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Abstract: This study demonstrates the benefits of using Graph Signal Processing (GSP) techniques for an
mtelligent taxis transportation system. Graph signal processing, an application arising to handle multiple source
signals on a graph, has developed into an active field of research during the last several years due to its ability
to analyze enormous datasets or dynamic data that usually pose a challenge to researchers. We introduce a

possible method of using graph signal processing and its operations to analyze signals m a network of taxi
stand locations where the taxis can be sensors for human activities. An example is given using real data of taxi’s
and stand’s locations in San Francisco where the number of taxis around these stands is the detected signal.
The results showed the effectiveness of using graph Fourier transform to detect the anomalies mn the signals
which represent unusual transportation activities for human or driver distributions within the taxi network.

Key words: Graph signal processing, analysis huge data, an intelligent taxis transportation system, multiple
source, dynamic data, transportation activities

INTRODUCTION

A public transport system plays a significant role in
offering comfortable and flexible service in urban cities.
One of the commonly used public transport systems 1s
based on the use of taxis. Tn the past; many taxi
companies depended on the drivers’ experience to search
for passengers because of the mherent randomness n the
taxi service system. This method caused many problems.
One of them has a significant effect on the taxi service
ever since 1t existed and i1t happens when taxis are waiting
at a vacant stand while customers may be waiting in vain
elsewhere (Meng ef af., 2010). Now a days, taxi companies
equip the taxis with GPS (Global Position System)
receivers to track taxis via. wireless communication
between the taxis and a control center. Thus, a network of
taxis on the road can be tracked and located. This
technique will locate the taxis to each of the taxi requests
received to reduce the waiting time problem (Wang et al.,
2014). To provide good services, researchers have been
focused on the taxi’s mobility patterns that are essential
in traffic modeling and forecasting (Leutzbach, 1988).
Also, analysis of the collective mobility through taxi use
data serves as a tool to detect peoples activities
(Liao et al., 2010, Candia et al., 2008). Taxis data analysis
including their locations and occupancies over a period of

days, months or years 15 a challenge, especially for big
cities. The widely-gathered data will be able to show the
distribution of the taxis, the mobility of humans and their
activities. The analyzed information can be used to
improve the service quality in reducing pick-up time and
finding the best allocation for the taxis per customer’s
recuests.

In the last few years, the emerging field of processing
signals on graphs has made important advances in the
analysis and processing of the large data where the graph
refers to a combinatorial structure of vertices and edges
(Shuman et al., 2013). The most significant development
had been made by deriving a spectral framework for
analyzing signals; it 1s equivalent to how the Fourier
transform allows one to decompose complex signals in
terms of their fundamental frequencies. The spectral
transform defines graph signals depending on their
relation to the spectral properties of the underlymg graph.
This method has led to many new algorithms such as the
graph-based filtering and denoising methods (Zhang and
Hancock, 2008, Susmjara et al, 2015). Now a days,
processing a signal on a graph 1s prommently used mn the
field of sensor networks due to continuous streams of
data from sensors with very high spatial and temporal
resolution (Loukas, 2015).
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Fig. 1. An example of some real-world graph structured data. The values on the nodes will be the signals: a) Neuronal
networks; b) Social networks; ¢) Computer graphics and d) Vehicular networks

MATERIALS AND METHODS

Graph theory: The graph 1s a mathematical structure that
demonstrates a set of objects which are related to each
other. The objects are shown by vertices or nodes and the
relations are represented by edges or links that
mterconnect the vertices. Therefore, graphs are useful for
describing the geometric structures of data domains in
many applications such as social network, energy, sensor
and neuronal networlks. A graph can be undirected, if for
each pair of comected nodes, there 13 no origin node
and destiny node (the edge connects the nodes
bidirectionally) or the graph can be directed: edges go
from one node to another node. Tn many applications, it is
suitable to use undirected graphs. However, there are
certain applications that inherently require a directed
graph representation. The vertices and the edges vary
depending on the application of interest. For instance in
social network graphs, the vertices comrespond to the
users and links are present between users if they share a
social or a relationship (Venkatesan and Kannan, 2013).
Figure 1 demonstrates some examples of processing data
on graphs.

