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Abstract: Robotics 1s a vast, inter-disciplnary field m which various principles and methods of control system
are employed for basic operation and effectiveness of control. This study presents the modelling of a
navigation robot set in an adaptive feedback control system. The simulation of control system model involved
the two-dimensional terrain mapping of a certain region with the aid of a tactile sensor. The tactile sensor
designed as a model for the calculation was based on the mechanism of a TekScan ForceFlex Sensor A201
which has a linear pressure output for the force applied and uses Mylar as a substrate. The basic model ains
to utilize the pressure difference to calculate the height difference between the ground level and the test
material, thus, enabling the charting of a suitable terrain map of a geographical region. Tn this model, fuzzy logic
has been used to create a tentative map of the relationship between pressure-voltage difference and height and
adaptive neuro fuzzy mference system in particular has been used to validate the model. With a testing error
of 0.0028852, results indicate that the model was able to capture the input-output mapping well.
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INTRODUCTION

Robotics i3 a vast, inter-disciplinary field with
applications in various mdustries such as medical,
education and military training. Though several control
system methods such as predictive, model-based or
model-free control are applied in this field for basic
operation and effectiveness of control, the two kinds are
frequently employed, robust and adaptive as they both
employ feedback systems for data collection and control.
Though several advanced systems have been reported
m this field such as biomimetic sensors (Wettels et al.,
2009; Landau et al, 2011), a lot of potential 1s
still left untapped.

The major impediment with these sophisticated
systems 18 their high costs of fabrication and complexaity
of design. The main objective of this study 15 to
demonstrate the modeling of a simple, low-cost system for
terrain mapping with an adaptive feedback control system.
A review of the literature reveals the existence of a lumited
number of studies on 2-D terrain chart mappmg for a
Navigation Robot (NavBot).

Literature review: Some of the prominent works done in
the areas of mapping and obstacle detection of robots are
discussed in the literature. Wolf et al. (2005) presented a

new approach for terrain mapping and classification using
mobile robots with 2D laser range finders. The maps
generated by this approach can be used for local obstacle
avoldance, path planmng and navigation, detection of
changes m the terrain and object recognition (Wolf ef af.,
2005). Schadler et al. (2014) proposed methods for
efficient 3D mapping and real-time 6D pose tracking of
autonomous robots using a continuously rotating 2D
laser scamer. Terrain drivability was assessed within a
global environment map and used for planning feasible
paths and the approach was evaluated using challenging
real environments (Schadler ef al., 2014). Nam et al. (2017)
aimed to present a localization method based m
cooperation between aerial and ground robots in an
indoor environment. The proposed method allowed a
ground robot to reach accurate destmnation by using a
2.5D elevation map which was formed by projecting
height information of an obstacle using depth information
obtained by the red green and blue-depth sensor onto a
grid map which was generated by using the 2D Laser
sensor and scan matching (Nam et al., 2017). Kweon
(1991) developed 3-D vision techniques for incrementally
building an accurate 3-D representation of rugged terrain
using 3-D information acquired from multiple sensors.
This research developed the Locus method to model the
rugged terrain. Tian (2016) proposed a strategy based on
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the relative position of a robot to a boundary compared to
other robots with good performances 1 total exploration
time compared to the existing strategies. The objective of
the research (Wells, 2006) was to perform and analyse a
method of terrain mapping with a tracked robot. Ye and
Borenstemn (2003) mtroduced a new terramn mapping
method for mobile robots with a 2-D laser rangefinder.
Gomez (2015) proposed a map building method based on
sets that can solve large-scale problems and a method
to navigate more efficiently in unknown environments.
The following section explains the materials and
methodologies that have been taken into consideration
for modeling the system.

MATERIALS AND METHODS

In order to achieve and maintain a requisite level
of performance of the control system when the parameters
of the plant are unknown and/or change with time or
environmental parameters, the set of techniques that go
into automated adjustment of the controllers in real time
15 called adaptive feedback control. In this model, the
change in the model navigation as the terrain of the land
changes requires an adaptive feedback network.

