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Abstract: Tn light of increasing amount of data such challenges as the restoration of lost information fragments
and 1ts forecasting are becoming relevant and attractive. Mathematical description of studied processes 13 one
of the main factors for solving such problems. Most of current methods are based on the search for a model
that can accurately repeat the geometric form of the process. However, such an approach does not provide an
understanding of how much the hidden dependencies can affect the desired result. This study 1s devoted to
various methods of searching and describing processes through such dependencies.
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INTRODUCTION

The study and analysis of time series allows solving
a variety of applied problems. These problems include:
electricity price forecasting (Weron, 2014), social process
study and analysis (Kawash ef al., 2017), risk assessment
m financial activity (Schuermann, 2014), economic
forecasting (Alexandridis et al., 2017), weather forecasting
(Ericsson, 2017) and many others.

Currently, there are many methods (classification of
prediction methods and models, 2016) for solving these
problems. However, despite this fact such problems as
forecasting and restoring the missing values do not have
a single-valued solution. A reliable result directly depends
on the way how the target process was described. When
it comes to a successful process description one
understands it as the best process approximation and
evaluates the model with standard measures (MAE,
MAPE, MASE). Strictly speaking, this attitude 18 not
always correct (Davydenko and Fildes, 2016) because
there are more complex relationships than those described
by the geometric interpretation.

In solving practical problems, Autoregressive (AR)
methods (Filik and Kurban, 2007) and methods based on
Artificial Neural Networks (ANN) were most widely used
(Morariu et al., 2009). In most classical methods if one
looks for choosing a prediction model, he/she has to filter
the studied process, to allocate the trend (Baheti and
Toshmwal, 2014), to determine the periodic and seasonal
components (Jiann, 2005), to conduct a stationarity test
(Petriea et al., 2017) and to make the process stationary if
necessary. This approach comes with a lot of difficulties,
and in most cases is not fully automated.

The purpose of tlus study 1s to propose an
altemnative approach based on the search for and
identification of objective factors that affect the image of
a process with hidden stable dependencies. This should
fundamentally change the approach to the problems of
research and prediction.

MATERIALS AND METHODS

In this research, we have wused methods of
mathematical statistics, regression and autoregressive
analysis, numerical methods for solving systems of linear
algebraic equations and correlation analysis.

Studied processes and their main characteristics: We
have considered the physical processes that reflect the
Mean Square Errors (MSE) of object positioning in space.
Let us preliminary analyze them.

Figure 1 presents a Mean Square Deviation (MSD)
graph of positicnal error ¢° information of a space object
in time t (in 360 sec). Figure 2 shows a histogram of
distributed values of thus series. This process has no
explicit trend (y = -0.038x+437). The histogram shows that
the process is close to a stationary one and fluctuates
around the mean (430) m? the maximum and minimum
values are 759 and 169 m*.

Figure 3 shows another process its length 13 n = 360
values. The process has a small trend (y
0.5109x+789.29). The histogram is shown in Fig. 4.

The next process is shown in Fig. 5. According to its
graph, the process probably has periodicity and a
property of stationarity. The histogram of this process 1s
shown in Fig. 6.
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Fig. 2: Historgam of values (Series No. 1) K- d = 05706, p<20; Lilliefors p<01
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Fig. 3: MSD graph of ¢° (m®) according to t (sec), series No. 2

Preliminary analysis shows that all 3 processes differ
not only m their physical origin and form but also in
characteristic statistical values.

Stability of dependencies: In research we have found that
many time series of data possess fractal properties
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(self-sumilarity, fractal dimension) (Schroeder, 2005). This
allows predicting thewr changes, determining hidden
dependencies, periodicity, etc.

Problem setting: The imitial process 1s presented as a time
series mn the range from t-t;
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¥i:¥2: ¥ Y Y, (1) n=mxktvand 0<v<k

Let us divide this time span into m equal intervals with the or represent the process as mtervals y(t,), y(T,), ..., y(To),
We will allocate four variables for each interval:

length of T = k and represent the series Eq. 1 as follows:
Fiseees Vies Yiwt oo Yoo ¥ rke 150 Yi:¥i-¥o- ¥4
Yopo oy (m-Dxk+1 0y

where: That will fit the conditions 1#] and p=q:
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Let us form two functional dependencies for each mnterval
~F, = f(y, y) and F, = f{y,, vy} and compose two
numerical sequences out of them:
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We will find the mean value of time-series data for each
interval:

