Tournal of Engineering and Applied Sciences 14 (2): 648-657, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

A Program Visualization Method for Large Scale Software

'Toonseon Ahn, *Seungcheol Shin, 'Hyung Joon Lim and 'Young Sub Lee
'School of Electronics and Information Engineering, Korea Aerospace University,
Goyang-S1, 10540 Gyeonggi-do, Republic of Korea
*Codemind Corporation, 08381 Seoul, Republic of Korea

Abstract: Program visualization supports program comprehension by providing software properties in
visualized forms. We mtroduce and analyze current representative visualization tools from the viewpoint of
effective visualization of semantic properties for large-scale software. Then, we present the design and
implementation of our visualization tool that helps users understand the relationship among modules of a
program at various levels from program statements to packages. The tool has several features to overcome
visual complexities of large software such as limitation of displayed nodes and auxiliary table. The tool stores
underlying data structures in a graph database and handles concurrency and scalability effectively. We also
explain the implementation of our tool and provide experimental results.

Key words: Program visualization, static analysis, program browsing, vulnerability analysis, data flow analysis,

control flow analysis

INTRODUCTION

It 18 very common m software development and
maintenance to utilize open source software and update
existing program to fix bugs or add new functions. In
addition because the size of software 1s increasing and 1t
15 very common that people maintain software that they
have not developed, the necessity of tools for
understanding software is increasing.

Program visualization supports program
comprehension and mamtenance by presenting software
architecture and runtime property in a visualized
form by Roman and Cox (1993), Rech and Schafer
(2007) and Gallagher et al. (2008). Program visualization
tools guides users in understanding software structure
and finding parts to be updated for maintenance. There
researches for analysing program
properties m more efficient and precise way and many
reports compare static analysis tools on their accuracy
and speed by Srinivasan and Thambidwrai (2007),
Emanmuelsson and Nilsson (2008), Mantere et al. (2009),
Li and Cui (2010), Charest et al. (2016), Ramos (2016).
However, fewer researches deal with effective
visualization of analysis results and it is also very
important to present program properties in a user-friendly
and effective way.

To support program understanding using program
visualization effectively, we must handle the limit of

Were numerous

display size and human ability of visual comprehension.
If visualization becomes too complex, 1t 1s not displayable
in a linited area and too difficult for users to find
information that they want check. Therefore, we must
design visualization at various
appropriate for the kind of program properties and provide
methods how users can navigate program points and find
information of interest.

In this study, we introduce and analyze the
characteristics of representative visualization tools from
the viewpoint of effective visualization of semantic
properties of large-scale software. Then, we present the
implementation of our visualization tool for program
understanding. Our tool helps users understand the
relationship between modules of a program at various
levels from program statements to packages and has
several features to handle visual complexity. Using graph
database, our implementation handles concurrent access
to program information effectively and scales up to
millions of LOC.

abstraction level

MATERIALS AND METHODS

A comparative study of program visualization tools: In
this study, we present a comparative swvey and
analysis of program visualization methods of current
program analysis and comprehension tools. We select
three famous tools those have competitive visualization

Corresponding Author: Joonszon Ahn, Schoal of Electronics and Information Engineering,
Korea Aerospace University, Goyang-Si, 10540 Gyeonggi-do, Republic of Korea

J. Eng. Applied Sci., 14 (2): 648-657, 2019

net.sourceforge javaocr

ocrPlugins

=P o- O- O- a-
mse0CR aspectRatio CharacterExtractor | LineExtractor CharacterTracer
o- =1 =
OCRScanner | TrainingimageLoader spectRatioOCH
| slice ‘ | slice | | getTracedimage
| scan | ‘ load | | scan ‘
. /
O-
scanger
DocumentSéanner

scan

processRow

DogtimentScannerList

r
(beginDocu meﬁ

java

=
lang

1 e VA

=
Integer

Arraylist

add | ‘ get

size

remove ‘ Integer ‘

Fig. 1: Subsystem architecture diagram of Imagix 4D [Imagix]

representations which are Tmagix 4D® Understand® and
Codesonar® Imagix 4D® is a source code analysis tool for
C, C++ and Java developed by Imagix Corporation. It
provides various program properties such as hierarchical
subsystem architecture, interprocedural
mtraprocedural control flow and data flow in visualized
forms and use-def relation among variable usages [Imagix]
(Anonymous, 2018a-b).