There exists a linear relation between pressure and
height. This can be proved via. the relation observed
between stress and strain. Strain can be described as a
deformation (permanent or temporary) of solid substances
caused by stress (pressure). For elastic systems, there
exists a direct correlation between the two quantities, till
the elastic point is reached, at which point, there is
nonlinearity as can be seen in Fig. 1.

The use of an elastic substrate in a sensor as a model
material ensures that the elastic point is not achieved as
that would result in damage of the sensor as the accuracy
of pressure reading guarnatees readings with negligible
errars.

Stress

Elastic limit

Young'smodulus, Y = Stress/Strain

Strain

Fig 1: Stress strain curve for elastics

The system described in this study was simulated in
two steps. The first step mvolved creation of a fuzzy
network with three membership functions (namely ground,
medium and high) for each height level, so as to estimate
a tentative idea of the output (height) dependence on
input functions (pressure or voltage difference) using the
OR relation between the two inputs. For the sake of
convenience, only the pressure input has been used in
this scenario for the output readings as the voltage
difference 1s directly dependent on pressure difference in
a sensor. The second step involved the validation of the
model and relationship between the parameters using
Adaptive Neuro Fuzzy Inference System (ANFIS). Some
researches by Jang (1993), Tang and Mizutani (1996),
Tang et al. (1997) and Petkovic et al. (2012) have
demonstrated the employability and suitability of ANFIS
in systems that have a non linear, uncertain or complex
relationship between inputs and output.

Modelling of primary fuzzy network: The primary
network was simulated using either the voltage difference
or the pressure difference as an input. Pressure sensors
often provide the output in terms of voltage readings,
thus, the umt volt 1s taken into consideration while
creating the architecture. The surface map shown in
Fig. 2 mdicates the direct relation between either of the
inputs with the output for the three swface levels
mentioned above. As can be noticed, low mput values
signify ground levels while medium values correspond to
medium level and high values for the higher levels. The
flat surface areas between the levels have just been taken
for ease of differentiation. Out of the mmne rules (three
pressure levelsxthree voltage levels) that were created
with the OR function, only three were considered as they
more closely represented the linear dependence of height

for each of the three levels.

Modelling of ANFIS architecture: ANFIS stands for
adaptive neuwro fuzzy inference system and belongs to

Fig. 2: Surface for voltage difference-pressure and height
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the class of hybrid intelligent approach, used for modeling
and validating system dynamics in which fuzzy logic and
neural networks complement each other. The use of
hybrid intelligent techmques brings to the table the
advantages of tackling uncertainty, vagueness and also
caterng to high-dimensionality. Typically, the neural
network 1s mixed with fuzzy mference systems in three
ways, namely cooperative, concurrent and fused. The
most common architecture is the fused Neuwo Fuzzy
System (NFS) that uses ideas of neural networks just to
learn some internal parameters of a fixed structure
(Nauck et al., 1997). The ANFIS belongs to fused NFS
and 1t was mtroduced by Jang (1992) and 1s able to
approach any linear or non linear function (universal
approximator) (Jang, 1993). ANFIS can represent
structured knowledge and the model structure need not
be known prior (Jang, 1993). The synergism in ANFIS
allows to incorporate human knowledge effectively, deal
with imprecision and uncertainty and leamn to adapt to
unknown or changing environment for better performance
(Jang et al., 1997). The attractive features of ANFIS
include: easy to implement, fast and accurate learning,
strong generalization abilities, excellent explanation
facilities through fuzzy rules and easy to incorporate both
linguistic and numeric knowledge for problem solving
(Jang et al., 1997).

ANFIS architecture 1s directly applicable to robotic
control due to adaptive capability, learmung ability,
structured knowledge representation, better integration
with other control design approaches and flexibility of
parallel operation (Bhavari and Khan, 2010). The adaptive
capability of ANFIS was also demonstrated in the
corresponding researchers earlier work 1nvolving non
linear control scheme (Bhavani and Khan, 2009).

