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Deep Intelligent System for Human Recognition in Complex Domain
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Abstract: This study aims to develop a deep computational model which is a novel aggregation of fuzzy
clustering fused with evolutionary searclhing and a neural network based on a proposed artificial neuron
structure in complex domam. In our Complex Deep Intelligent System (CDLS), we propose a complex neural
classifier built upon a new complex neuron structure *C-TROTKA’. The proposed deep model which is an
amalgamation of Fused Fuzzy Distribution (FFD) and Complex Neural Classifier (CNC) capitulates an efficient
tool for human recogmition. The functional aptitudes of conventional neurons have been explored with
complex-valued non-linear aggregation functions. This aggregation has the ability to confine ligher-order
correlations among input patterns. The proposed neuron structure based on these aggregation functions
enables the system to provide faster convergence, better learning and recognition accuracy. The effectiveness
and strengths of proposed complex neuron structure *C-TROIKA’™ based deep intelligent system have been
demonstrated over three benchmark biometric datasets, CASIA ir1s, Yale face and Indian face to realize the
motivation.
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INTRODUCTION

Over the years, researchers have developed a number
of classification techniques in real domain with their own
strengths and limitations (Wang et al, 2012; Oh et al.,
2013; Lukas et al., 2016). Among them neural classifier is
of great sigmficance due to its efficient performance.
Neural classifiers based on Real Back Propagation (R-BP)
algorithm may stuck in local mimma during learmng which
results in slow convergence and less accuracy. These
limitations can be trounced by replacing the real
numbers with the complex ones. Complex Back
Propagation (C-BP) algorithm reduces the standoff
probability in learning and significantly improves the
convergence speed which has been recited by Nitta (1997)
and Hirose (2006). Machine learming mn complex domain
has drawn considerable interest and aftention from
researches in the recent past Tripathi and Kalra (2011),
Mandic and Goh (2009), Hirose (2006) where the
outperformance of complex-valued neuron over real-
valued neuron has been well stated. Tripathi and Kalra
(2011) proposed a neuron model which incorporated an
aggregation function based on the weighted root-power
mean of complex-valued mput signals. They used complex
resilient propagation algorithm which provides better
prediction accuracy and speedy training. To improve

the performance of complex-valued back propagation
neural networks, Chen et al. (2005) introduced a modified
error function which added hidden layer error term in the
conventional error. Error function plays a crucial role in
performance evaluation of the complex-valued neural
network as reported by Gangal et al. (2007) where it has
been observed that for some error functions the
performance depends on the architecture of the network
whereas for some other error functions the convergence
speed 18 independent of the network topology.
Performance of complex neural network has been
evaluated using different error functions by Gangal et al.
(2007). In real domain, the ascendancy of deep
architectures over traditional trivial architectures is
evidenced by recent contributions (Zhang er al., 2017,
Hong et al., 2017; Parkln et al., 2015; Nagpal et al., 2015).
Deep learning in complex domain still demands more
attention to gain impressive advancements. In this study,
the core 1dea 1s to acquire the benefits of complex domain
embedded with that of deep architecture to develop a
Complex Deep Intelligent System (CDIS) for human
recognition. CDIS incorporates unsupervised fuzzy
clustering fused with evolutionary searching and
supervised neural classifier built on the complex novel
neuron struchure *C-TROTKA’. Tt is worth mentioning here
that the multiple computational intelligent technicues
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embraced in owr proposal are not competitive rather they
are complementary to each other which has been
demonstrated through an encouraging act of
mvestigation of CDIS. In this study, we combine Principal
Component Analysis (PCA) and Fisher Linear
Discriminant (FLD) (Er et al., 2002) in real domain to
extract features from input patterns. Then the mean 1nput
feature vectors undergo unsupervised fuzzy clustering
eventually followed by evolutionary searching which
enables the fuzzy algorithm to dig up the optimal
partitioning. The upshot of unsupervised clustering 1s
the cluster allocation matrix (y) which imitates the
cluster allocation to the input classes. This
unsupervised segment is tracked by the supervised
classification which 1s the job of complex-valued
neural network possessing proposed complex neuron
structure ‘C-TROTKA’. An imaginary component of
complex is added to the mean feature vectors which
further act as a training set for the neural classifier. This
complex neural classifier performs learning of complex-
valued mean feature vectors based on y obtained in
previous segment.

