
one activity is came from another activity. In these
models, places related a to a transition denotes the states
before and after executing the corresponding activity and
firmg of a transition represents the execution of its
corresponding activity. For example, after firing the
transition “approver” (Fig. 2), it sends a “yes” or “no”
message to its output place “decision”. Same way,
transition “sendmessage” sends a token to its output
place “message”. Though both these places carry the
output messages of the transitions “approver” and
“sendmessage”, respectively, at the same time they carry
the input message for the transition “reply”.

Step 3: Finally, all the CPN Models are combined together
into a single model according to the activity relationship
defined in the BPEL specification. The details of the CPN
Model of the loan approval process are shown in Fig. 2.

Construction of reachability graph: The state space or
reachability graph is a directed graph which contains a set
of nodes and a set of edges where each node denotes a
particular state and each edge denotes a transition firing.
It consists of all the reachable states and all the possible
transition firings of a system. Each state can be presented
by the distribution of tokens in the places of the CPN
Model and firing of a transition denotes the change of a
state from one to another. The state space can be defined
as a tuple <3, S, T>>where the elements are defined as
follows:

7831

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

1("Name", "Amount")

I("Name", "Amount")

q Reguest then 1 mue
State
Received | €else 1 false
P amount Assessor
S If ¢ = false If t = true and also risk<> "low} It B true”and ?lso
then 1 true then 1 true risk = "low
Received else 1 false else 1 false then 1 true
input Amount else 1 false
High amounts Low risk
s

t
Input selection

If s = <10000
then 1 true

esle 1 false
Requested
amount /¢ o

Approver

then 1 true
else 1 false

v

Decision

If m = true or else n = true

State

Send message

Yes

Approval Approval
Approve
If aprove = yes
then 1 yes
else 1 no
Result <
Approval

Fig. 2: CPN Model of loan approval approch

Az

Fig. 3: State space of the CPN Model of the loan approval process

*» 5,£35is the initial state

¢+ 3 is the set of all the reachable markings or states
from the mitial state 3,

* T s the set of transitions

Figure 3 presents the generated reachability graph of
the CPN Model of Fig. 2. In the reachability graph, each
node represents three values: state number (topmost
value), predecessor (the value before the colon) and
successor (the value after the colon) states. A number of
behavioral properties (Kang et al., 2007, Dong et al., 2006)
(reachability, boundness, deadlock-freedom, safeness,

liveness, fairness, etc.,) of the system can also be verified
from this reachability graph. Using the state space tool of
the CPN tool, we automatically constructed the
reachability graph and verified the properties of the CPN
Model.

Construction of CFG: Abstraction 1s important for
improving the performance of the test case generation
process. In this research, the reachability graph
constructed in subsection 3.3 is abstracted into a control
flow graph. The abstraction does not hinder the model
simulation or system functionalities but helps to speed

7832

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

up the test case generation process. The model reduction
can mitigate the state space explosion problem inherent of
test case generation techniques. In this research, we
proposed some guidelines to construct a CFG which 1s
able to expedite the test case generation approach and
improve its performance. The constructed CFG contains
both the control flow and data flow mformation of the
BPEL process under test. The control flow information is
used to generate a set of test paths from the CFG and the
data flow mformation facilitates the test data generation.
TheCFG is defined as a four tuple (N, E, s, &), where:

+ N isaset of nodes
¢+ Eisasetof edges
* 5 is the start node where scN
+ e 1s the end node where eeN

Based on some scenarios, we proposed four model
formations as the basic elimination entity together with
the guidelines for elimination which are described as
follows: when there is a sequence of nodes in the RG, the
mternal nodes are eradicated. Therefore, the sequence 1s
represented by the start node and end node of the
sequence, connected by a single edge. Figure 4a presents
an example. The parallel nodes are tied together as a
single node if their initial node and final node are same.
The RG is further reduced by applying the guideline 1.
Figure 4b describes this situation. If two nodes are
connected with more than a single edge, the edges are
considered as a single edge. Example is shown in Fig. 4c.
A CFG usually consists of a start node and an end node.
If the RG contains more than one terminal nodes in that
case, the terminal nodes are attached with a new node
which 15 then considered as the end node of the
CFG. Figure 4d presents an example.

