Tournal of Engineering and Applied Sciences 14 (19): 7234-7240, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

New Indexing Strategy using Machine Learning Approach for
Improving Query Performance

"Muna Al Masawa and *Sultan Almotairi
"Faculty of Computer Science, King Abdul Aziz University, Jeddah, Saudi Arabia
*Department of Natural and Applied Sciences, Faculty of Community College,
Majmaah University, 11952 Majmaah, Saudi Arabia, almotairi@mu.edu.sa

Abstract: The explosive growth m data volume require new technique to handle this data m data warehouse.
We know that the most frequent operation over the data is queries. Many of the queries that implement in data
warehouse are being very complex and also iterative. Indexed data plays very critical key role in retrieving data
and searching. There are a lot of index techniques that are proposed frequently to improve the performance of
query. In this study, a new model for indexing use a machine leaming algorithms is proposed and evaluated in

data warehouse.

Key words: Indexing, secondary mdexing k-means, clustering, big data, data warehouse, efficiency, query

INTRODUCTION

Everyday, a huge amount of data continuously
stored and processed by humean and machines which
require a more processing and retrieval requirements
associated with these huge and complex data. The two
trending terms in area of data processing are big data and
data warehouses. Big data i1s commonly described by
many Vs (Stantic and Pokorny, 2014): volume which data
size would be at the range of Petabytes, Exabytes and
more. Tt has assessed that the data is been doubled every
2 years and 1t might be more than doubling. Velocity, it 1s
relating on both how 1s the data being created quickly and
how 1s the data should be processed quickly in order to
face the need for extracting helpful information. Variety,
data has several format. There are structured,
unstructured, semi-structured, text, media, etc. The
different forms of data are creating problems for storing,
data mining and analyzing. To extract this knowledge, all
the types of data must be connected together. Veracity, it
1s relating to manage the reliability of imprecise data and
if can be able to predict with noise and abnormality. Tt also
indicates to the fact that the collected data must be
meaning ful to the problem this 1s analyzed. Volume 1s one
of the biggest challenge in data analysis when compared
with other Vs because it is more complicated to
processing and retrieve the needed data in perfect time.
Data warchouse 1s central repositories of combined and
mtegrated data from one or more different sources. They
store current and archival data in just one single place.

Having access to an effective data warehouse
dramatically increases your ability to make smarter
decisions. In data warehouse systems the information
stored n it 1s also has high volume and arrived to
Petabytes but it 1s clean, integrated, fixed and time varying
and is gained over many different sources (Hoffner, 2003;
Vanichayobon and Gruenwald, 1999).

Indexing technmiques in database systems are
essential technique, specially, in relational data base that
use this technique to improving query performance. Tn big
data and data warehouse, query must be optimized
because the dataset that process becoming huge. The
analytical queries are increasing in very complex way.
And 1f 1t wasn’t optimized accurately 1t might take hours
to execute (Eltabalkh, 2017). The technologies that used
today are not convenient with the big data indexing
requirement, they are not completely designed to examine
distributed, extended and multi-dimensional data.
Converting those techniques and strategies into big data
1t doesn’t done directly due to the unique characteristics
of data and the underlying infrastructure processing the
data (Gani et al., 2016). In the next sections of study, we
will discuss these indexing techniques and introduce a
new model that combines the traditional structures of
indexing with machine learmning and will see how the
runtime will improved.

Background
Indexing: Database index is a data structire aimed at
improving the time complexity and speed up queries by

Corresponding Author: Sultan Almotairi, Department of Natural and Applied Sciences, Faculty of Community College, Majmaah
University, 11952 Majmaah, Saudi Arabia
7234

J. Eng. Applied Sci., 14 (19): 7234-7240, 2019

basically reduced the number of records in a table that
need to be searched. Indexing is the most effective tuning
method but it is often neglected during development.
Indexing is considered to be one of the most effective
tool for reducing query execution time. Tt is data
retriever structure that can be used to reduce the time
of processed data. Also, It 13 one of data mimng
techniques that apply features extraction to find
similarity measures for detecting the relationships
between data (Mpinda ef al., 2015; Paygozar and Samadi,
2016). The proposed solution for big data indexing must
be covered (Kalan and Kocabas, 2016):

Speed of search: Ability to search on huge data, more
than billions and trillions rows in seconds.