Then, we will compose a numerical sequence out of mean

values:
F F

meanl? FmeanZ ? “mean3 TP Fmsan_m

Now we can transform the initial process Eq. 1:

y()= Y(E,F,.E,)=

F11 :f(y17Yj) FIZ :f(yp’yq) F;CP
B ={@u,. ) B = Yegs Vi) Foop
B = f(¥ 0005 ¥ous) By = F (¥ auap Yooy ) Fip

E,= f(Y(m-1)k+1’Y(m-ljk+J) E.= f(Y(m-1)k+p=Y(m-1)k+q) E

We propose two hypotheses about the stable
dependencies on the time-series interval. The first one
stands for the equality between the dependencies F,
=f(y.y) and F, = fly,. y, on the considered time
interval:

(2
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The second for the equality between the mean value of
variables on the interval with the dependencies F, = f(y,
y,) and I, = f{y,. v,) on the interval:

3

f

frieat

Dependencies F;, F, and on the intervals. Let us
consider the processes represented as 3 tume series. Their
prelimimary analysis 15 presented n the previous study.
We will check how hypothesis are fulfilled in each of
them.

The considered period of each process is alternately
divided into mtervals from k = 4 to k = 50. We form the
series of Fy, F, and f, .., dependencies for each process of
sequence of intervals. Table 1 the
correlations between these dependencies over all the
studied intervals for each time series. Then we choose

each shows

one interval with the less fulfilled correlation between the
F., F, and f,.. dependencies in each of three time series.
These dependencies will be checked for conformity with
the hypotheses put forward.

Strategy of criterion determination for assessing the
priority of each interval, the subject of individual studies:
In this study, we have used the following formula as the
K, criterion:

Kcr = ngneral _Gerror
ngneral = KSIXKSZXKFmEan
O == > ——D| 3 F.. ¥,
error E} mz=1 Fmganm 1;,,, fmean, Y1
k
where, Ks,, ks, and Kf . are dependency correlations,

respectively.

Proof of hypothesis: We will prove the hypothesis by
working with the sequences, composed of dependences
F,, F,and £ . for the intervals k = 7 (series No. 1 and 2)
and k = 9 (series No. 3) that were considered as the worst
ones 1n terms of correlation fulfillment according to our
criterion.

Since, hypothesis 2 1s a special case of hypothesis 3,
then only one hypothesis 3 is subject to verification and
evaluation. If we have the equality Eq. 3, then the
condition Eq. 4 must be satisfied-the equality between
arithmetic mean and geometric mean values:
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Fig. 7: Correlation between F,, F, and f,_,, in the intervals of series No. 2, k=6
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+F,+ —
Drssldual = Fl F23 Fmean -3 F1+F+Fmean

FE+E+E,... T
% = 3 1:1 +F+Fmean (4)

To check the Eq. 4 we will evaluate the residual
D, found by the formula: In this case we form two

sequences of arithmetic mean and geometric mean values,
composed of F,, F, and f ., dependencies according to,
chosen intervals of each physical process. Unlike the
white noise, a stationary process with finite variance
which random variables are not correlated and their mean
is zero, the studied process has insignificant differences.
Its parameters are shown in Fig. 7-9.

D,swa 18 & stationary process
variance (0.619) which random variables are not
correlated and their mean (0.341) tends to =zero,
namely-it is close to white noise. Dependencies F, F,
and £, after re-transformation.

Let us check the presence of dependencies F,, F, and
f . O the time series formed on the basis of mean values
of the interval. Let us carry out a research similar to the
one in the previous section but with a time series
composed of £, for each mterval as mitial data. Thus, we
will compress the original process by k times. It 1s worth
noting that we have taken the best intervals according to
the K, criterion from Table 1.

with a fimte
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Table 1: Criteria and correlations between dependencies F, Fo and £,