MATERIALS AND METHODS

Complex deep intelligent system: In this study, we
present a Complex Deep Intelligent System (CDIS) for
human recogmtion which 1s robust to deal with large
dataset of images possessing wide variations in features.
The proposed system consists of two segments: Fused
Fuzzy Distribution (FFD) which 1s unsupervised in nature
and in real domamn. This segment comprises of fuzzy ¢
means clustering tracked by evolutionary search
(Hruschka er al, 2009). It 1s accountable for optimal
distribution of mean input feature wvectors amongst
number of clusters. Complex Neural Classifier (CNC)
which is built on proposed complex C-TROTKA neurons
and is liable for supervised classification in complex
domain. This segment performs learmng, based on the
outcome of unsupervised segment and classification of
input classes. Let us assume that C be the number of
clusters and T denotes the maximum number of classes
that can be allocated to each cluster. Fused fuzzy
distribution segment results m CxT cluster allocation
matrix (y) where C and T are referred to as structural
features because they decide the topology of the neural
networks in the second segment of CDIS. The structural
feature selection 13 one of the key challenges i deep
learning (Angelov and Speroluti, 2016) which we have
taken care of in our proposal. Assimilation of evolutionary
algorithm in FFD segment assist the selection of structural
parameters C (Tseng and Yang, 2001) and T. A neural
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Fig. 1: General framework of proposed complex deep
intelligent system

network 1s associated to each cluster and therefore, neural
networks in second segment of CDIS are referred to as
coupled higher order neural networks. As obvious due to
above coupling, the number of coupled neural networlks
15 equal to the number of clusters whilst the number of
output neurens in each network 1s fixed at T. The complex
neural classifier segment learns the input patterns in
accordance with v which act as the desired output for
supervised segment. This learming 15 realized by the
Complex Back Propagation (C-BP) algorithm with
momentum which resolves the local minima problem
(Nitta, 1997) unlike the Real Back Propagation (R-BP). As
shown m Fig. 1, the proposed deep intelligent system
includes 1mage representation m lower dimension, fuzzy
clustering algorithm fused with evolutionary search logic
which is further complemented with Minkowsky distance
measure followed by complex neural classifier.

Lower-dimensional feature space representation: The
leading step in any image processing system is to find a
suitable representation of mmages to be processed. The
images with reduced amount of data though maintaimng
the adequate information for momentous learning is
representation.  Unsupervised  statistical
approach such as Principal Component Analysis (PCA) or
eigenface paradigm acquiesce a new representation with
reduced data which contains only representative
information. For better classification results, discrimimant

desirable

features of dataset are as well desirable which are
extracted from Fisher Lmear Disriminant (FLD) or
discriminant eigenface paradigm (Er et al., 2002). FL.D
overcomes the limitations of PCA while retaining the idea
of eigenface paradigm of projection from high dimensional
feature space to a significantly lower dimensional feature
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space. Thus, Eigenface pursued by fisherface method
(Belhumeur et al., 1997) is used in the proposed Complex
Deep Intelligent System (CDIS) to extract the desired
features of input dataset.

Fused fuzzy distribution: This is an unsupervised
segment of the proposed complex deep computational
model which aims to obtain the cluster allocation matrix
(v). The processing of tlhis segment begins with
unsupervised clustering of mput mean feature vectors in
real domain through fuzzy c-means clustening. The optimal
distribution of input classes cannot be obtained by only
fuzzy c-means as for the same dataset it gives different
partitions in different runs. To acquire the optimal
partition which is required for further processing,
evolutionary search strategy arrive into portrait. Here we
refer different distributions, obtained by fuzzy c-means as
populations. Evolutionary search is based on the concept
of survival of the fittest which means the population with
the largest fitness value will only survive. Based on the
fitness fimction (Sheng er al, 2008) criteria, optimal
distribution 1s searched by the evolutionary logic. Thus,
the best partiion among above gained dissimilar
partitions 1s obtamed by fuzzy clustering fused with
evolutionary search which is then subject to
defuzzification in order to attain y. In this study as
publicized in Fig. 1, we define steps of Fused Fuzzy
Distribution (FFD) as the population initialization, fitness
function based selection of the best population and
defuzzification of the optimal partition.

Initialization of population: The process of allocating
clusters to mean feature vectors of training classes starts
with population initialization. The terms fuzzy partition
matrix or membership function or population are used
mnterchangeably n this study. Let X = {x, x,, ..., x,} be the
mean feature vectors of P classes. Fuzzy c-means
clustering algorithm divides P classes into C clusters
using fuzzy partition matrix U of size CxP. The initial
population U = (u;) is randomly initialized such that:

1, [0,1]

where, 1<1<C and 1<j<P. The population 1s updated by
executing fuzzy clustering algorithm recursively until the
objective function, described in next study, turn out to be
minimized.

Fitness function based selection of the best population: In
order to obtain a fuzzy partition matrix (a population),
following objective function 1s iteratively mimmized:
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J = Zlczl Zf: lul.leiJ (1)

where, ¢, - [zn Wt \|']'_' is the distance of mean vector
of jth class from the center of ith cluster. Here Minkowsly
distance is used as a distance measure because of its
ability to generate clusters having variable shapes
depending on €(1, <) known as generalization parameter.
The underlying motivation behind using Minkowsky
distance instead of Euclidean is its generalized nature as
the shape of the cluster for the given problem primarily
depends on the distance measure considered. The
parameter F is weighting exponent which is known as
fuzzifier, determines the degree of fuzziness and it lies in
the range (1, «). The selection of fuzzifier is imperative for
fuzzy c-means implementation. The appropriate value of
weighting exponent depends on data itself which has
been shown by Yuet al (2004). The process of minimizing
the objective function requires following updates in
membership function and cluster centers, respectively,
Eq. 2:

=
uy=| o )
Zk:ldkj
where, 1<i<C, 1<j<P and Eq. 3:
P F
¢ = leuj X (3)

1 F

F
2ol
The termination of minimization process incorporates
following condition:

HJ(u,c)t+1 - J(u,c)t < SH (4

where, J (u, ¢)"is the objective function at tth iteration and

¥ is pre-defined threshold. The fuzzy c-means clustering
algorithm iteratively obtained number of dissimilar
partitions. The evolutionary search 1s considered to find
the best partition among the number of different partitions
obtamed. Let for r executions of fuzzy clustering algorithm
we get r populations represented as {U,, U, ..., U}
Fitness fimction based evolutionary search technique 1s
used to find the best population among r populations
where fitness function 1s expressed as:

Nd

pueies]

——
21: IEJ: luiJFC1

(3

where, -3 .2 |,-c.[ . The population with the
highest fitness value is the optimal partition among
different populations which is further used as initial
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partition matrix for the next generation. The process is
repeated for number of generations until the difference
between partition matrix obtained for two successive
generations 1s less than or equal to some defined
threshold. The partition obtained in the last generation is
the required optimal fuzzy partition U_.

To defuzzify the optimal distribution: The concluding
step of unsupervised segment of the proposed deep
model is to defuzzify U, which results in cluster
allocation matrix (y). In order to obtam the umform
structure of all clusters, we need to define the maximum
cluster members (T). In U, we sort all the classes in a
cluster according to the degree of membership in
descending order. Finally, v is obtained by selecting top
membership grade elements equal to T. Thus vy
reveals the pre-classified clusters of the training data for
which learning is performed in the neural network. Thus,
v act as the desired output in the proposed supervised
classification segment. The parameter T participates in
selecting output neurons in coupled neural networks. In
empirical evaluation of the proposed complex model, we
performed experiments with varying number of T keeping
other perameters fixed and accounted the case which
vielded plausibly good performance.

Complex neural classifier: The second segment of the
proposed complex deep system 1s Complex Neural
Classifier (CNC) which is responsible for supervised
classification. An imaginary component of complex is
added to the mean feature vectors of input classes which
15 considered to be the tramning set for this classifier.
Thus, the training patterns are complex-valued where the
umaginary part 15 negligible in comparison to the real
counterpart. Let X be the mean feature vectors of input
classes, then the complex mput for the complex classifier
will be X = X+1*0.001 where i is an imaginary unity. Now
the coupled neural networks are trained for above complex
mputs according to cluster allocation matrix (y) obtained
n previous clustering segment. We consider a frequently
used three layer structure (L-M-N){C} for coupled
networks. First layer has . = P-1 inputs, second layer has
M proposed complex neurons C-TROIKA, third layer
consists of N = T complex conventional neurons and C 1is
the number of coupled neural networks. Complex
proposed neurons C-TROTK A are computational efficient
which ensures the improved convergence speed and
prediction precision of proposed complex neural classifier
than C-MLP. Here, all inputs and weights are considered
to be complex numbers. Conventionally, w,, represents
the weight from lth neuron to mth newron. Let mput vector
beZ=1{z.,2z, ...t WS, = {ws,, Ws,, .... W8} bethe
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weights from inputs to the summation part of m™®
proposed complex neuron and WRB,, = {wrb,, wrb,,, ...,
wrb,,,} be the weights from mputs to the radial basis part
of m" neurcn. Let W, = {w,, Wyp .... Woi De the bias
weight vector and zm, = 1+1 *0.001 be the bias input for M
complex C-TROIKA newons in the hidden layer. Let
Wn = {w,, Wy, ..., Wy} be the weight vector of hidden
neurons to nth output neuron, X, = {x,;, Xg2, ..., Xont be the
bias weight vector and zn, = 1+i*0.01 be the bias input for
N complex conventional neurons in the output layer. The
() represents the complex conjugation and {.)" represents
the matrix transposition. The mmprecision mvolved will be
taken care by two compensatory parameters © and Q
which stipulates the
contributions, respectively, associated with each hidden
neuron. In this study, R and £ represents the real and
imaginary components of complex, respectively. The net
potential of mth C-TROTKA neuron in hidden layer can be
figured through generalized product Eq. &:

summation and radial basis

V, =R({V,)+HE(V,)

Vm = Vm1+vm2 +levm2 +WUmZH1EI

(6)

where:
Vv, =T, WS 7"

v, =0, ep(-[z- WRB, ')

The output of mth C-TROIKA newon can be
expressed as Eq. 7:

Y, =£.(V,)=R({Y,)HE(Y,) 7

where f, is complex-valued activation function whose
selection depends on the type of application. The net
potential and output of nth complex conventional neuron
in output layer, respectively can be given by:

V, = R(V, )Hg(V,) ®

M
Vn = Zm :lwmnYerXDnZﬂD

and Eq. 9:

Y, = £.(V,)=R(Y, JHE(Y,) @)