Multi variable queries: Tt must be efficient for joining the
results from variable search results.

Size of index: Index size should be a small part of original
data.

Granularity: It is able to produce smaller indexes when
granularity can be reduced.

Parallelism: it should be easily partitioned into sections
for parallel processing.

Speed of index generation: For in processing, it must be
built index at the rate of data generation. In data
warehouse several techniques 1s existing for mdexing.
Every techmque has specific statues. Many aspects that
use in determining what the right index technique is must
be built on a column (Vanichayobon and Gruenwald, 1999,
Tamil and Ibrahim, 2009).

Cardinality: Tt is how many number of the different values
in a column. We need to know if the cardinality of the
index column is high or low because the indexing method
will only work if the cardinally is low or high. For example,
bitmap index works fine with low cardinality data only.

Distribution: The column distribution 1s the appearance
of every distinct value of the column frequently. The
distribution of the column lead in determines which index
method to use.

Value range: The values range of the index column leads
to select suitable index technique. There are number of
query types most be known before create the index, the
comimon queries are: exact match to a specific value, range
of values, join between tables, LIKE comparison, Sorted

or aggregated. The worst case running time O(n) is when
we search for an unindexed and unsort database that
contain n ey values. So, one common solution is creating
indexes over the fields in data stores which they are
frequently referenced by queries. Using this pattern might
improve the performance of the query by allowing
applications to be more quickly locate the data to make 1t
able to retrieve it from a data store. Some of the mdex
structures that are widely used and some are more
application or query type specific.

Indexing categories: Both non-clustered and clustered
indexes are different types of index structures for
any database. However, The main reason to have each
one of them is is to make retrieving data (query) faster.

Clustered index: A clustered index reorders the physical
sort of data in a different table, so that, each table has
only one clustered ndex. the clustered mdex on a table
will alter the way data are stored on disk. Generally, the
cluster indexes determine order of rows which will be store
on disk for this reason the reading from cluster index 1s
faster than the reading from non-cluster index, so, it
cannot have more than one cluster ndex on one table.
One of the advantage of using cluster index when the
cluster groups of data it can be accessed frequently by
some queries. This process will speed the retrieval
because the data exists close to the one others on the
dislke. There is disadvantage when using cluster index
when any change is made in the value of an indexed
column, it will require resorting rows to maintain order
which it is an effect in the performance. It 1s less size than
non-clustered. Index rebuilding needs to drop and create
new data blocks (Siddiga et al., 2017).

Non-clustered index: A non-clustered index 1s sorted
separately from actual data, so, a table may have more
than one non-cluster index. This type of index does not
alter or require any sort of ordering of rows in the table.
Non-clustered Tndexes are usually created on non-primary
key columns that will not require many range queries. Ifa
table has more than one non-clustered indexes that will
not affect the order of the rows that are stored on disk like
clustered mdexes. Non-clustered indexes store pointer
and value to the row that holds that value (Siddiga et af.,
2017).

Indexing types: There are two kinds of indexes.
Primary and secondary

Primary index: Primary indexes are indexes on the row of
table. Primary index requires the rows in data blocks to be

7235

J. Eng. Applied Sci., 14 (19): 7234-7240, 2019

ordered on the index key which it consider cluster index.
It can be created on both key and non-key columns.
However, primary index alters needs to keep the rows
sorted and organized m a table (Sidirourgos and Kerster,
2013).