We considered both the requirements and
sequence of functionalities specified in the BPEL code
while applying the proposed guidelines. Moreover, the

—(0) =>

' S1
v
()

Receive Receive

Assessor

Approver

Approver
A 4

Send message

y

Fig. 5: CFG of the loan approval process

application of these guidelines does not cause any harm
to the successive model simulation because they are
applied to the RG 1.e., all the transitions have already been
fired. We applied the guidelines iteratively until all the
internal states and transitions are being taken care of.
Currently we applied these guidelines manually which is
shown in Fig. 5. We marked the nodes of the CFG with
different numbers and the edges with the associated
transition names which represents the transition sequence
of the RG and activities of the BPEL.

7833

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

Test case generation: A test case is a composition of test
paths and test data. These two elements can be generated
from graphs (control flow graph, data flow graph),
diagrams (UML activity diagram, class diagram, sequence
diagram etc.) or specification of a system. Tn this research
we generated the test cases by traversing the CFG
constructed from the reachability graph.

Generation of test paths: A test path 1s any path from the
mitial state to the final state of a CFG. Generating test
paths is the first step of test case generation. A single test
path may correlate to an immense mumber of test cases
(Myers, 2004) it represents a model of atest case in the
abstraction captured by a graph. We applied a simple
Depth First Search (DFS) algorithm on the CFG of Fig. 5
and generated the test paths based on two coverage
criteria: state coverage and transition coverage
(Ammann and Offutt, 2008). These two coverage criteria
are also known as node coverage and branch coverage,
respectively. State coverage generates test paths ina way
that all the states of the graph is covered by at least one
path whereas 1n transition coverage all the transitions are
covered by at least one path. The DFS algorithm
generates three paths by traversing the CFG (Fig. 5) which
are:

« Pathl (Sl S2, 85, $7)
« Path2(Sl, S3, 84, 85, 87)
« Path3(Sl, 83, 84, $6, §7)

Generation of test data: Test data (Offutt, 2003) are the
mputs that have been prepared to test the system. It can
be generated manually, automatically or semi
automatically. It can be generated mn two ways: test data
that serves only mput messages and test data that
provides both mput and output messages. In the former
one, the output messages are provided manually and for
the latter one they could be the after values of an
executed event or a post condition associated with an
action. There are many existing methods for automatic test
data generation. One of the most common technique is
constraint solving. Other techniques include random test
data generation, goal oriented test data generation, path
oriented test data generation and so on (Offutt, 2003).

In this research, we applied the constraint solving
approach to generate the test data. To do so, we gathered
and solved the constraints related to the test paths. A
generator is then prepared corresponding to the data type
of the solution. Whenever the generator is called, a
random instance value 15 generated within the specified
constraint. For example, if the constramt set of the BPEL
program 1s defined as:

getVariableData (‘request’, ‘amount”)> = 10000

This means that the requested amount is an integer
value which should be >10000. A solution for this could
be:

getVariableData (‘request’, 'amount’) = 11200

Test case generation has another sigmficant concept
which 1s the test oracle or expected result. Test oracles are
sometimes provided manually and sometimes the after
values of a triggering events or the post conditions of the
transitions are used as the oracle. In this research, we
used the second approach to generate the expected
results.

Generation of test cases: A test case can be represented
as a sequence of triple (input, triggering event, expected
result) where inputs are represented by the test data to
execute an event and the expected results are defined by
the post-condition of the executed event. Therefore, we
collected the mput values and after values of each of the
events according to the system requirements and
functionalities of the BPEL specification. Finally, all these
information along with the test paths are combined
together to make complete test cases. The generated test
cases for the three test paths are represented as follows:

» te = {(rull, receive, 22500), (22500, approver, false),
((false, false), reply, “Loan Rejected™)}

s tc, = {(mull, receive, 8250), (8250, assessor, “high™),
(7600, approver, false), ({(false, false), reply, “Loan
Rejected™)}

s tc, = {(null, receive, 3340), (3340, assessor, “low™),
(“low”, sendmessage, true), ((true, true), reply, “Loan
Approved”)}

However, the generated test cases are abstract.
Therefore, they need to be converted into some
executable code. For this research, we select Java to
convert the generated test cases into executable code. In
order to do the conversion, we create a method in Java for
each of the transitions (which is denoted by the path
between two nodes) of the CFG. From the generated test
paths it 1s clearly visible that a test path can also be
represented as a sequence of transitions. Same way, an
executable test case can be represented as a sequence of
method call including some additional information
such as inputs, variables, values, conditions, expected
result, etc.