Let Y, be the desired output, then the error at nth output
neuren can be computed as:

. - (10)

. = Rie, JHig(e, ) = Yo, -V,

The complex-valued cost fimetion (MSE) can be given by:
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[(R(en))2+(&(en))1 (11)

Weight update rules: For efficient traming, mimmmization
of cost function is required which can be realized by the
Complex Back Propagation (C-BP) algorithm with
momentum  which amend the weights
recursively till the cost becomes minimized. This weight
amendment 1s given by:

coefficient

w = w,, +Aw® +aAw’ (12)
where Eq. 13:
Aw=-nV, E
Aw=—-mV_ E-inV, _E
R{w) £(w) (13)
Aw =1 & .,
aR(w)  (w)
Where:
n = The learning rate
o = The momentum factor whose values ranges
in between 0 and 1
t = The iteration
Ve and = The gradients with respect to real and
Vi imaginary parts of complex weights,
respectively
A = Imtalized to zero

Let f, be the derivative of the complex-valued
activation function f,. The weight update equation
between hidden and output layer, for any weight w = w,,,
n output layer, can be obtained by Eq. 13 as Eq. 14:

AWM_"’]( oF +Hi* o8 } (14)
CR(w,_ ) o(w,,)
Where Eq. 15:
, aR(V,)
f
- aH _ R(en) C(R( ))aR(W ) (15)
AR(W,) , (V)
(o) (O aRew
And Eq. 16
, RV
RO
oW, . a(v,
e ) e

Substituting Eq. 15 and 16 in Eq. 14, we getEq. 17:
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R(Y,) . aR(vn)}
R(W,,)  O5(W,,)
&V, a&(\&)}
OR(W,,) (W)
)ig(e, ) (£(V.))

(17)

R (R0,

Aw =1

sl (5011
(R(

Aw V,

n

=Y, (R(e,)f,

Bias update Eq. 18:
o, = g (R(e, )5 (R(V, ) igfe, )1, (504, )19

The weight update equation between mput and
hidden layer, for any weight w = w,,, can be generalized as
Eq. 19

8B ., ¢E
Awlm——“[aR(wlm) ag(wlm)J (19)
Where Eq. 20:

aR?im) R ROIE

£ RV, ))R(W,, )+
{ SSTHELAIE T 20
OV, 3 [e(e, ) (V)R (W, ) -
OR (Wi, - (é(vm))gl{ Rie, ) (R(V,))E(Wo )}

Similarly, dE/0%(w,,) can be expressed. To obtain the
weight update equation for summation aggregation of
C-TROIKA neurons at hidden layer, Eq. 20 can be
rewritten as:

R(V, )

cE
IR (wsy,,

76R(wshn)
JE
_6R(ws,m)
{(R(@) w ) TR(®, IR (
~(&(®,)+E(®, )R(V,,)*R(®, )8
(6(©.)4E(©, JR(V,,
+§(Km){+(R(®m)+R(®m)R(

)R(Km)+7
CR(E,]

v

m2

And Eq. 22:
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OE R(V,)
o5(wsy, ) 27(wsy,)

(V)

(WS, )

R(K, )+ £(K.)

v

m2

)
—2(@,)(V.,,) }:(Zl)_
£(0,)+¢(8,)

{R(sz)m(@m)g( )JR(Z”
e[k {(R(®m)+R(®m)R(sz)—a(@)m)a(
SH(E(@0) 45 (@, RV, 4R (@, )5

v

m2

Thus, by substituting Eq. 21 and 22 m Eq. 19,
we get BEq. 23:

. _n{(fe(zaia(zl))(mm)i@(@m))
"RV (Vo ) (R(K,) (K,
Aws,, = ﬂz_1®_m(1 + V_mz)km

(23)
where:
R(K,)= £ (R(Va))
s {R@n)f;(R(vn))R(wm)}
25 el ) (8 (V)5 (Wan )
and:
(Ka)= £ (&(Va))

Similarly, the weight updates for radial basis
aggregation, compensatory weights assoclated with
summation and radial basis contributions and bias of
proposed C-TROIKA neurons can be, respectively
articulated as:

wrb,, = 2nexp (,”Z, WRE, ||2 )(Zl —wib,, )
R(K, J{REQ (IR (V,, ) - &(Q, )&V, )} (24)

+E (K, Q) (1+R (V) )+(Q, )&V, )}
A®, =n(WS,Z°)(1+V,, K, (25)

AQ = T]exp(—||Z—WRBmHZ)(l-s-V_m)Km (26)
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Awg, = nEUKm (27)

The updated weights can be obtamed from Eq. 12.
This process of updating weights recursively continues
till the cost becomes minimized and proposed complex
C-TROIKA based classifier is trained in accordance with
the desired output y.