Secondary indexes: These indexes created on one or more
column values which consider non-cluster index. Either
the database system or your application can create and
manage secondary indexes. Not all column family
databases provide automatically managed secondary
indexes but vou can create and manage tables as

secondary indexes in all column family database systems.

It facilitate query answering on attributes other than
primary keys. If vou have a query with a where clause that
uses column values that are not part of the primary key,
lookup would be slow because a full row search has to be
performed. Secondary mndexes make it possible to service
such queries efficiently. Secondary mndexes are stored as
extra tables and just store extra data to make it easy to find
your way m the main table (Sidirourgos and Kersten,
2013).

Indexing structures
Tree based indexing: Tn the tree indexing strategy,
retrieval of data 1s done m a sorted order, following
branch relations of the data item. The common type of tree
based strategies are B-tree. The B-tree 1s an organized
structure following a tree, it’s make the retrieval of
mformation very easy. The B-tree has numerous nodes,
the root node 1s the node that 1s on the top and the cluld
node is the descendent and the internal node is the node
who have a child, the leaf node i1s the node that doesn’t
have a child, the leaf nodes contain the pairs of key and
the pomter, the pointer inside tags 15 pomtng to
correspond records in a data file. BEvery node have k keys,
the key that point to the sub tree is the left or right
pointer, the value of the keys in the left will be less than
the other one on the right of tree.

Assume that if the root node will have 2 keys n and
m, the child keys on the left n must be bigger than child
key on the right m and the center child node keys must
become between n end m. B-tree works in a similar way to
the binary tree search but in a more complex manner.
B-tree indexes satisfy range queries and similarity queries.
The updated version from B-trees is Bttree. In Bttree
there 1s horizontal link that conmect the leaf nodes that will
make the range of queries simple, this is one of the major
feature of B+tree. When we set the query range condition
to keyl +key2, we first locate the pointer of the start row

in leaf nodes that is matching to the low bound of key 1 in
a query range. It could move to fetch the next record
which has the same or greater key of the cuwrent
recorduntil 15 get the upper bound of range query
key2. Fetching correspond rows inside data file over
the pointers of leal nodes. The BHree has two types
either clustered type or non-clustered. The clustered
B+ttree will order the rows internal the data file which
has the exactly the same order of the keys i leaf
node. Tn anocther way, the B+tree has ordered the
data file. Generally, B+tree index 1s built for the
primary key on table. The order of rows inside the data file
when non-clustered B+tree 1s different from the order of
keys in the leaf nodes of the B+tree. To speed up the
range of queries. We may build a non-clustered B+trees
for none primary key of the tables such as tiune stamp
(Gani et al., 2016; Vanichayobon and Gruenwald, 1999;
Qun, 2016).

Bitmap indexing: Bitmap index is the index platform that
target data warehouse applications. For the property
which have low cardinality that have very little number of
distinct value, bitmap index 1s built and this will speed up
the queries. For example, bitmap index is built on the
column that has a gender of user. Gender has two values
only, male and female, so, gender column has a low
cardinality. This indexes has improved the complex
performance of query, it’s apply Boolean operations that
has low-cost such as AND, OR and NOT in the selection
query that build on multiple mdexes at one time. This will
help in mmimizing the search space before moving to the
source of data.

Assume example in Table 1 in left side has the actual
data of user table. the bitmap index for the gender of male
and female 13 appearing on the last two column of the
table. The sequence of the male gender in the bitmap will
show if the corresponding row contain a “male” gender
which will make the bit set to 1. On the other side the bit
will set on 0. Each row has only one related bit in the
bitmap index. The bitmap size will be huge. If we consider
the cost the benefit will not worth it Jamil and Ibrahim
(2009), Chen et al. (2015).