Case study and prototype tool: In order to evaluate the
feasibility and effectiveness of our approach we use two
classic BPEL case studies {(Anonymous, 2008). In this
study, we provide a brief introduction of the case studies.
In addition, the architecture of our prototype tool is also
discussed which is implemented to evaluate the fault
detection capability of the proposed approach.

7834

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

Case studies

Loan approval process: The loan approval process
containg three web services assessment, approval and the
loan service itself which 15 shown in Fig. 6. In thus
process, firstly, the loan service receives loan request
from the customers including the requested loan amount.
For lower amounts, the risk assessment service performs
a quick evaluation of risk associated with the customer. Tf
the amount is <$10,000 and associated risk 1s “low”, the
request will be approved automatically and it will send a
“loan approved” message to the customer. But if the
amount 1s >$10,000 or the risk 18 “high™ it will send a “loan
rejected” message to the customer.

A shight modification 1s done by us for the amounts
of <$10,000 to acquire the risk assessment result which is:
for the amounts of <$5,000, the associated risk will be
“low” otherwise it will be “lugh”. The business scenarios
of the other two web services (Assessment and approval)
including the modifications are shown in Fig. 7.

getVariableData

Purchase order process: The purchase order process
includes four web services: purchasing, scheduling,
nvoicing and shipping. Figure 8 shows the business
scenario of the purchase order service. The
purchasing service starts by receiving a purchase
order request PO from the customer. The process then
performs three tasks concurrently: firstly, it sends a
shipping request which 15 assigned with PO to the
shipping service and then it gets the shipping info
and shipping schedule from it. Secondly, the process
sends the PO and shippinginfo to the mvoicing
service in order to calculate the order’s price and
shipping price and then it gets the invoice from the
invoicing service. Thirdly, it sends the PO and
shipping schedule to the scheduling service for the
scheduling and shipment nformation of the ordered
product. After completing all these three tasks the final
invoice is sent to the customer.

getVariableData

('request amount')

(‘request amount')

>=10000 Receive <10000
V. 7
L
.
< sy Invoke assessor
getVariableData d
('risk level")
Flow A getVariableData
v 1 (risk level') = 'low'
Invoke apporver Assign
v
Reply

Fig. 6: Business scenario of the loan approval process

@

Receive

amomt<5000
risk I =‘low’

risk = 'low'

Amount>10000 or risk }

(b)

Receive

Tow " Amount<1000%and risk =" low

Approve ='no’ Approve = ‘yes

Fig. 7: Business scenario of the assessment and approval services: a) Assessment service and b) Approval service

7835

J. Eng. Applied Sci., 14 (21)

1 7828-7840, 2019

Receive
PO PO PO
v A 4 v
Invokelnvoicing Assign Invoke scheduling
Shipping request
v A 4 v
Invokelnvoicing < Invoke shipping » Invoke scheduling
Shipping info Shipping schedule
v v
Receive Receive
Invoice
A 4
Reply
Fig. 8: Business scenario of the purchase order service
Test cases I
4
CFG J:# Test path generator :%
Test case ||
generator
Test data generator Test data 19
/4
1?

Constraints set
of the BPEL

Fig. 9: Architecture of the prototype tool

Table 1: Case study summary
BPEL Loan approval process

Purchase order process

No. of places 10 15
No. of transitions 7 11
No. of states in the 19 36
reachability graph

No. of states in the CFG 7 11

The activities residing within the BPEL process,
respectively, stand for different events. We transformed
these events n terms of transitions when modeling
into CPN. The CPN Model of the loan approval
process 1s provided m Fig. 2. For limited space, we did

not provide the CPN Model of the purchase order
process. Table 1 presents the summary of the two case
studies based on the structure of their CPN Model,
reachability graph and CFG.

Prototype tool: The implemented software system
{(prototype tool) 1s a Java based desktop application
developed using Java (1.7.0 J2SDK) and third party kits
(Window Builder, Junit test plug-in) on the Eclipse IDE
Mars (4.5.1). The architecture of the prototype tool is
presented in Fig. 9. It implements our approach and
contains mainly three components:

7836

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

¢ Test path generator: generates test paths by
traversing the CFG by applymng the depth first search
algorithm

» Test data generator: generates test data for each of
the test paths by solving the constraints of the paths

¢+ Test case generator: generates test cases by
combining the generated test paths and test data

We imnplemented a prototype tool that has been
developed m Java to generate test cases from the CFG.
The input includes the CFG nodes, start node, end node,
edges, transition names and the accessor functions. The
transition names denote the event’s names related to the
edges and the accessor functions return the values of the
get methods from the SUT to evaluate the expected
results. The outputs of the tool contains the test paths,
test data and test cases. Hach of the transitions residing
within a test path represents a method in the SUT.
Therefore, the test cases for each of the paths can be
represented as the sequence of method calls including the
associated variables, preconditions, post conditions and
some additional mformation. The generated test cases
support the JUnit format and thus can be executed using
the TUnit test framework. The users can enter the test
input via. the user interface.