Recognition: Once we get trained neural networks, testing
can be performed by using the function Max of Max of the
outputs of each coupled neural network. For every nput
test pattern, we have obtained the cx1 output matrix. Let O,
(NN} be the maximum output of ith coupled NN for kth
testing pattern. The resulting class of a test pattern can be
identified by finding the cluster comresponding to

Maxﬁ 1=1 (Ok (NNl))
RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed
complex deep intelligent system, experiments are
conducted on the 3 benchmark biometric datasets-CASIA
Iris, Yale Face and Indian Face. The recogmtion results for
all 3 databases are accounted for number of parameters
which includes number of Clusters (C), maximum cluster
members (T) and number of proposed C-TROTKA hidden
neurons. Performance 1s recorded by varying one
parameter keeping rest of the parameters constant for
C-MLP as well as for proposed C-TROTKA based complex
classifier. The performance of both the above mentioned
classifiers 1s compared mn terms of the number of hidden
neurons and their corresponding accuracy. Performance
of the proposed complex deep model is also compared
with recent existing methodologies. Furthermore, standard
biometric measures such as FAR (False Acceptance Rate)
and FRR (False Rejection Rate) are recorded to the
evaluate the performance of the proposed model.

Evaluation on CASIA Iris dataset: CASIA Iris dataset was
collected by Chinese Academy of Science’s Institute of
Automation. The development of the dataset had been
started from CASIA Tris-V1 which was the first version
and updated up to CASIA Irs-V3. CASIA Ins-V4 is an
extension of CASIA Iris-V3 and contains six subsets. The
three subsets are from CASIA Tris-V3 which includes
CASTA  Tris-Interval, CASIA Tris-Lamp and CASIA
Iris-twins and remaimng three are new subsets which
mncludes CASIA Iris-Distance, CASIA Irs-1000 and
CASTA Tris-Syn. CASIA Tris-V4 contains 54601 iris images
from more than 1800 subjects. In our experiments we have
used CASIA Ins-Interval subset of CASIA Iris-V4 which
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Fig. 2: CASIA iris interval-V4 sample images

Table 1: Recognition accuracy for CASIA Iris dataset
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Table 2: Comparison based on neuron type for CASIA Iris dataset

Accuracy (96) Accuracy (%)
C-TROIKA Neuron type/
neurons o] T MSE Training set Testing set Hidden neurons C T MSE Training set  Testing set
5 6 8 0.02221 98.0 88.6 C-MLP
10 0.02311 98.0 91.3 12 6 10 0.05900 96.8 90.9
12 0.03998 98.0 91.0 12 0.06112 96.6 90.7
8 8 0.02556 98.5 90.5 8 10 0.03994 98.2 94.8
10 0.02654 99.0 94.6 12 0.04214 98.2 94.2
12 0.03874 99.0 94.3 10 10 0.06973 98.8 94.5
10 8 0.03825 99.5 89.8 12 0.07916 98.8 94.0
10 0.04082 99.5 94.2 C-TROIKA
12 0.05963 99.6 93.6 5 & 10 0.02311 98.0 91.3
7 6 8 0.00202 100 90.6 12 0.03998 98.0 91.0
10 0.00289 100 94.5 8 10 0.02654 99.0 94.6
12 0.003306 100 94.0 12 0.03874 [ ) 943
8 8 0.00119 100 94.7 10 10  0.04082 99.5 94.2
10 0.00231 100 99.8 12 0.05963 99.6 94.1
12 0.00409 100 97.6 C.MLE
10 8 0.00325 100 94.2 15 6 10 0.04562 98.9 94.5
10 0.00422 100 97.5 12 0.05968 98.8 94.0
12 0.00559 99.8 97.1 8 10 0.05113 99.9 99.2
9 6 8 0.00391 99.9 90.2 12 0.06333 900 97.0
10 0.00479 99.9 94.2 10 10  0.06242 99.9 97.1
12 0.00516 99.0 93.6 12 0.07901 90 8 9.6
8 8 0.00284 99.8 94.5 C-TROTKA
10 0.00368 99.8 99.2 7 P 10 0.00289 100 94.5
12 0.00423 99.8 97.0 12 0.00336 160 942
10 8 0.03247 99.6 93.9 s 10 0.00231 100 00.8
10 0.05248 99.8 97.2 12 0.00400 100 97.5
12 0.06663 99.8 96.9 0 10 oomm 100 o975
Bold values are significant 12 0.00559 99.8 97.2

contains images of 249 subjects. In this study we have
considered 50 subjects, each consists of 20 images
mcluding left and right ir1s images. For traimng, 7 images
of each subject are used and remaining 13 images are used
to test the performance of proposed deep system. Fig. 2.
shows some sample images from this dataset.

The performance of the proposed deep model for this
database is revealed in Table 1 where it can be clearly
observed that the testing accuracy varies with the
variation in different parameters. C-TROIKA = 7, number
of Clusters C = 8 and maximum cluster members T = 10
constitutes a set of parameter values at which highest
accuracy 1s achieved which 15 99.8%.