Hash based indexing: Hash index doesn’t store the values
but their hashes. Such this indexing way reducing the size
andtherefore increased speed and processing of high
index flelds. In tlus case, when a query using Hash
indexes will not be compared with the value of the field,
but the hash value of the desired hash fields. The main
purpose of hash indexes is representing high dimensional

7236

J. Eng. Applied Sci., 14 (19): 7234-7240, 2019

Table 1: Bitmap Index example

User ID User name Gender Birthday Other attributes Bitmap index for “male” Ritmap index for “fernale”
5 Tom Male 1980.01 1 0

6 Mary Female 1980.02 0 1

7 June Female 1979.12 0 1

14 Mark Male 1979.11 1 0

15 Kate Female 1985.03 0 1

16 John Male 1982.02 1 0

5

data with small binary code to gain fast search
results. Hash indexing accelerates information retrieval by
detecting duplicates in a large dataset. It uses a hashed
key which is computed by using hash-function. Though,
hashing works fine most of the time with limited data size,
it tends to exhibit indexing computational when data size
mcreases. As you can see, hash indexes are only useful
for equality selections. They do not support efficient
range searches. Static and dynamic hashing technicques
exist. Hash indexes are performing fast approximate
similarity searches for high-dimensional data (Tamil and
Ibrahim, 2009).

Machine Machine
algorithms have been orgamzed into categorization, this

learning approaches: learning
categorization has established upon the desired outcome
of the algorithm. Common algorithm types include
(Sullivan, 2015; Manning et al., 2008).

Supervised learning: Make predictions based on a set of
instances which training data includes both the input and
the desired results. The common type 1s the classification.

Unsupervised learning: Where the points of data have no
labels

unsupervised learning algorithm is organizing the data in

connected with them, the purpose of an

some form or to describe its structure. This could group
it into clusters or find other ways of looking at complex
data, so that, it shows simpler or more organized. The
common type is the clustering. One algorithm under sthis
type that will be used 1n this study, it called k-means
cluster (Fig. 1).

k-means clustering: k-means clustering algorithm which
is one of the most straightforward unsupervised learning
algorithms. k-means algorithm is a clustering method
which refers to the problem of splitting a set of
objects according to some problem-dependent measure of
similarity. It 1s sumple, fast m implement, easy to
understand and be able to handle with large-scale data
effectively. The main 1dea for algorithm 1s creating mitial
k centroids where, k is the parameter to the algorithm the

Fig. 1: Classifying vs. clustering

number of clusters. Then, every data pomt will be
assigned to the nearest centroid which centroid of each
cluster is updated based on the mean (average) of all data
points in the cluster. This process finished when all
points assign to appropriate cluster (Jacksi and
Badiozamany, 2015, Savita and Shrivastava, 2016;
Kadhim et al., 2016).

Literature review: Jamil and Ibralum (2009). In this study,
researchers considered three main Ideas. First of all,
compare the indexing technique. Second, identify the
factors that consider choosing the right index technique
for data warehouse application. Then, discuss the
evaluation of the indexing techmique on the base of
various forms of queries for data warehouses. This study
will take close look on execution estimation of the three
types of data warehouses queries with three mdexed
techmques that are different and also to detect the effect
of the size of variable data with respect to the complexity
of space and time.

Gani et al. (2016) in this study, there are 48 index
techmques that had studied and compared depend on
sixty articles that 1s discussed same topics. The
performance of index technicues is analyzed based on two
factors, characteristics and the requirements of indexing
big data. A lot key future research topics with potential to
track the progress and deployment of Al mdexing. Qin
(2016) in this study, researchers analyzing the structure
and characteristics of Indexes that support a range of
queries. In applications of big data, the data volume 1s so
big, so, we concern about how these mdexing scheme 1s
solved the problem. We had been designing a number of
experiments for comparing the indexing structures in big
data situations. They analyzing the results, after that they

7237

J. Eng. Applied Sci., 14 (19): 7234-7240, 2019

give several advices on appropriate situations of index.
Their results are rules for database Administrator to
choose distinctive indexes i physical design of a
database. Jacksi and Badiozamany (20135) in this study,
researchers talked about common concepts of data index
and cluster methods which are based on representatives.
General mdex theme 1s presented using different
clustering methods and their results are compared. They
studied three representative based clustering methods.
One of them 1s outperform others.

