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INTRODUCTION

Let R be a commutative ring uith unity and M be an
R-module, we introduce that an R-module M is called fully
stable quasi-prime module iff annRM = annR f(N), for
every non-zero submodule N of M and f be
homomorphism function f: N-M where:

annRM = {r: r= R and 1M =0}

The mam purpose of this research is to investigate
the properties of full stable quasi-prime module and we
give several characterization of fully stable quasi-prime
module. Recall that an R-module 1s called prime, if
annRM = annRN for every non-zero submodule N of M
(Al-Bahrany, 1996). The concept of quasi-prime module 1s
introduced by Hassin (1999) where an R-module M is
quasi-prime if anngN is prime ideal for every non-zero
submodule N of M. Recall that M 1s called weakly
quasi-prime module, if annRM = annR M for each
réamBM (Hassin, 2011). We show that every quasi-prime
module is fully stable quasi-prime module and every fully
stable quasi-prime module 1s weakly quasi-prime module
but the converse is not true.

MATERIALS AND METHODS

Fully stable quasi-prime module: In this study, we
introduce the concept of fully stable quasi-prime module
and give several results about it.

Definition 2.1: Let, N be submodule of an R-module M,
ther, N 1s called stable quasi-prime module (briefly sqp)
module, if there exist homomorphism function:

f: N — M; annRf (N} = annRM

Definition 2.2: An R-module M 15 called fully stable
quasi-prime module (briefiy fsqp) module, if for each N
submodule of M 13 sqp module.

Examples and remarks: Every simple R-module is fsqp
module. But the converse is not true, for example, let:

[:2Z —Z;f(2a)=2atl;ac Z
AnnR f(2a) =0=annRZ

So, Z as Z-module is fsgp module but Z is not simple
module. Z; as Z-module
ann,Z., = 87. Let:

18 not fsqp module, since,

f:[2]7 — 78, f{[2]) =[2]+1  so,
annR f([2]) #87

So, Z, as Z-module 13 fsqp module iff nis prime. Let,
N = 1/p~Z be submodule of amodule M = Z;~. Let,
f: N-M; fiN) =1/, so, ann, £ (N) = 0 end am M = 0, so,
N 1s sqp module of M, so, M 13 fsqgp module. Let N =
(0y+Z; be submodule of a module M = Z+7, where,
EN-M. f{(0H+Z6) = Z6, so, ann,Z, = Z, but ann,M = 0. So,
N 1s not sgp module, so, M 1s not fsqp module.

Theorem 2.4: Every quasi-prime module is fsqp module.
Proof: Let, M be ¢.pmodule to prove M is fsqgp module,

ie., to prove annRM = annR f{N) for each submodule N of
M and homomorphism function:

£ N — M, since, f (N) C M, so, ann,M C ann, f (N)

To prove anngf (N)cannM: Let xcannR f{N) and
suppose x¢ANNmm, so, xM=#0, so, ther exist m,eM;
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x(m)#oimplies x& annR (m, ), since, xcannRI{N) implies xf
(N) = 0, since, { 1s homomorphism, so, f(xN) = f(0)= 0
umnplise XN for each neNcM, so, neM.

If (m)=(n) then, n = cm, so, xn = xem, implies 0 =x
(em;), so, xcann; (cm;) but M is gp module, so,
anng(em,) = anng(m,) by Abdul Razak, so, xcannR(m,)
which is contradiction.

If (n)c(m,) then, m, = cn then, xm, = x cn where,
xn = 0 implies xm, = 0 which is contradiction with
hypothesis, so, xcann, M.

The converse of theorem is not true, for example,
M = Zeo is fsqp module by example 3 but is not qp
(Hassin, 1999). But if we addition the condition, we can
satisfy the converse.

Theorem 2.5: If M 1s cyclic fsqp module then M 13 gp
module.

Proof: Let, ff N-M be homomorphism, armRf(N) =
annRM, we must prove that M is qp, i.e., amnzM is prime
ideal.