Tn order to compare C-TROIKA based classifier with
C-MLP, we have recorded the accuracy of our model for
this database using both the classifiers. In our
experiments, for same set of values of C and T, testing
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Bold values are significant

accuracy 1s accounted for different nmumber of hidden
neurons both for proposed classifier and C-MLP. Tt can be
evidenced from Table 2 that C-TROIKA based classifier
outperforms C-MLP as it gained the approximate accuracy
as that of C-MLP with lesser number of hidden neurons
which reduces the computational complexity. The
corresponding graph 1s depicted n Fig. 3 where 1t can be
evidently observed that C-MLP requires adequately larger
number of hidden neurons as compared to proposed
C-TROIKA based classifier. Also, the better performance
of our classifier than C-MLP in the context of speedy
convergence is visibly examined in Fig. 4. The comparison
of proposed Complex Deep Intelligent System (CDILS) with
recent methodologies is summarized in Table 3 which
attested the better performance of the proposed model.
For the same set of other parameters, the FAR and FRR
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Fig. 3: Comparison of proposed classifier (C-TROIKA
neurons in lmdden layer) with C-MLP (complex
conventional newrons in hidden layer) for CASTA
iris dataset
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Fig. 4 Error convergence graph for CASIA iris interval

Table 3: Comparison with other methodologies for CASIA Iris dataset

Methods Recognitionrate (%0)
GEFE-MLBP (O’ Connor ef ai., 2014) 91.17
Texture feature extraction method (Hajari ef al., 2016) 94.5
Daugrnan (2001) 98.60

99.8

CDIS (Proposed)

for proposed C-TROIKA based classifier is recorded as
0.03 and 3.2%, respectively and that of C-MLP is 0.56 and
4.7%. These recorded values of FAR and FRR
demonstrates the aptitude of proposed C-TROIKA
complex neuron structure.

Fig. 5: sample images from Yale face dataset

100 1

-—= C-MLP
—e— C-TROIKA

Accuracy (%)

N=}
w
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Fig. 6: Comparison of proposed classifier (C-TROIKA
neurons m hidden layer) with C-MLP {(complex
conventional neurons in hidden layer) for Yale
face dataset

Evaluation on Yale face dataset: This database contains
165 face umages of 15 subjects with 11 unages per subject.
Each of the mnages per person is having different
expression or configuration such as center-light with
glasses, happy, left-light without glasses, normal,
right-light, sad, sleepy, surprised and wink. All images are
grayscale and mn GIF format. In this study, we use 5
images per subject for training and 6 1mages per person to
train the model. Few sample images are shown mn Fig. 5

and 6.
The accuracy results of Yale faces are exemplified in

Table 4 for different sets of parameters. The best
recognition accuracy 1s 100% which 1s achieved at
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Table 4: Recognition accuracy for vale face dataset

Table 6: Comparison with other methodologies for yale face dataset

Accuracy (%0)

C-TROIKA
Neurons C T MSE Training set  Testing set
2 5 6 0.02325 946.2 853
8 0.03557 97.2 90.8
10 0.04468 97.4 90.5
7 6 0.02598 98.0 89.2
8 0.03676 98.3 93.9
10 0.05936 99.0 93.4
9 6 0.02111 99.0 89.0
8 0.03898 99.0 938
10 0.04776 99.0 93.5
4 5 6 0.00421 99.0 92.3
8 0.00556 99.0 97.2
10 0.00662 94.5 97.0
7 6 0.00633 99.9 94.8
8 0.00789 100 100
10 0.00811 100 99.7
9 6 0.00932 100 94.3
8 0.07633 100 99.5
10 0.06212 100 98.3
6 5 6 0.04979 100 92.0
8 0.05753 100 96.9
10 0.06448 100 96.8
7 6 0.03254 100 97.5
8 0.04885 100 99.8
10 0.05326 100 99.6
9 6 0.02357 100 94.1
8 0.03961 100 99.2
10 0.04901 100 98.1

Table 5: Comparison based on neuron type for yvale face dataget

Neuron type Accuracy (%0)
Hidden c T MSE Training set  Testing set
C-MLP
8 5 8 0.03480 97.8 91.0
10 0.04406 98.0 90.7
7 8 0.05294 99.9 94.0
10 0.06479 99.9 93.8
9 8 0.07226 99.9 93.9
10 0.08994 99.9 93.2
C-TROIKA
2 5 8 0.03557 97.2 90.8
10 0.04468 97.4 90.5
7 8 0.03676 98.3 93.9
10 0.05936 99.0 93.4
9 8 0.03898 99.0 93.8
10 0.04776 99.0 93.5
C-MLP
10 5 8 0.05809 99.2 97.4
10 0.06255 99.9 97.2
7 8 0.07687 100 100
10 0.09967 100 99.8
9 8 0.07431 100 98.8
10 0.08865 100 98.4
C-TROIKA
4 5 8 0.00556 99.0 97.2
10 0.00662 99.5 97.0
7 8 0.00789 100 100
10 0.00811 100 99.7
9 8 0.07633 100 99.5
10 0.06212 100 99.5