Formally, a graph, G of size N is represented by
G = {V, E, W} and defined as a graph, consists of a fimte
set of vertices V = {v}, a finite set of edges E = {e;} and
an unwelghted or a weighted adjacency matrix W. In an
unweighted graph, the W, = 1 if there is a relationship
between two vertices 1 and j, otherwise, W, = 0. In a
weighted graph, the related weight with each of the edges
measures the strength of the relation between the
corresponding nodes. If there is an edge e; connecting
two vertices 1 and J, the W, represents the weight of this
edge; otherwise, W; = 0 (6). For example in sensor
network graphs, the weights are inversely proportional to
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Fig. 2. An example of a graph consists of 3 nodes with
two edges. Tt is represented by the weighted
matrix and the degree matrix

the physical distance between the sensor nodes and
reflect the correlation between the sensor signals at those
nodes. The weight matrix of a weighted graph is a NxN
matrix. For the rest of this study, only undirected
weighted graphs are considered. There is also, another
matrix of interest in GSP called the Laplacian matrix I.. T,
defined n Eq. 1 where D 1s the diagonal degree matrix. The
vector of degrees is denoted by d since, it is the diagonal
elements of D; also, each component of d 1s the degree of
the corresponding vertex d; = X ;W as shown in Fig. 2.
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As the graph Laplacian (1) is a real symmealic matrix,
it has a complete set of orthonormal Eigenvectors. This
matrix will be very useful for the spectral analysis of the
graph as shown in the next section. From the Laplacian
matrix, the normalized Laplacian matrix, L., obtained
using the degree matrix D as shown in Eq. 2. Using the
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normalized Laplacian matrix will make the frequency
analysis easier by normalizing the frequency range from
0-2. L and L are not similar matrices, so, their
Eigenvectors and Eigenvalues are different. Furthermore,
selection of a suitable Laplacian matrix for a particular
graph-based problem will depend on the application:

1 1

i1 2
~-D’LD® @

L

For any an undirected graph, the Laplacian matrix 1s
symmetric and positive definite. Thus the
Eigenvectors will be orthogonal and the Figenvalues will
be real and non-negative by applying a smgular value
decomposition to the matrix as shown in Eq. 3:

medrls

L=UAUT 3

where, A 1s a diagonal matrix of non-negative real
Eigenvalues. The columns of U are the Eigenvectors
ful, u2, ..., uy} corresponding to the ordered Eigenvalues
0 = Ay A <A, <Ay, constitute an orthenormal basis for BY
(Shuman et al., 2016).

Graph fourier transform: Mathematically, the Fourier
transform with respect to a set of operators is the
expansion of a signal into a basis of the operator’s
eigenfunctions. Tn classical signal processing, Discrete
Fourier Transform (DFT) has been one of the most
unportant tools for analyzing signals. The DFT 15 an
representation of signals i the
time-domain. The set of basis vectors, which decompose
the given signal is the Fourier basis. Tt has many
interesting properties that can be expleited for signal
analysis. Many of the existing signal processing
techniques for both the time and the image signals
depend on the DFT representation of the signal. This
motivates researchers to derive a set of basis vectors
similar to the Fourier basis for graph signals. Having basis
vectors that are analogous to the Fourier basis will
capture notions of high and low frequencies on graphs
sinilar to sinusoids m the time domain. A low-frequency
graph signal would be one that varies very slowly with
respect to its neighbors. A high-frequency signal would
be one that varies significantly with respect to the
adjacent nodes. Also, the basis vectors should be
invariant to the node ordering. The research has focused
particularly on the properties of Laplacian matrix and its
Eigenvectors. Interestingly, these Higenvectors are
analogous to sinusoids in the time domain in that they
have a natural signal-frequency interpretation. The

alternative basis
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spectral decomposition theorem guarantees the existence
of an orthonormal matrix U that diagonalizes I.
(Venkatesan and Kannan, 2013).

The definition of the graph fourier transform as
shown in Eq. 4 1s mentioned m many research papers such
as Sendryhaila and Moura (2014a, b), Shuman et al.
(2013). The EHigenvectors of the graph Laplacian are used
to find the Graph Fourier Transform (GFT) for the vector
feR" that is showing the observed signals at each vertex
on the graph. The GFT 1s analogous to the classical
Fourier transform, given by Eq. 5, for the signals in the
time domain. Furthermore, the Inverse Graph Fourier
Transform (IGFT) is defined by Eq. &

f(2) = (LU} = LI0)V0) @
fle)={f.e™) = [ f(t)e""dt >
f(i)=2 F ) U () ©

Given a node ordering, each element of an
Eigenvector can be associated with a corresponding node
of the graph For connected graphs, the Laplacian
eigenvector u, associated with the Eigenvalue A ;is
constant and equal to 1//N at each vertex. Thus, 1, does
not change its value across nodes and hence, it is like a
DC signal on a graph. The graph Laplacian Eigenvectors
that are associated with low frequencies A, will cause the
slow fluctuation across the graph. For example, having
two connected vertices by an edge with a small weight
shows that the values of the signal at those locations are
likely to be not similar. On the other hand, the
Eigenvectors that are associated with larger Eigenvalues
vary more rapidly where the connected vertices by an
edge with lugh weight are more likely to have similar
values. Therefore, research has been conducted to study
the effectiveness of using graph Fourier transform in the
detection of anomalies on measuring signals within a
receiver network (Mahyari and Aviyente, 2014; Huang
and Sihiang, 2016).