Evaluation

Experimental procedures: In order to conduct the
experiment, at first we applied the proposed guidelines
and mamually constructed a Control Flow Graph (CFG) of
the BPEL-based web service composition using CPN as a
mediate. Meanwhile, the BPEL program is converted into
the programming language java as the Service Under Test
(SUT). The CFG 1is then provided as the input of the
prototype tool through the interface. From these inputs,
we generated the test paths, test data and test cases in
Java. The tool is able to generate these three elements in
three different tabs.

To evaluate the fault detection capability of the
generated test cases, we created some conditions that do
not match with the conditions defined in the BPEL
program. We mapped those faulty conditions into
implementation faults and seeded them in the SUT. To
avert any preconception that could be created by having
msight of the faults, the faults were generated after the
generation of the test cases. Finally, we ran the generated
test cases using the JUnit test framework to evaluate
whether the test cases are able of finding errors in the
SUT.

RESULTS AND DISCUSSION

Following the experimental procedures described in
the previous section, we constructed CFG for both of the

two case studies and used the CFG as the input of the
tool. For the first case study of the “Loan approval
process” we found three test paths.

Afterwards, based on the test data generation
approach, we computed the transition sequence and the
allowed data ranges for each of the paths which are as
follows:

» Path 1: receive, approver, reply (amount>10000, risk#
“low”, approve = “no”

¢ Path 2: receive, assessor, approver, reply. (5000:=
amount=<1 0000, risk#“low”, approve = “no”)

» Path 3. receive, assessor, sendmessage,
(amount<5000, risk = “low”, approve = “yes”)

reply.

Finally, we got three abstract test cases by combining

the test paths with their specified data ranges.
For the second case study of the “purchase order
process”, two guidelines (1 and 2) were applicable among
the four in order to comstruct the CFG from the
reachability graph. However, since, there is no brunch mn
the BPEL program of the purchase order process,
applying guideline 1 may cause some important activities
to be disappeared and make the CFG too small. Therefore,
we applied only guideline 2 that combines two parallel
states together but do not reduce its length. Fmally, the
CFG we get after applying the guideline 1s a sequence of
eleven states which consists of ten transitions. As a
consequence, one test path is generated which is as
follows: path 1: 81, 32, S3, 34, 85, 56, 57, S8, 59, S10, S11.
Based on the functionalities of the BPEL program, the
transition sequence for the above path 1s as follows:
path 1. receivePO, reqShip, shipping, sendShipPrice,
sendShipSche, IPC, mvoicing, RPC, scheduling, reply.
Finally, the abstract test case we got can be represented
as follows: tc: {(null, receivePO, “POmessage™),
(“POmessage”, reqShip, “POmessage™), (“POmessage”
shipping, (“shippmglnfo”, “schedulingInfo™)),
(“POmessage”, IPC, “POmessage™), (“shippmglnfo™,
sendShipPrice, “shippingInfo™), ((“POmessage”,
“shippingInfo™), invoeicing, “invoice™), (“POmessage”,
RPC, “POmessage”), (“schedulingInfo”, sendShipSche,
“schedulingInfo™), ((“POmessage”, “shippingInfo™),
scheduling, “schedule™), ((“invoice”, “schedule™), reply,
“imnvoice”)}.

From the summary of the two case studies we can
notice that, the CFG of the purchase order process has
more states than the loan approval process. However,
only one test path is generated from it whereas three test
paths are generated for the loan approval process; this is
because the BPEL program of the purchase order service
does not contain any branch. Thus, the CFG becomes a
sequence of states which represents only a single test
path.