Bold values are significant

C-TROIKA =4, C =7 and T = &8 Classifier based on
C-TROIKA newons gives efficiently better recognition
accuracy than C-MLP with smaller network topology for
the same set of other parameters which 1s illustrated in
Table 5. The number of ludden neurons s a measure of
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Method Recognition Accuracy (%)
OCON Classifier (Tripathi, 2017) 97.4
McDFR (Chen et af., 2015) 97.78
McMmFL (Aslan et ai., 2017) 98.97
CDIS (Proposed) 100
12
109 ___cmep
—— C-TROIKA
8 -
6 -

3000 4000 5000 6000

Learning cycles

1000 2000

Fig. 7: Error convergence graph for Yale dataset

the great essence for comparisons of the two aforesaid
classifiers. The plot in Fig. 6 represents the comparisons
based on the number of proposed neurons C-TROIKA
and complex conventional neurons mn the hidden layer of
neural network from where it can be stated that the
proposed C-TROIKA based classifier requires lesser
number of hidden neurons than C-MLP to gain the
estimated same accuracy. The C-TROIK A based classifier
provides faster convergence than C-MLP which can be
evidenced by the emror convergence graph as shown
m Fig. 7 for the same set of parameters. The
proposed C-TROIKA neurons facilitates the recognition
system to provide reduced computational complexity (due
to compact network structure) and rapid convergence
than C-MLP which can be attested from Fig. 6 and 7,
respectively. Proposed model achieves the best
recognition accuracy of 100% for this database which is
highest among recent state-of-the-art methods as shown
in Table 6. The standard biometric measures FAR and
FRR for this database 1s traced as 0.01 and 3.8% for the
proposed classifier, respectively and for the same set of
parameters the corresponding FAR and FRR for C-MLP 1s
0.09 and 4.6%, respectively. The above values of FAR and
FRR agam uphold the supremacy of C-TROIKA neurons
over complex conventional neurons.

Evaluation on Indian face dataset: This database was
introduced by Jain and Mukherjee in 2002 which contains
the face images of female and male subjects with different
onentations. Each subject consists of 10 unages with wide
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Fig. 8: Sample images from Indian face dataset

Table 7: Recognition accuracy for indian face dataset

eatt
29814
029219

o oy

Table 8: Comparison based on Neuron type for Indian face dataset

Accuracy (%0)
C-TROIKA
Neurons C T MSE Training set Testing set
4 8 12 0.00707 96.2 852
14 0.00843 97.2 894
16 0.00998 97.0 89.1
10 12 0.00548 97.2 20.4
14 0.00699 98.2 4.3
16 0.00724 98.0 4.1
12 12 0.00583 96.9 90.2
14 0.00856 98.0 94.0
16 0.00932 98.0 938
6 8 12 0.00633 98.6 883
14 0.00802 99.0 90.8
16 0.00964 98.9 90.2
10 12 0.00494 99.8 95.6
14 0.00532 99.9 96.9
16 0.00628 999 952
12 12 0.00594 99.8 95.0
14 0.00752 999 96.1
16 0.00824 99.8 95.0
8 8 12 0.00683 98.6 88.0
14 0.00822 98.8 90.2
16 0.00973 99.0 90.0
10 12 0.00477 99.8 .2
14 0.00587 99.8 96.5
16 0.00611 99.8 94.9
12 12 0.00688 99.6 94.8
14 0.00813 99.8 95.6
16 0.00966 99.8 4.5

Bold values are significant

variations. All images have a bright homogenous
background, different poses including left, right, up,
down, up-right, up-left and different emotions. Figure 8
shows the variations in images of dataset. Here, we
considered 50 subjects where 4 images per subject are
randomly selected for training and rest of the images
are used as a ftesting set, thus, the system has
trained by 200 images and rest 300 images are used to test
the system.

The recognition results for Indian database are
presented in Table 7 where accuracies are recorded for
different sets of parameters. The variation in parameters
affects the accuracy of the model. The best accuracy has
attained at C-TROIKA=6,C= 10 and T = 14. Table 8
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Accuracy (%0)

Neuron type/Hidden € T MSE Training set Testing set
C-MLP
10 8 14 0.04698 96.8 89.5
16 0.06323 946.6 89.0
10 14 0.05981 985 94.5
16 0.07260 985 94.0
12 14 0.08023 988 94.2
16 0.09753 988 93.5
C-TROIKA
4 8 14 0.00843 97.2 89.4
16 0.00998 97.0 89.1
10 14 0.00699 982 94.3
16 0.00724 98.0 94.1
12 14 0.00856 98.0 94.0
16 0.00932 98.0 93.8
C-MLP
15 8 14 0.08589 989 90.5
16 0.01225 988 90.0
10 14 0.06024 99.9 96.8
16 0.07369 99.9 9462
12 14 0.07431 99.9 95.9
16 0.09865 99.8 9.7
C-TROIKA
6 8 14 0.00802 99.0 90.8
16 0.00964 98.9 90.2
10 14 0.00532 99.9 96.9
16 0.00628 99.9 95.2
12 14 0.00752 99.9 941
1o 0.00824 99.8 95.0

depicts the comparison of C-TROTIKA based classifier
with C-MLP based on the number of hidden neurons. The
proposed complex classifier 13 computationally efficient as
it requires moderately lesser number of C-TROIKA
neurons than complex conventional neurons m C-MLP to
at the approximate accuracy. The
corresponding graph is shown in Fig. 9 where the nearly
similar accuracy graph is obtained for the two aforesaid
classifiers at different number of hidden neurons.