The most distinctive point of Imagix 4D visualization
1s the unification of subsystem architecture and program
analysis results. Subsystem architecture diagram shows
hierarchical structure of modules of multiple levels and
various program properties such as data flow, control flow
and task interaction can be added to the visualization of
hierarchical structure. In Fig. 1, rectangular structure
shows hierarchical structure of multi-level modules from
methods to packages and arrows express control flow.

Imagix 4D® also has traditional visualizations such as
call graph and intra-procedural data flow graph which 1s
shown in Fig. 2 and 3, respectively. Call graph of Imagix
4D is distinctive in that it displays statements related to
each function call in each function node. Intra-procedural
data flow graph shows data flow mformation in a function
and users can highlight data flow related to a specific
assignment.

Although, Tmagix 4D® subsystem architecture
diagram helps users check the hierarchical module

and

649

structure and other properties simultaneously, it becomes
too complex for large software and Imagix 4D® has little
consideration for visual complexity. Understand® by
scientific tool works is a code visualization tool for
promoting program comprehension developed [SciTools).
Understand® presents UML Class diagrams, treemaps for
program metrics, interprocedural, mtraprocedural control
flow graph and butterfly graph that is customizable in
callee and caller depth.

TreeMapping is an information visualization form for
hierarchical data using nested rectangles. Figure 4 shows
a TreeMap of Understand® that provides an overview of
a program where module structures and size of files are
represented.

Like Imagix 4D® cluster graphs of understand®
provides simultaneous presentation of hierarchical view
and relation among modules. Users can access control
flow relation from architecture, class and function level
and the graphs can be customized with caller oriented,
callee oriented and butterfly variations. In Fig. 5, a cluster
graph shows the control flow of a C program where a file
node 18 expanded to provide hierarchy information.

Codesonar®is a static source and binary analysis tool
developed by Gramatech [Codesonar]. Codesonar®
identifies bugs in a program and provides an advanced
user experience in its visualization using its advanced
zoom-inn and out features and wvulnerability analysis

J. Eng. Applied Sci., 14 (2): 648-657, 2019

4 Contral Flow with Variables
Fle Edt Seiet Treverse
iy B oo

View Fiter

=

‘e

 HEN Ly

Fig. 2: Call graph of Tmagix 4D [Imagix]

4 _Calculation Tree - partval

Fie RY="N Display Help

¥
Assignment List

Variable Dependencies

Variable Table

| related to a specific

The Calculation Tres
analyzes the data flow

variable.

[|

|1:.1 = med3(pl, pléd, |
AW e—] Eomwmew:]
The flow of
assignments
is tracked

across function
boundaries.

The Assignment Flow
view shows the sequence
of assignments lzading

to avariable's value

[«

L4

Fig. 3: Intra-Procedural data flow information of Imagix 4D [Imagix]

support based on tainted information visualization.
Codesonar® provides a smooth zoom in and out
visualization providing a map-like user experience such as
Google Map as shown in Fig. 6 and 7. This, feature
enables the seamless browsing of program modules from
the highest level of the entire program structure to the
lowest level of mtra-procedural control flow. Each node
can be a package, a class, a file, a function and so, on and
they appears and disappears with the zoom-in and out
action. This map-like visualization provides high-quality
user experience and users can easily grasp the relation

650

among program parts at the desired level. In addition,
Codescnar® provides various visualization alternatives
such as TreeMap, Flat, Map, circuit for arclutectural
structure and program control and data flow. Codesonar®
finds various vulnerabilities in source code and binary file
using static analysis. Given analysis results, users must
check whether the vulnerabilities found are false alarm or
actually lead to exploit. Codesonar® provides information
about vulnerabilities using visual tainted data tracking. By
tracing the lughlighted nodes m visualizations, users can
traverse along the intermediate and source pomnts of

J. Eng. Applied Sci., 14 (2): 648-657, 2019

time.c

Fig. 5: Cluster graph [SciTools]

tainted dataflow. Although, Map-like visualization of
Codesonar® is very attractive user experience there is a
room for improvement related to visual complexity. In
zoom-in and out visualization, the relative location of
nodes 18 fixed in advance for map-like user experience.
Therefore, when users zoom-in toward an interested
node, nodes directly related to the node can
disappear in the window with large programs.
Therefore, map-like positioning of nodes for graph
representation can be inadequate for identifying various
program properties for large programs. In addition for
practical programs, simultaneous visualization of multiple
levels usually become too complex.