7837

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

Fault detection capability: Tn order to evaluate the fault
detection capability of our proposed approach and the
generated test cases, we create a version of the SUT of
the “loan approval process™ which 1s written m java. In
the new version we have seeded an error by changing a
condition of the BPEL code. To do this, we changed a
condition of the mcoming link of the “Approval” web
service as “getVariableData(‘request’, ‘amount’)<120007
which previously was “get variable data(‘request’,
‘amount”)=100007". Due to this change, the incoming link
conditton (“get variable data(‘request’, ‘amount’)
<100007) of the “Assessment” web service becomes
overlaid with the condition of the partner service
“Approval” for any value which is <10000, i.e., 8000.

Finally, we execute the three generated test cases for
the new modified version of the “loan approval process”
using the JUnit test framework. The execution result
shows that two test cases among the three are passed
and the other one 1s failed. The reason behind the failed
test case 1s that a test input for that test case could be
15000 based on the specification of the BPEL code.
However, it does not satisfy the modified condition as a
result, the test case 1s failed.

Effectiveness of the approach: In order to evaluate the
effectiveness of our approach, we conducted experiments
for our approach and two other state-of-the-art
approaches and compared the results of the experiment.
Since, we combined reachability graph and control flow
graph together in our approach we select a reachability
graph-based approach (Cai ef af., 2011) and a control flow
graph-based approach (Yuan et al, 2006) for the
comparison. We generated test paths by applying these
two approaches using state coverage and transition
coverage for both of the case studies. Table 2 represents
the summery of the comparison.

Table 2, we observe that the test paths generated
by the other two approaches is higher than our
approach. The reachability graph-based approach and
CFG-based approach have generated 6 and 10 paths,
respectively, for the “loan approval” process and 35 and
6 paths, respectively, for the “purchase order” process.
Our approach, on the other hand, generates only 3
and 1 test paths, respectively, for the “loan approval”

Table 2: Summary of the comparison with existing approaches

Cai et al. Yuan et .
Case studies Approaches (2011) (2006) Our
Loan approval Total paths 6 10 3
process Feasible paths 6 3 3
Infeasible paths 0 7 0
Purchase order Total paths 35 6 1
process Feasible paths 35 4 1
Infeasible paths 0 2 0

and “purchase order” processes. This is because the
proposed guideline (Guideline 3) for CFG construction
added two parallel nodes together as a result, two
paths are merged into a single one. Therefore, the
quantity of the paths i1s being minimized; thus, the
time required for the test case generation will be
minimized correspondingly. Furthermore, reachability
graph-based approach generates a large number of paths
which is time consuming.

We also observe that the CFG-based approach has
generated some infeasible paths. Though, the researchers
have provided some techmques to handles these
infeasible paths, however, it requires some additional
worle. On the other hand, our approach does not generate
any infeasible test case. Therefore, no additional work 15
required to handle this problem which makes our
approach both time and cost effective.

CONCLUSION

In this researcher we present a CPN-based test case
generation approach for web services compositions
written in BPEL. The main achievement of this research
llustrated as the enhancement and
adaptation of existing and new approaches in order to

work can be

generate test cases. We combined a reachability graph
and a control flow graph together to generate feasible test
cases and minimize the consequences that could be
caused by the state space explosion problem of the
reachability graph. In addition, we proposed some
guidelines to construct a CFG from the reachability
graph. Finally, a prototype tool is developed that
implements our approach and determines the
effectiveness of our approach. The experimental
validation results showed that all the test cases generated
by our approach are feasible and able to expose the
seeded faults within a system.

At present, we applied our approach to only two
BPEL processes. In future, we would like to apply this
approach to other BPEL-based web service compositions
that contains more advanced and complicated BPEL
features. The applications might further help ws to
observe both the effectiveness and lacking of the
technique. We currently manually constructed the CFG
from the reachability graph by applying the proposed
guidelines. In future, we plan to make the prototype tool
fully automatic in order to automatically construct the
CFG from the RG. For now, the proposed guidelines for
constructing the CFG are restricted to the BPEL programs
that do not contain loops. Extending our approach and

7838

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

providing solution of this issue will also be a part of our
future research. Besides, i future we plan to perform a
more detailled analysis of time complexity for our
approach.

ACKNOWLEDGEMENT

The researchers are grateful to all the reviewers for
reviewing owr manuscript. The study is funded by
SEEDSlab (Software Intelligence and Data Science
Research Group).

REFERENCES

Aalst, V.D. and C. Stahl, 1999. Modelmg Business
Processes-A Petr1i Net-Oriented Approach. MIT
Press, Cambridge, Massachusetts, USA.,.