In summary, the Eigenvalues and the Eigenvectors
carry the notion of frequency whereas A, shows constant
values in our signal on the graph and A, represents
maximum variations in the signal on the graph.

Smoothness on graph: One of the important properties in
analyzing a signal 1s the smoothness with respect to the
intrnsic structure of the data domain which 1s represented
by the weight matrix in graph signal processing. For
continuous signals, differential geometry provides tools
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Fig. 3: The fFifty taxi cabs stand locations in San Francisco (Anonymous, 2016)

to incorporate the geometric structure of the underlying
manifold inte the analysis of the signal on differentiable
manifolds. Discrete calculus provides “a set of definitions
and differential operators that make it possible to operate
the machinery of multivariate calculus on a finite, discrete
space (16, p.1)”. The smoothness of the graph may be
determined to study the signal vanations on the graph.
There are two kinds of the smoothness. The first type is
the local smoothness that is given by Eq. 7:

12
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Equation 7 provides a measure of the local
smootlness of signal f around vertex 1 The local
smoothness is a small number when f has similar values at
1 and all its neighbors. The second type 15 the global
smoothness that is given by Eq. &:

$.(0) =3 T e o L [ =118 ®

The global smoothness is also known as the graph
Laplacian quadratic and it is equal to zero if and only if £
1s constant across all vertices. In general, S,(f) 13 small
when the f has similar values at adjacent vertices
connected by edges with a large weight. In summary, the
connections among the nodes in any graph are encoded
in the Laplacian graph matrix which 1s used to define both
the graph Fourier transform and different notions of the
smoothness.

In addition to the above operations on the graph,
there are other operations of processing signals on the
graph such as down-sampling, signal translation, different
methods of filtering the signal and signal denoising, etc.
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Fig. 4 Graph structure of 50 stands, blue circles
represent vertices and gray links represent edges

Experimental: Based on the taxi cab stand locations in
San Francisco which are shown in Fig. 3, the graph was
constructed using their coordinates to analyze the
performance of the GSP method in this framework.

A weighted undirected graph with a set of 50 vertices
and a weight function; W: 50=50-R was considered. Each
entry of the weight matrix contains the weight of the edge
connecting the corresponding vertices; W, ;1 W(v,v;) and
it is created proportionally to the inverse of the distances
between them The distances vary from around 0.14 km to
about 11.29 km, the closer two locations or vertices, the
higher spatial correlation. A threshold was set up to
remove those connections with smaller weights (Huang
and Siliang, 2016; Anonymous, 2016). In this research, the
connections having distances longer than 3 km, among
the taxi stand pairs were removed. If there is no edge
between two vertices, the weight is set to zero. The
constructed graph is shown in Fig. 4. W is a symmetric
matrix. The °d(i) is defined as the sum of the weights of
incident edges:
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And the matrix D; = d(1). The graph Laplacian L is defined
as L = D-W which 1s always symmetric and positive
semi-definite.

The next step after constructing the graph is to
calculate and process signals observed on each node in
the graph. It is appropriate to consider a signal f as a
vector of size (50x1), since, the ith component represents
the signal value at the ith vertex. To generate the signal
for this study, mobility traces of taxi cabs mn San
Francisco, the USA in May 2008 are used (Grady and
Polimeni, 2010; Piorkowski et al., 2009). This data show
cab locations, occupancy and time. More than 500 taxi
cabs are provided with GPS devices to gather thus
mformation, approximately every 30 or 60 sec. The
locations of 50 cabs were interpolated by synchronizing
their data for specific times. The distances of vehicles to
the stand locations were calculated and the count of
vehicles () within a 1 km radius of the taxi stand for a
period of two days was used for the data processing.

RESULTS AND DISCUSSION

After creating the graph and the observing signal on
each node in the vertex domain, the graph Fourier
transform was calculated using Eq. 4 that 1s equivalent to
f=1v"f where U is the eigenvector of the Laplacian matrix.
The cumulative spectral plot 1s given in Fig. 5.