Design of a program visualization tool: In this study, we
explain our program visualization system, Codemind
Browser® which assists program understanding and
vulnerability examination. Our program visualization tool
has the following features:

» Comnsistent graph representation for all levels that are
directory, package, classes, methods and statements

» Dealing with visual complexity using context-based
node limitation, heavy mode and class-package assist

s Co-browsing of program
representations

s Visualization of intra-procedural data flow and
control flow information to help check and eliminate
vulnerabilities

codes and visual

» Package class table which help users browse related
classes or methods of complex programs

Figure 8 shows the overall sttucture of Codemind
Browser®. The integrated development environment
(IDE) 1s composed of file browser, editor, visualization
tabs and class/function list table. The Integrated
Development Environment (IDE) is composed of file
browser, editor, visualization tabs and class/function list

J. Eng. Applied Sci., 14 (2): 648-657, 2019

0 = En
amnfsm

ST b R

pric

Funcibon: maa

Fath: ‘ool zedzoada-2 1%
Edgexc D'm, 3] st

Pl o W mingee
Scurce Bne sumbar ST
M 16 000

LE: 15080

LMCC: | apd

bEd_clame {Eilehs
T
ZTEY imE
ITES mais [inA arpgs. char *

S Aoy

D imtom
char <“caczger + dafwalz T

bEd_ptoolcan peenfles

TEN RLf definad 0
el

bipdcexcdomair [(FATFLGE,
EaxtSozain (FACKAGE):

Fig. 7: Codesonar visualizations: TreeMap, Flat, Map, Circuit (clockwise from top left)] Codesonar]

table. File Browser (1) shows the tree of files and
directories of given project which help users to find files
of interest. The file can be a starting point of bottom-up
browsing to understand the program. Editor Window (2)
15 used to not only check and update program text but
also access visualized information related to each program
construct such as procedures, classes and packages.
Editor Window and Visualization Wimdow works in a
cooperative way according to user action n each

652

Window. Visualization Window (3) presents visualized
properties of a program. Tt is composed of tabbed panels
that provide multi-level
intraprocedural graph, function call graph, butterfly graph,
ClassGraph and program structure graph. They behaves
in cooperation with each other and users can reorganize
the tabs into new imner windows, so that, they can
examine multiple visualizations simultaneously. InFig. 6-8,
intraprocedural graph 1s displayed.

visualizations which are

J. Eng. Applied Sci., 14 (2): 648-657, 2019

= graphliaghi

Eaphbuider scd dedon
BnaymLiiiees bntegeRL 1
L34 4 Efdac dger.
Teadcibdgeil. Zisckdixge(i
Aladdbdgett. & skizigect

Fig. 8: Components of Codemind visualizer

Fig. 9: ClassGraph

Package class table lists classes and methods in
packages. Tt shows those components in accordance of
user selection in editor window and visualization
Window. Using this table, users can get information
without moving to
visualization of package level. The tabs in visualization
window present visualizations of program constructs ina
hierarchical way. Program structure graph shows overall
structure of a program using a graph whose node
represents packages or directories and edges represents
contrel flow between nodes. If we select a node, class and
procedure table shows classes and functions in the

about classes or functions

653

package. Users can move to ClassGraph tab by
double-clicking a package node. ClassGraph is composed
of class nodes and edges represents control flow among
classes. Because it is not visually too complex to include
all the classes in a program, ClassGraph include classes of
the package that is selected in package graph or in Editor
Window. In addition to the class nodes of a selected
package, other classes that are directly related to the
classes in the selected package 1s also mcluded n the
graph. Using this classes, users can navigate to other
packages that are directly related. The ClassGraph of
Fig. 9 shows control flow relation among classes in Trash