Ammann, P. and J. Offutt, 2008. Intreduction to Software
Testing. Cambridge University Press, Cambridge,
UK., ISBN:978-0-521-88038-1, Pages: 322,

Anonymous, 2008, Web services business process
execution language version 2.0. Qasis Publishing,
Clovis, California. http://docs. v oasis-open.org/
wsbpel/2.0/0SAwsbpel -v2.0-O8 pdf

Bernot, G., M.C. Gaudel and B. Marre, 1991. Software
testing based on formal specifications: A theory and
a tool. Software Eng. J., 6: 387-405.

Cai, L., J. Zhang and 7. L1, 2011. A CPN-based software
testing approach. J. Software, 6: 468-474.

Dong, WL., H Yu and Y.B. Zhang, 2006. Testing
BPEL-based web service composition using
high-level petri nets. Proceedings of the 2006 10th
IEEE Intemational Conference on Enterprise
Distributed Object Computing (EDOC'06), October
16-20, 2006, TEEE, Hong Kong, China,
ISBN:0-7695-2558-X, pp: 441-444.

Farcog, 1., C.P. Lam and H. L, 2008. Towards automated
test sequence generation. Proceedings of the 15th
Australian Conference on Software Engineering,
March 26-28, IEEE Computer Society, Washington,
USA., pp: 441-450.

Hierons, R M., K. Bogdanov, J.P. Bowen, R. Cleaveland
and J. Derrick et al., 2009. Usmng formal specifications
to support testing. ACM. Comput. Surv., 41: 1-76.

Tahan, H., 8. Rao and D. Liu, 2016. Test case generation
for BPEL-based web service composition using
Colored Petri Nets. Proceedings of the 2016
International Conference on Progress in Informatics
and Computing (PIC), December 23-25, 2016, TEEE,
Shanghai, China, ISBN:978-1-5090-3485-7, pp:
623-628.

Jensen, K. and L.M. Kristensen, 2009. Coloured Petri
Nets: Modelling and Validation of Concurrent
Systems. Springer, Berlin, Germany, ISBN:
978-3-642-00283-0, Pages: 384.

Jensen, K., 1996. Coloured Petr1 Nets Basic Concepts,
Analysis Methods and Practical Use. Springer,
Berlin, Germany,.

Kang, H., X. Yang and S. Yuan, 2007. Modeling and
verification of web services composition based on
CPN. Proceedings of the 2007 TFIP International
Conference on Network and Parallel Computing
Worlkshops (NPC 2007), September 18-21, 2007, TEEE,
Liaoning, China, ISBN:0-7695-2943-7, pp: 613-617.

Liu, al., ¥X. Ye and J. L1, 2011. Colored Petri nets model
based conformance test generation. Proceedings of
the TEEE 2011 International Symposium on
Computers and Commumnications (ISCC), June 28-
Tuly 1, 2011, TEEE Kerkyra, Greece,
ISBN:978-1-4577-0680-6, pp: 967-970.

Liu, 3.Y. and 5. Nakajima, 2011. A framework for automatic
functional testing based on formal specifications.
Proceedings of the 6th International Workshop on
Automation of Software Test, May 21-28, 2011,
Honolulu, HT, TTSA., pp: 107-108.

Miller, aK. W, al..J. aMorell, aR E. aNoonan, aS.K. aPark,
D.M. Nikel, BW. Murrill and TM. Voas, 1992.
Estimating the probability of failure when testing
reveals no failures. TEEE Trans. Software Eng., 18:
33-43.

Murata, T., 1989. Petri nets: Properties, analysis and
applications. Proc. IEEE., 77: 541-380.

Myers, G.T, 2004, The Art of Software Testing. 2nd Edn.,
Tohn Wiley and Sons, Hoboken, New JTersey, UISA.,
ISBN:0-471-46912-2, Pages: 234.

Ni, Y., 8.8. Hou, L. Zhang, I. Zhuwand 7Z..J. Li et al., 2013.
Effective message-sequence generation for testing
BPEL programs. IEEE. Trans. Serv. Comput., 6: 7-15.

Offutt, J., 2003. Generating test data from state-based
specifications. Software Test. Verificat. Reliabil., 13:
25-53.

Rao, S., H. Jahan and D. Liu, 2016. A search-based
approach for test suite generation from extended
finite state machines. Proceedings of the 2016
International Conference on Progress in Informatics
and Computing (PIC), December 23-25, 2016, IEEE,
Shanghai, China, ISBN:978-1-5090-3485-7, pp: 82-87.