From Fig. 10. it is observed that the proposed
classifier based on C-TROIKA offers better rate of
convergence than C-MLP which again demonstrates the

arrive same



J. Eng. Applied Sci., 14 (2): 373-385, 2019

~—..
~-

-——= C-MLP

Accuracy (%)

o Nl
—_— [0S}
) i

O
(=]
)

x®
o

15 20

(=]

10
Hidden neurons

Fig. 9: Comparison of proposed classifier (C-TROIKA
neurons in hidden layer) with C-MLP (complex
conventional neurons in hidden layer) for Indian
face dataset
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Fig. 10: Error convergence graph for Indian face dataset

Table 9: Comparison with other methodologies for indian face dataset

Method Recognition accuracy (%o)
ANFIS Classifier (Arivazhagan et af., 2014) 90.47

OCON Classifier (Tripathi, 2017) a5.4

CDIS (Proposed) 96.9

alluring performance of C-TROIKA neurons. The
comparison of proposed complex deep model with existing
techniques 1s abridged in Table 9 which confirms that our
proposal offers superior performance. FAR for proposed
complex classifier is acquired as 0.08% and the
corresponding FRR 15 4.1% whereas for C-MLP FAR 1s
0.24% and FRR 1s obtained as 5.2%. The lower values of
FAR and FRR of our classifier again designates the
improved performance of proposed C-TROIKA neuron
over complex conventional neuron.
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This study presents a deep computational model
which 15 a novel synergism of fused fuzzy distribution
segment in real domain and proposed C-TROTKA neuron
model based neural classifier segment in complex domain.
Extensive experiments conducted in this study
demonstrate that the proposed model endows with
superior recognition accuracy and simultaneously robust
to unauthorized cases. The FRRs are recorded at very low
FARs for all three databases which makes our proposed
recogmizer strict for both the authorized and unauthorized
persons. Performance evaluation presented in this
study reported the enthralling performance of our
deep intelligent system which attested the beauty of
C-TROIKA neuron. The remarkable triumph in the
proposed complex classifier is its compact topology,
enhanced convergence and better prediction
accuracy.

rate

We have performed all our experiments also mn real
domain where we have reached the conclusion that for the
same set of parameters, complex domain results are far
better in terms of accuracy, convergence, training and
number of leaming cycles than real domain results.
Further, in complex domain, comparisons have been made
between C-MLP and proposed C-TROIKA neuron based
neural network. The experimental results and comparisons
in literature review verified that the classifier based on
proposed C-TROTKA provides enhanced performance
than C-MLP where the number of hidden neurons
used in the network topology is the key parameter of
assessment.

The experiments performed on three benchmark
biometric datasets-CASIA Iris, Yale face, Indian face for
the proposed CDIS Model demonstrated its out
performance over the complex conventional neuron based
hybrid system. From the results presented in Tables 1, 4
and 7 one can observe the affect of variations in the
number of hidden neurons (C-TROIKA), Clusters (C) and
maximum cluster members (T) on the testing accuracy of
the system. Figure 11 and 12 exhibits these variation
affects more clearly. In our experiments for CASIA Iris
dataset, best accuracy is recorded when C-TROIKA is 7
whereas for Yale and Indian face datasets best results are
obtained at C-TROTKA equal to 4 and 6, respectively.
Sigmficant improvement m accuracy is observed up to
certain number of hidden neurons for constant T and C,
after that no prominent improvement is recorded. Figures
3, 6 and 9 reveals the plots which confirms the above
statement. For fixed number of hidden neurons and
maximum cluster members, one can monitor the affect of
number of clusters from Table 1,4 and 7 and Fig. 11 for the
three databases. For CASIA Iris, Yale and Indian
datasets, we observe that recognition rate enhances up to
C=8,C=7and C=10, respectively after which there is
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Fig. 12: Impact on accuracy by varying maximum cluster
members (T)

no evidential improvement. The consequences of T for the
fixed number of hidden neurons and clusters can be
scrutinized from Tables 1,4 and 7 and Fig. 12. For CASIA
iris, Yale and Indian datasets accuracy go on
increasing upto T =10, T =8 and T = 14, respectively but
later starts degrading. The noteworthy feature of Table 2,
5 and £ 1s that classifier based on proposed complex C-
TROIKA neuron requires smaller number of hidden
neurons than C-MLP to realize the nearly similar accuracy.
The corresponding plots are represented in Fig. 3, 6 and
9 for CASIA s, Yale and Indian datasets, respectively.
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CONCLUSION

Finally, we conclude that the proposed C-TROIKA
complex neuron moedel based classifier outperforms C-
MLP in terms of recogmtion accuracy, convergence speed
and learming cycles.
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