MATERIALS AND METHODS

Since, the indexing primary key is traditional method
for processing queries that fetch data based on the value
of this key, this traditional approach for indexing cannot
satisfy the efficiency required for queries in data
warehouse with a huge volume of data. So, in this study
our proposed model 1s attempt to unproving the traditional
approach by using machine learmning algorithm. The
methodology for this model depends on two terms. First
term 18 secondery mdex and second term is machine
learning approach. Primary index will be created by
traditional mmdex methods and secondary ndex will be
created by machine learning approaches. It can create
many secondary indexes as long we need it to support the
various querles. In this study we focus on one of complex
types of query, it is range query because it is frequently
used in data warehouses and 1t has many troubleshoots.
This type of queries will be examined and evaluated
The target type of data 15 the
numbers because the numbers need more accurately

with our model.

processing and deeply comparisons to find the needed
records.

Tn first step, primary index will created on main table,
once with the B-tree mdex and once with bitmap index.
Second step is building Secondary index as new table,
this table will store the center points of the values in
the mamn table that has
Theses
algonthm. In k-means, given n points x1, ..., xn the goal 1s
to position k centroids ¢l, ..., ck such the distance is

a huge numbers values.
center points is created by k-means clustering

minimized between each pomt and the nearest centroid.
Every centroid represents a cluster in which a cluster
consisting of all points that is closest to this centroid.
These centroids are used as secondary indexing for main
table The method of k means clustering explained by
these steps: choose the value of k which it 15 nmumber of
clusters, initial k guesses for the centroids. Computing the
distance from every data point (%, ¥) to every centroid.

Centroid / Row 1
e Row 2
Query > C,

Row 3

Main table

Row,

Secndary index k-means clustring Primary index B-tree-Bitmap

Fig. 2: The proposed index model

Then, we assign every point of data to the nearest
centroid. This connection 1s defining the first k clusters.
the distance, d between every two points (x1, y1) and
(x2, y2), in two dimensions of the Cartesian plane is
usually defined by the Euclidean distance measure that is
showed m Eq. 1 (Fig. 2):

d:J(Xl'Xz)ZJr(}ﬂ*yZ)z)

21=1X1 Emyl (2)

(%.¥.)= -

Compute the centroids, the center of points, of each
new cluster from previous step. The centroid (xc, yc) of
these points in k-means cluster is calculated as following
in Eq. 2. Repeating the steps until the final results 1s
reached. Third step is mapping the main table by
centroids in secondary index where each group of records
has same centroid. So, when search about range of
values, the search will be only in specific records based
on clustermg centroid. Finally, queries will run on this
model and results will be observed and evaluated, once
when using B-tree with k-means cluster and once when
using bitmap with k-means cluster.

RESULTS AND DISCUSSION

m this experiment greenplum database 1s used which
it is a Massively Parallel Processing (MPP) database
server based on open source technology Postgre SQL.
Greenplum database also is including features designed
to be optimized for workloads of Business Intelligence
(BI). Greenplum uses the high performance architecture
system for distributing the load of multi-terabyte data
warchouses, also it can be using in parallel the all of a

7238

J. Eng. Applied Sci., 14 (19): 7234-7240, 2019

system’s resources to processing a queries (Anonymous,
2019). Postgre3SQL 15 used in this experiments for
unplementing database commands. It 1s free and open
source software. Its performance improvements are
continuous with each yearly release.

So, 1t handles the most demand needs of the biggest
msurance comparies, banks and govermment agencies.
Also it includes great performance for its unstructured
data types as well latest version comes with great features
which can turn it into a NoSQL database and handling big
data. Range query in large database from 1000-10, 000
records is taking as case study because the range query
1s more complicated. k-means clustering 1s building using
MADLib library, it 18 open source library using for
scalable mn-database analysis. It handles implementations
of data parallel for mathematical, statistical and machine
learming techniques on both structiwed data and
unstructured data.