Let abeR, abcannM, suppose adamm,M and
bganngM, so, abM = 0, so, abM = 0 but aM# 0 and bM=#0.
There exist xeM, ax#0 and bx#0, since, M is cyclic,
let N = (bx), so, abx = 0 implies acanngN, so, aN = 0, so, {
(oeN) = F(0) = since, f is homomorphism, so, af(N) implies
ac anngf(N) but M is f.s.q.p module, so, acann M which
1s a controduction.

Theorem 2.6: Let, M be cyclic R-module then, the
following statement are equivalent:

¢ Mis fsgp module
e Mis gp module
* amR(m) = anmR{rm), r¢annR{m)

Proof:

e 1-2 (by th 2.5)

¢ 2-3 by Hassin (1999)

*  3-1, since, M s cyelic, so, M = (1y), reR, yeM

To prove annRf(N) = annRM for each f is
homomorphism. f: N-M, since, iN)cM, so, annyMcannf
(N). To prove anngf(N)cannsM. xcannRE(N), so, xf(IN) =0,
let yef(N), so, yeM. Implies xy = 0 for each yeM, so,
x€anng(y) = amy(ry), r€R by hypothesis. So, x(ry) = 0
implies xcanngM. So, annREN)c AnnRM implies. So, M
is fsqp module.

RESULTS AND DISCUSSION

Relation between fsqp module and wqp module: In
this study, we give the relation between fsqp module and

weakly quasi-prime module where an R-module M is
called weakly quasi-prime module (briefly wqp), if
annM = anngM for reannM (Hassin, 2011).

Theorem 3.1: Every f5.q.p module 1s w.q.p module.

Proof: Let, N be submodule of an R-module M. Let,
N-M be homomorphism function st anngf (N) = anngM.
To prove anngrM = annM for each reéann,M. Since,

™M M, so, let N = 1M, so, annRM annRN (1)

To prove anngNcannM. Let xcann:N implies xN =
0, so, xrM = 0 but f is homomorphism, so, f (xrM) ={(0) =
0, so, x f (tM) = 0 mplies xcamgf (tM) but M is £5.qp
module, so, xCanngM.

Note 3.2: The convers of theorem 3-1 1s not true, for
example. Let, M = Z+75, p is prime number is wqp
module (Hassin, 2011) but 13 not f.q.p module see [example
and remark 2-3. But, we can give the equivalent by the
theorem.

Theorem 3.3: Let, M be cyclic R-module
following statement are equivalent:

then the

¢+ Mis gpmodule
o M is fsgp module
*  Mis wgp module

Proof: 1-2 by (2-4 theorem ) and 2-3 by ( 3-1 theorem )
and 3-2 by [3, 2-8 prosition] implies M 1s q.p module and
by (2-4 theorem), so, M. Is fsgp module and 3-1 by
Hassin (2011).

Recall that an R-module M is called multiplication
if for each submodule N of M; N =IM for some ideal T of
R (Atani, 2004; Kasch, 1982).

Theorem 3.4: Let, T be ideal of aring R, then, every
multiplication wqp module is fs gp module.

Proof: Let, N be submodule of an R-module M, since, M
is multiplication, then, N = TM, so, ther exist a
homomorphism function.

£ IM M, to prove annRf (N) = annRM
ie., annR f(IM) = annRM
Since,
f(IM) M, so, annRM annRf (IM) (1)

To prove annyf{IM)cannM. Let, xcanngf(IM), so, xf
(IM) = 0, since, f is homomorphism then:
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fixIM) = f{0) implies xIM = o, so,

x armRIM but M is multiplication, so

by Atani (2004) annRIM = annR(Rm) @)
where anrmRRm armRrM, so,

xe annRrM but Mis w.q.p, so,

x= annRM implies annR{IM) € annRM

From Eq. 1 and 2, implies M 1s fsqp module.
CONCLUSION

From this research, we conclude that every
quasi-prime module 13 (fsgp) module. If M 1s a cyclie
(fsqp) module, then, M is a (gp) module and every (fsqp)
module is (wgp) module but the converse is not true, if,
we put the condition cyclic. Finally, we conclude that
every multiplication (wqp) module 1s (fsgp) module.
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