J. Eng. Applied Sci., 14 (2): 648-657, 2019

package. In addition, it shows other classes which are
directly related to the classes in the package. Class
Nodes domainOperations,
ASTDisplay, EuationGenerator, DocumentSizeFilter and
ToolTipTreeCellRende, whose names are in grey colour

such as worklistSolver,

are such examples. UJsing these outside nodes, users can
navigate to other related packages. If we click the
ASTDisplay class node, the ClassGraph shows the
relation among classes m the org.sablece.phpd.gui
package. In graph representations, if we move a mouse
over a node, nodes that are directed related are high
lighted. In addition, if we double-click a node, the
visualization window changes to the lower level
visualization tab for the node. That is, if we double click
a class node in a ClassGraph, the visualization windows
shows function call graph for the class.

Function call graph presents control flow among
procedures or methods in a class. Like ClassGraph,
function call graph also includes outside-class nodes that
are directly related The control flow relation among
procedures is also presented using the butterfly graph
tab. Butterfly graph shows the control flow from and to a
procedure which are selected in the editor window or call
graph. We can also expand the graph in both directions
by clicking a node at end. Using this visualization, we can
easily understand procedure call relation from the
viewpoint of a particular procedure.

If we double-click a node in call graph or butterfly
graph tab, the visualization window shows the
mtraprocedural graph which i1s shown in (3) of Fig. &
Intraprocedural graph shows the control and data flow mn
a procedure. We can get dataflow information by clicking
check boxes for use-def and def-use information and
selecting a node of interest.

When we visualize properties of large programs, we
must balance the complexity of the graphical
representation and quantity of information n a
visualization. Because naive visualization of practical
software usually become too complex for users, we
prepared several measures to handle the problem.

For program call graph and ClassGraph, those nodes
that belongs to a designated class or package and outer
nodes that are directly related are shown in the display.
Therefore, to view other nodes, users can navigate to
other groupings by clicking the directly related nodes or
by selecting the other package or class in the upper level
representation. Other visualization tools does not support
this kind of consistent limitation within a selected package
or class.

If the nmumber of nodes in a graphical representation
increase, the relationship among nodes mcreases in the
order of n' and the visualization becomes

incomprehensible. To handle this difficulty, when the
number of nodes is larger than a predefined number, the
visualization changes to the heavy mode. In heavy mode,
our visualization displays only those edges that are
adjacent to a selected node.

Although, visualized representation supports user
comprehension of program properties, users often get
difficulty in finding specific nodes in a graph with many
nodes. As an auxiliary mean to find interested nodes, we
provide a pop-up table of package structure table. Tt
shows classes m a package and methods in a class where
the package and class selection 13 decided in accordance
with the Visualization Window and Editor Window. Using
this table, we can easily find a specific node using the
sorted list. In addition, the table support multilevel
navigation. For example, while examining a function call
graph, we can easily move other function call graphs that
belongs to the same class. Although, such program
browsing 1s easily
visualization which 1s provides by other tools such as
Codesonar®, multilevel visualization becomes too complex
for large programs which reduces effectiveness of
visualization and consumes much computation.

supported using multilevel

RESULTS AND DISCUSSION

Program visualizers execute in conjunction with
program analyzers and they share various data structures
that represent information about a program. Codemind
Browser® uses our static analysis platform and Fig. 10
shows the overall structure of our analysis and
visualization framework.

Static analysis platform composed of a frontend for
Java and C++ and various static analysis modules such as
data-flow analysis, control-flow analysis and
semantic-based analysis such as abstract interpretation.
Program visualizer constructs visual representation using
results from the static analysis platform and displays them
via. IDE. To support consistent and extendable sharing of
program properties among static analysis modules and the
visualizer, owr tool models program source code,
intermediate code and all the analysis results with graphs
and stores them in an off-the-shelf graph database such
as Neod]. Program visualizer and analysis modules access
program information using graph database query and we
can get the following advantages (Table 1 and 2):

» Stable support for large-scale program analysis up to
millions of LOC

s Effective handling of race condition caused by
concurrent access of multiple modules such as
program analysis modules, visualization modules and