After implementing our model, the results of runtime
is presented in Table 2 and Fig. 3 for B-tree and in Table
3 and Fig. 4 for bitmap. Also the size of each index is
evaluated and the results is presented in Table 4. From the
results, we can see there is an observed emphasis in time
of processing the query and retrieve the data from large
database after using the proposed model with ML
approach that 1s introduced in this study. Using the index
in general improved the query but when including ML
approach, we get a better results of runtime. By comparing
between two types of ML with index, we find the k-means
clustering with bitmap give a better results than k-means
clustering with B-tree because the centroids records that
is produced by k-means satisfy the low cardinality and the
bitmap work perfect n records with low cardinality. But
when consider the size of mdexing, the secondary indexes
need extra size than primary index, since, it requires built
extra table. Also the proposed indexing method performs
well when there is no modification to database such as
msert, update and delete as the application of OLAP. If
the data is needing more changes every time, centroids
start moving and every time they change position, data
points have to be redistributed among them which
mndexing algorithms performance
dramatically. The error rate on retrieved records can be
enhanced by try ancther default values in the function of
MADLib that used for creating clusters. When, we
implemented the model on small table with 100 records
then 1000 until 10000 records, we find the big differences
between runtime values with/without including MI.
approach and the improvement is observed when handle

decrease the

the big size of database. So, we can say, this model prefer
for using with big data and data warehouse.

Table 2: Run time of btree with k-rmeans chister

Index technique Avg, runtime (msec)
No index 5.18

B-tree 5.676

Btree with k-means 2.526

Table 3: Run time of bitmap with k-means cluster

Index technique Avg, runtime (msec)
No index 5.18

Bitmap 4.50

Bitmap with k-means 1.825

Table 4: Size of each indexes

Index technique Size (k)
B-tree 181-183
Btree with k-means 155-183
Bitmap 155-183
Bitmap with k-means 172-997
7 -
6 -
5 -
Q
£ 44
E — Without index
e 34 Bitmap
——Bitmap+kmeans cluster
20 i ——
1
O T 1
1 2 3 4
Query
Fig. 3: Time of B-tree with k-means cluster
74
64
54
L
£ 4
§ — Without index
N Bitmap
—= Bitmapt+kmeans cluster
2
1 -
0 T T 1
1 2 4

Query

Fig. 4: Run time of Bitmap with k-means cluster
CONCLUSION

We have shown m this study how k-means
clustering which it 13 one algornthm of machine learning
approaches can be used for improving the mndexing and

7239

J. Eng. Applied Sci., 14 (19): 7234-7240, 2019

searching processes. Performance of these clustering
techniques are compared by the traditional approach of
indexing like B-tree and Bitmap. The execution time is
unproved and the enhancement in performance of query
in general is observed. Further studies are required to
extend this method to deal with database modifications.
Also, we will increase the size of database and evaluate
the model.

REFERENCES

Anonymous, 2019. Greenplum database administrator
guide. Pivotal Software Inc., San Francisco,
Califormia, USA https://gpdb.docs.pivotal.10/43170 /
admin_guide/admin_guide html.

Chen, Z., Y. Wen, J. Cao, W. Zheng and I. Chang et al,,
2015, A survey of bitmap index compression
algorithms for big data. Tsinghua Sci. Technol., 20:
100-115.

Eltabalkh, M.Y ., 2017. Data Organization and Curation in
Big Data. In: Handbook of Big Data Technologies,
Zomaya, A.Y. and S. Sakr (Eds.). Springer, Cham,
Switzerland, ISBN:978-3-319-49339-8, pp: 143-178.