k Ks Ksy K mean | — Qv Ko
4 0.991780 0.994097 0.999288 0.985224 0.061441 0.923783
6 0.977762 0.992320 0.994713 0.965133 0.071426 0.893706
5 0.981974 0.991980 0.996362 0.970555 0.087301 0.883254
8 0.983985 0.991514 0.993743 0.969530 0.110885 0.858645
7 0.970966 0.992697 0.987945 0.952254 0.114687 0.837568
9 0.968474 0.992387 0.981984 0.943786 0.122173 0.821612
4 0.995103 0.995798 0.999931 0.990853 0.032268 0.958585
5 0.997159 0.997932 0.999835 0.994933 0.045035 0.949898
6 0.992674 0.9957320 0.999129 0.987574 0.042049 0.945525
8 0.995860 0.997659 0.998823 0.992359 0.066711 0.925648
7 0.993059 0.994422 0.999652 0987176 0.063955 0.923221
12 0.998374 0.998685 0.998801 0.995866 0.084494 0.911372
4 0.975602 0.984157 0.998649 0.958849 0.069029 0.889820
5 0.950794 0.978854 0.993289 0.924443 0.085033 0.839410
6 0.936486 0.977358 0.985549 0.902056 0.099062 0.802994
8 0.909088 0.976108 0.966894 0.857990 0.132679 0.725311
7 0.911237 0.945609 0.986189 0.849773 0.135793 0.713980
9 0.870839 0.971169 0.943857 0.798249 0.145262 0.652987
Table 2:Criteria and correlations between dependencies F;, F; and £,
k Ks, Ks, Koo Ko o K,
5 0.9266255 0.993619 0.977030 0.938036 0.169755 0.768281
4 0.946915 0.989261 0.965179 0.904128 0.160517 0.743611
8 0.980900 0971254 0.966336 0.920632 0.184829 0.735803
4 0.935289 0.992767 0.943770 0.876314 0.150005 0.726309
4 0.984391 0.989566 0.998379 0.972541 0.110054 0.862487
5 0.980355 0.992146 0.993775 0.966601 0.140807 0.825793
6 0.972057 0.995370 0.978815 0.947934 0.126091 0.821844
9 0.978469 0.994141 0.986729 0.959827 0.148901 0.810926
4 0.676350 0.932902 0.805230 0.508075 0218119 0.289956
9 0.764952 0.919753 0.72689% 0.511420 0.223537 0.287883
10 0.758457 0.898424 0.594711 0405245 0.237445 0.167800
8 0.884147 0.689431 0.606565 0.369736 0.246280 0.123456
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Fig. 10: Autocorrelation function of deviations D, .4 (Series No. 1) (Standard errors are white-niose estmates)
Table 2 shows the cormrelations between these processes, since, its mathematical expectation

dependencies. Figure 10 and 11 shows the relationship
between the F|, F, and f ., dependencies in the case of
the series No. 2 for k =4.

Studies have shown that D.,.g 18 a stationary

process 1n any of the 4 mtervals for all studied
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(mean) does not depend on time and has a fiute
variance. The stationary process D,... 18 close to
white noise but i3 not a white noise, although its
means are close to zero as well as the correlation
between its members.
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Fig. 11: Correlation between F,, F, and
RESULTS AND DISCUSSION

Owr studies confirm the put forward hypothesis
about finding and describing hidden dependencies of
considered processes on the intervals. Their stability
is confirmed by a high degree of correlation on the
each considered interval. Dependencies indicate the
presence of internal relations on the existing
fragments of the process. Therefore, one can assume that
similar relations are preserved on other, unknown
intervals.

Tiune-series fractal property identification 1s one of
the possible methods of analysis. Fractal time series can
be found in various natural and scientific processes: solar
activity (Scafetta and West, 2003), human body
functioning (Diaz et af., 2015), noise of various electronic
devices (Wolf, 1978).

The presence and wide prevalence of fractal
properties in time series of completely different origin
and statistical properties allow suggesting that there
are internal laws which presence 1s not obvious and
is not always possible to identify by usual methods.
Even an incomplete knowledge of the internal laws of
process formation can allow solving many practical
problems and developing a unified universal approach for
their solution.

The proposed strategy malkes it possible to form a
method for process description based not on the
repetitive geometric form but on its mternal relations. This
approach 1s designed to eliminate one of the drawbacks
inherent in classical models and to avoid the situation
when results of forecasting or restoring the necessary
fragments are not correct despite the high accuracy of
approximation by the target process model.

The constant nature of these three dependencies and
their presence on the intervals of the studied process do
not allow drawing the firm conclusions about the
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in the intervals of the series No. 2, k = 4 after the secont transformation

presence of analogous dependencies on the intervals
of another kind of processes. This issue 1s the
subject of individual research and is beyond the
scope of this study.

CONCLUSION

All of the studies have showed a stable pattem on
different intervals of the studied processes. We have
confirmed that it is possible to find a set of intervals for
each studied process that will satisty all of the presented
dependencies. The rest of the process fragments obtained
in the course of the research can be classified as
stationary ones with a finite variance. Consecuently, their
contribution can be neglected and considered as “white
noise”. Stability of dependency fulfillment on the chosen
intervals allows forming an analytical description of the
process, based on which one could restore a part of
intervals or form the basis of forecasting methods.
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