Static Analysis
Platform

Static
Analysis
Maodules

_ iGraph DB)

J. Eng. Applied Sci., 14 (2): 648-657, 2019

Use Interface (IDE)

Visual Data
Repository

Visual data Visual data
generator manager

Fig. 10: Overall structure of our program visualization framework

Table 1: Time consumption for visualization

Visualized information/Software Module Time (sec)
Program structure

Hibernate org. hibernate.search. test.c onfiguration 1.44
Hibernate org.hibernate.search.spi 0.87
MYSQL-connector-Java testsuite 0.70
MYSQL-connector-Java testsuite.regression 0.32
Polyglot polygot.types 0.56
Polyglot polygot.ast 0.39
Control Flow (Tnter procedural)

Hibemate SearchintegratorBuild 0.35
Hibemate BuildContext 0.13
MYSOQL-connector-Java HanginglnputStream 0.53
MY SQL-connector-Java ServerPreparedStation 0.27
Polyglot TypeNode ¢ 0.97
Polyglat Node ¢ 0.55
Control Flow (Intra Procedural)

Hibernate buildNewS earchFacto 142
Hibernate FindClass 0.18
MYSQL-connector-Java getExceptionTntercept 0.12
MYSQL-connector-Java proceedHandshake Wi 0.52
Polyglat visit 0.37
Polyglot exit 0.58
Use-def analysis (Intra-procedural)

Hibernate entityindexBinding 1.16
Hibernate MetadataProvider 1.88
MYSOQL-connector-Java rowPacket 1.05
Polyglat n 0.54
Polyglat v 1.17
Def-Use Analysis (Intra-profcedural)

Hibernate rootFactory 1.38
Hibernate factoryState 1.32
MYSOQL-connector-Java rowPacket 0.87
Polyglat m 0.53
Polvglot n 1.10

Table 2: Effectiveness of visualization support for vulnerability detection

Visualization support/metric Averageresult
No visualization support (A)

Excact anatysis ratio 77.4
Exact correction ratio 52.5
Anatysis time 1:40
Correction time 1:30
With visualization support (B)

Exact analysis ratio 89.6
Exact correction ratio 58.6
Analysis time 1:11
Correction time 1:06
B-A

Excact anatysis ratio 12.3
Exact correction ratio 6.0
Anatysis time -0:29
Correction time -0:24

655

program editors. Handling race condition is important for
the usability of our system because it enables concurrent
and incremental execution of program modification,
program analysis and visualization. Therefore, we can
update visualization mn accordance with the progress of
program update and analysis.

We tested our program visualization framework using
practical Tava programs such as Hibernate (111,419 lines),
MYSQL-comector-Java (139,680 lines) and Polyglot
(128,881 lines). Summaries the time consumptions for
displaying various information given an user request. Our
tool completed visualization between 0.13 and 1.88 sec
which is acceptable for human users. This shows that

J. Eng. Applied Sci., 14 (2): 648-657, 2019

using graph DB satisfies the required speed. Because
usefulness of a program visualization depends on
persenal experience and usage, quantitative measuremernt
of effectiveness is not straightforward. To measure the
effectiveness of our visualization in an indwect way, we
applied our visualizer to program vulnerability analysis
Diaz and Bermejo (2013). Our vulnerability detection
module for ow expeniment finds important
weaknesses such as SQL injection (CWE-89), path
traversal (CWE-22), OS command imjection (CWE-78),
XPath injection (CWE-643), LDAP injection information
through an message (CWE-329),
mformation exposure through comments (CWE-396),
exceptional iteration (CWE-835), use of hard-coded
password (CWE- 209), detection of error condition
without action (CWE-390) and improper handling of
exceptional conditions (CWE-396). For the purpose of
fairness, we divided 11 people into three groups and

exposure CITor

collected three sets of 50 programs. Two groups analyzed
each test set and each group analyzed two test sets. Each
group used visualization support for one test set and did
not used visualization support for the other set. Because
there can be false-positive vulnerability reports or missed
vulnerabilities, testers must examine analysis results.
Table 2
metrics