Gani, A., A. Siddiga, 8. Shamshirband and F. Hamum,
2016. A survey on indexing techniques for big data:
Taxonomy and performance evaluation. Knowl. Inf.
Syst., 46: 241-284,

Hoffner, V., 2003. Fundamentals of data warchouses.
ACM. SIGMOD. Rec., 32: 55-56.

Jacksi, K. and 5. Badiozamany, 2015. General method for
data mdexing using clustering methods. Intl. J. Sci.
Eng. Res., 6: 641-644.

Jamil, S. and R. Thrahim, 2009. Performance analysis of
indexing techniques in data warehousing.
Proceedings of the 2009 International Conference on
Emerging Technologies, October 19-20, 2009, IEEE,
Tslamabad, Pakistan, TSBN: 978-1-4244-5630-7, pp: 57-
61.

Kadhim F.A., G.HA. Majeed and R.S. Ali, 2016. Dynamic
clustering for information retrieval from big data
depending on compressed files. Int. J. Adv.
Comput. Sci. Appl, Vol. 7. 10.14569/1TACS

A2016.070140.

Kalan, R.8. and I. Kocabas, 2016. Adaptive tools and
technology in big data analytics. J. Multi. Eng. Sci.
Technol., 3: 3777-3785.

Manning, CD., P. Raghavan and H. Schutze, 2008. An
Introduction to Information Retrieval. Cambridge
University Press, USA., [SBN-13: 9780521865715,
Pages: 482.

Mpinda, S.A.T., L..C. Ferreira, M.X. Ribeiro and M.T.P.
Santos, 2015. Evaluation of graph databases
performance through indexing techmques. Intl 7.
Artif. Intell. Appl., 6: 87-98.

Patel, P. and D. Garg, 2012. Comparison of advance tree
data structures. Intl. J. Comput. Appl., 41: 11-21.
Paygozar, H. and A. Samadi, 2016. A review of retrieval
algorithms of indexing techniques on learning
material. Intl. . Comput. Sei. Inf. Secur., 14: 412-418.

Qin, X, 2016. Performance comparison of index schemes
for range query of big data. Proceedings of the 2016
12th International Conference on Natural
Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), August 13-15, 2016, TEEE,
Changsha, China, ISBN:978-1-5090-4094-0, pp: 1469-
1473,

Savita and 3. Shrivastava, 2016. Search engine mdexing
using K-mean clustering technique. Tntl. J. Adv. Res.
Sci. Eng., 5: 218-227.

Siddiga, A., A. Karim, T. Saba and V. Chang, 2017. On the
analysis of big data indexing execution strategies. J.
Intell. Fuzzy Syst., 32: 3259-3271.

Sidirourgos, L. and M. Kerster, 2013. Column mmprints: A
secondary index structure. Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data (SIGMOD'1 3), Tune 22-27, 2013,
ACM, New York, USA., ISBN:978-1-4503-2037-5, pp:
863-904.

Stantic, B. and I. Pokorny, 2014. Opportunities in Big Data
Management and Processing. In: Databases and
Information Systems VI, Haav, HM.,y A. Kalja and
T. Robal (Eds.). TOS Press, Amsterdam, Netherlands,
[SBN:978-1-61499-457-2, pp: 15-26.

Sullivan, D., 2015. NOSQL for Mere Mortals. Addison-
Wesley, Boston, Massachusetts, USA., ISBN-13:978-
0-13-402321-2, Pages: 512.

Vamchayoborn, 3. and L. Gruenwald, 1999. Indexing
technicques for data warehouses queries. Master
Thesis, The University of Oklahoma, Norman,
Oklahoma.

7240

	7234-7240 - Copy_Page_1
	7234-7240 - Copy_Page_2
	7234-7240 - Copy_Page_3
	7234-7240 - Copy_Page_4
	7234-7240 - Copy_Page_5
	7234-7240 - Copy_Page_6
	7234-7240 - Copy_Page_7