The first spectral components as shown in the first
row of Fig. 5 has the highest value compared to other
components of the spectrum. The first row of the matrix

20 40 60 80 100 120 140 160 180
Time

Fig. 5. The cumulative spectral plot for real data from Sat,
17 May 2008 15:00:00 GMT to Mon, 19 May 2008
15:00:00 GMT and 15 min as a time step
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U", u, associated with the eigenvalue A, has the same
positive magnitudes and equals to 1//50 at each vertex.
Thus, the first spectral or DC component equally depends
on the values of observed signals on all the vertices.
Using 50 taxi cabs will increase the magnitude of the DC
component when these taxi cabs are located between two
or more of the taxi stand locations. In few words, stands,
which are located 1 the middle of the city have maximum
overlap in calculating the number of cabs around their
locations due to the short distance between them. For
instance, Fig. 6 and 7 shows signals on the vertices when
the DC component has the highest value at the 33th time
step. Therefore, many cabs are located in the downtown
on Sat, 17 May 2008 23:15:00 GMT and the adjacent nodes
almost shared the same magnitude of the signal.

Also, Fig. 5 shows the vamation of the different
spectral components over the selected time. For example,
the 7th row has important negative spectral components
within the time interval (75, 93) and (160, 190). The
seventh spectral component 1s calculated by using the
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Fig. 6: The observed signals in the vertex domain when
the DC component has the highest value
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Fig. 7: The 7th Eigenvector of the Laplacian matrix L
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Fig. 8: The signal in vertex domain shows that most of
the cabs are located around the node (43) at the
180th time step (Mon, 19 May 2008 12:00:00 GMT)

-

Hayes and tagona

16

03
0.2}

0.1

Haves & Octavia

.
3B
17th &

5

10

15 20

48

25 30
Matrix

-

. 3B ATET
Park cab
stand

35 40

110

45

50

Fig. 9: The 29th eigenvector of the Laplacian matrix T,
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Fig. 10: The signal in vertex domain when the 29th spectral component is the highest at the 48th time step (Sun, 18 May

2008 03:00:00 GMT)

seventh row of the matrix U which has significant
negative components corresponding to the 12th and 43th
stands as shown in Fig. 7.

Having cabs around one of these stands or both of
them will highly affect the 7th spectral component as
shown in Fig. 8. By taking another example, the 25th row
has positive spectral components within the whole-time
interval. The 29th spectral component is calculated by
using the 29th row of the matrix 1T which has positive
components corresponding to the 15th, 16th and 40th

stands  and  sigmficant negative  components
corresponding to the 30th and 38th stands as shown in
Fig. 9.

Therefore, the number of cabs around the 15th, 16th
and 40th stands and are more than the number of cabs
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around the 30th and 38th stands as shown in Fig. 10. The
Eigenvectors of the Laplacian matrix carry information
about the structure of graphs, so, the above analyses
illustrated that the anomaly of the spectral components
reflects the relationship between the measured signals
on the vertices (stands) whether or not they were
adjacent.

The global smoothness that is found using Eq. 8 is
shown in Fig. 11. This research 1s done using the graph
signal processing toolbox, GSPBox (Perraudin ef al., 2014).
In general, having a vanation i the measured signal on
the nodes is represented by a big value of the global
smoothness, especially when these nodes have large
weights or they are adjacent. Figure 12 demonstrates the
variation mthe signal on the adjacent nodes when the
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Fig. 11: The global smoothness of signals on the graph of 50 nodes
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Fig. 12: The signals in the vertex domain compared to the
global smoothness values: a) The value of the
global smoothness i1s the highest and b) The

value of the global smoothness 1s the lowest

532

highest and lowest values of the global smoothness
were observed at the 177th and 21th time steps,
respectively.

CONCLUSION

Having a graph of a sensor network allows the
capability to handle signals from multiple sensors and
distinguishes the anomalies m signals usmg the graph
Fourter transform that depends on the underlying
structure of the graphs. The obtained results can be used
to provide good insight into the sensor’s status in a
network or they can be used for monitoring purposes,
especially for a lot of stands, a huge number of cabs and
considering the real range of the commumcation. For
instance, it may be useful to apply GSP to study the
driver’s activity patterns, human mobility in term of the
taxi occupancy, reducing the waiting time of the
passengers and improving service quality. Moreover,
comparing different regions over time could be a problem
due to the size of the data for classical methods; while
using the concept of the graph Fourier transform will make
this research easier.

RECOMMENDATIONS

This framework may be effective for further Research
Such as for roadside Units (RSUs) which  offer
comnectivity support to passing vehicles m vehicular
and hoc networks or for processing data on the
number of cars passing through specific peints in the
city.
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