Ratzer, aA. V., al.. aWells, aH .M. alLassern, aM. al.aursen
and I.F. Qvortrup et al., 2003. CPN tools for editing,
simulating and analysing coloured Petri nets.
Proceedings of the International Conference on
Applications and Theory of Petri Nets and
Concurrency, Tune 23-27, 2003, Springer, Berlin,
Heidelberg, Germany, ISBN:978-3-540-40334-0, pp:
450-462.

7839

J. Eng. Applied Sci., 14 (21): 7828-7840, 2019

Reza, H. and S.D. Kerlin, 2011. A model-based testing
using scenarios and constraints-based modular petri
nets. Proceedings of the 2011 8th International
Conference on Information Technology: New
Generations, April 11-13, 2011, IEEE, Las Vegas,
Nevada, ISBN:978-1-61284-427-5, pp: 568-573.

Schmidt, K., 2000. Lola a low level analyser. Proceedings
of the International Conference on Application and
Theory of Petri Nets, June 26-30, 2000, Springer,
Berlin, Headelberg, Genmany, [SBN: 978-3-540-67693-5,
pp: 465-474.

Stocks, P. and D. Carrington, 1996. A framework for
specification-based testing. TEEE. Trans. Software
Eng., 22: 777-793.

Wang, Y. and N. Yang, 2014. Test case generation of web
service composition based on CP-nets. J. Software,
9: 589-596.

Watanabe, H. and T. Kudoh, 1995. Test suite generation
methods for concurrent systems based on coloured
Petri nets. Proceedings of the 1995 Asia Pacific
Conference on Software Engineering, December 6-9,
1995, IEEE, Brisbane, Australia, ISBN:0-8186-7171-8,
pp: 242-251.

Xu, D, W. Xu, M. Kent, L. Thomas and L. Wang, 2015.
An automated test generation technicue for software
quality assurance. IEEE. Trans. Reliab., 64: 247-268.

Yan, T, 7. Li, Y. Yuan, W. Sun and J. Zhang, 2006.
BPELAWS umnit testing: Test case generation using a
concurrent path analysis approach. Proceedings of
the 2006 17th International Symposium on Software
Reliability Engineering, November 7-10, 2006, TEEE,
Raleigh, North Carolina, UUSA., pp: 75-84.

Yang, Y., Q. Tan and Y. Xiao, 2005b. Verifying web
services composition based on hierarchical colored
petri nets. Proceedings of the 1st International
Workshop on Interoperability of Heterogeneous
Information Systems (IHIS '05), November 04, 2005,
ACM, New York, USA., pp: 47-54.

Yang, Y., Q. Tan, JT. Yu and F. L, 2005a
Transformation BPEL to CP-nets for verifying web
services composition. Proceedings of the
International Conference on Next Generation Web
Services Practices (WWeSP'05), August 22-26, 2005,
IEEE, Secul, South Korea, ISBN:0-7695-2452-4, pp:
6-6.

Yi, ¥X. and K.J. Kochut, 2004, A CP-nets-based
design and verification framework for web services
composition. Proceedings of the TEEE International
Conference on Web Services, July 9, 2004, TEEE,
San Diego, California, ISBN:0-7695-2167-3, pp:
756-760.

Yuan, Y., Z. Li and W. Sun, 2006. A graph-search based
approach to BPELAWS test generation. Proceedings
of athe a2006 alnternational aConference aon
Software Engineering Advances (ICSEA'06), October
29-November 3, 2006, TEEE, Tahiti, French Polynesia,
ISBN:0-7695-2703-5, pp: 14-14.

Zhu, H. and X. He, 2002. A methodology of testing
high-level Petri nets. Inf. Software Technol., 44:
473-489.

7840

	7828-7840 - Copy_Page_01
	7828-7840 - Copy_Page_02
	7828-7840 - Copy_Page_03
	7828-7840 - Copy_Page_04
	7828-7840 - Copy_Page_05
	7828-7840 - Copy_Page_06
	7828-7840 - Copy_Page_07
	7828-7840 - Copy_Page_08
	7828-7840 - Copy_Page_09
	7828-7840 - Copy_Page_10
	7828-7840 - Copy_Page_11
	7828-7840 - Copy_Page_12
	7828-7840 - Copy_Page_13