The
exact

shows our experiment results.
the the
correction ratio and the average false-positive checking

are exact analysis ratio,
time and correction time for each program. In the table,
testers got more productivity with visualization support
which shows that our tool was useful for understand

prograr.
CONCLUSION

In this study, we presented a survey of visualization
support of existing program analysis and inderstanding
tools and described a design and implementation of our
visualization tool. Ouwr tool provides a consistent
browsing from the intraprocedural level to the whole
program structure level. Our tool maintains an appropriate
degree of visual complexity by restricting the number of
nodes in a window. To supplement the restriction, our
package class table enables users to access related
methods or classes for the browsing context. In our
implementation, a static program analyzer executes
concurrently with visualization tool and we have solved
the problem of scalability and race condition by using a
graph DB mstead of the heap allocation. Our experiment
shows that our tool can handle large programs and is
effective for program understanding.

656

RECOMMENDATIONS

Our further work mcludes finding more effective
visualization method of data dependency information at
upper levels such as class and package levels. In addition,
to design effective visualization support for checking
various vulnerability forms will be very useful.

ACKNOWLEDGEMENTS

This work was supported by 2017 Korea Aerospace
University faculty research grant.

REFERENCES

Anonymous, 2018a. CWE/SANS TOP 25 most dangerous
software errors. SANS Institute, San Francisco,
California, USA. https://www sans.
25-software-errors

org/ top

Anonymous, 201 8b. GrammaTech CodeSonar delivering
resiliency for today’s ToT devices. GrammaTech,
Ithaca, New York, USA. https://www.grammatech.
com/products/codesonar

Anonymous, 2018c. Reverse engineering and code
analysis of C, Ci+ and Java. Tmagix Corporation,
Califorma.

Anonymous, 2018d. The Neo4J graph platform. Neod)'s
Inc, San Mateo, California, USA.

Charest, T., N. Rodgers and Y. Wu, 2016. Comparison of
static analysis tools for java using the Juliet test

Proceedings of the 11th International
Conference on Cyber Warfare and Security, March
17-18, 2016, Boston University, Boston, USA., pp:
431-438.

Diaz, G. and JR. Bermejo, 2013. Static analysis of
source code secwrity: Assessment of tools
against SAMATE tests. Inf. Software Technol., 55:
1462-1476.

Emanuelsson, P. and U. Nilsson, 2008. A comparative
study of industrial static analysis tools. Electron.
Notes Theor. Comput. Sci., 217: 5-21.

Gallagher, K., A. Hatch and M. Munro, 2008. Software
architecture visualization: An evaluation framework
and its application. TEEE. Trans. Software Eng., 34
260-270.

L1, P. and B. Cuy, 2010. A comparative study on software
vulnerability static analysis techmques and tools.
Proceedings of the TEEE International Conference on
Information Theory and Information Security
(ICITIS),December 17-19, 2010, IEEE, Beijing, China,
ISBN:978-1-4244-6942-0, pp: 521-524.

suite.

J. Eng. Applied Sci., 14 (2): 648-657, 2019

Mantere, M
Comparison

I. Tsitalo and J. Roning, 2009.
of static code analysis
Proceedings of the 3rd International Conference on
Emerging Security Information, Systems and
Technologies SECURWARE'09, JTune 18-23, 2009
IEEE, Athens, Glyfada, ISBN:978-0-7695-3668-2, pp:
15-22.
Ramos, A., 2016. Evaluating the ability of static code
analysis tools to detect injection vulnerabilities. Ph.D
Thesis, UMEA University, Umea, Sweden.

'3

tools.

E

657

Rech, T. and W. Schafer, 2007. Visual support of
software engineers during development and
maimtenance. ACM. SIGSOFT. Software Eng. Notes,
32:1-3.

Roman, G.C. and K.C. Cox, 1993. A taxonomy of
program systems. Comput.,, 26:
11-24.

Snmvasan, N. and P. Thambidurai, 2007. On the problems
and solutions of static analysis for software testing.
Asia] Inform. Technol., 6: 258-262.

visualization

	648-657_Page_01
	648-657_Page_02
	648-657_Page_03
	648-657_Page_04
	648-657_Page_05
	648-657_Page_06
	648-657_Page_07
	648-657_Page_08
	648-657_Page_09
	648-657_Page_10