In this research, the inverse-ANFIS function was
used to create the values based on the output data
obtained The ANFIS relation thus obtained for the
system 1s shown in Fig. 3. Due to the lack of human
expertise n the given problem, mutial membership

Input mf
Input L

Output mf

Pressure Output
.
@ And
@ Or
Volt d @ Not

Fig. 3: Fuzzy mference system generated by ANFIS

functions were set up by intuition and the learning
process was mitiated, so that, a set of fuzzy, if then, rules
that approximate the data set could be generated.
Computations in ANFIS effectively tune the membership
functions, so that, output error 18 mimimised. The
membership functions take their final forms after traming.
This automatic generation of data-driven rules and
parameter adjustment makes ANFIS a good candidate for
adaptive control systems. At the same time, ANFIS
requires smaller number of parameters and hence,
converges faster to a control decision which makes a
good case for real time implementation.

The relation between pressure and height was
developed using the following steps: for the sake of
reducing the complexity of obtaiming the variables, only
pressure was considered out of the two probable
outputs. In the followmng discussion, the following
variables are assumed: L = Highest reading for a
given area, | = Percentage value for a given area (%L),
ALQD = Difference of original value AL” = New length
difference, then the pre-existing equation for Young's
modulus Y can be written as:

 Stress (Pressure) 1)
" Strain (Deformation)
P= Y{ALJ (2)
L
P-PO = Y(AL*} (3)
L
P= PO+Y[AL*} (h
L
P= X(ALO-AL) &)
L
P= z(1D-L+1-L) (6)
L

Taking the original value 1; as zero, since, it’s the initial
reading:

ERTE 7
P=(12L) 7

P—Y(1-2} (8)
L
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Table 1: Sample checking and training values for ANFIS

Table 2: Sample data values fiom odometer reading

Pressure (GPa)
H(%al) R Mylar
0.0 0.00 0.00
0.1 15.00 0.52
0.2 30.00 1.05
0.5 75.00 2.62
0.7 105.00 3.67
1.0 150.00 5.24
1.1 165.00 5.76
1.2 180.00 6.29
1.5 225.00 7.86
2.0 300.00 10.48

However, the readings were found to be negative due
to zero initial error. The lowest value (1=0), P=-2Y and
highest (1 =1), P =-Y. To overcome this error, 2Y was
added to Eq. 9:

P—Y(l-2+2j—Yl 9)
L L

Using the .dat format files created from excel
databases, a set of readings were created which were then
entered mnto the ANFIS GUI as traiming data and checking
data to create values for input-output mapping. A sample
set of values of traming and checking data are shown in
Table 1 for L. =7 cm.

Values for both Mylar (Y = 5.24 GPa) and Silicon
(Y = 150 GPa) were taken mnto consideration as they are
currently the popular choices for pressure sensor
substrates (Petkovic et al., 2012). Mylar was the substrate
for the pressure sensor model TekScan ForceFlex AZ01
used 1n the work that proposed a novel system and
algorithm called gait classifier of pressure centers to
sense the pressure distribution mn partial weight bearing
(Lin et al., 2013).

The height 1. is the highest reading that can be
possibly obtained for a given area. It can also be taken as
a reference value which could be assumed as unity in
some cases, 80 as to obtain values in terms of
percentages for a given surface m scenarios where the
height of the highest point remains unknown. These
values when fed in smmulation software such as
MATLAB, provide an idea of the topographical
landscape of a system.

RESULTS AND DISCUSSION

Figure 4 represents the system schematic to assess
the initial idea of terrain mapping for a given area. The
pressure readings, so, obtained for each unit distance
recorded by the on-board odometer from the sensor model

Distance (m) Pressure (GPa) Height {cm}
1 0.05 0.07
2 4.77 6.37
3 4.45 5.95
7 1.57 2.10
8 1.78 2.38
9 3.98 532
10 2.31 3.08
15 341 4.55
17 3.30 4.41
19 3.30 4.41
20 1.15 1.54

Pressure sensor:
pressure difference
> detection in Pa or V

ﬁ‘

The corresponding height
difference observed from [
Table 1

Odometer: distance traversed
detected by on-board odometer

The height values for each
distance recorded sent for
terrain mapping

‘—1

The idea of terrain obtained
for a given area

Fig. 4: System schematic

as shown in step 1 can be equated to the subsequent
height value from Table 1. This table value can be
recorded for the corresponding distance reading.

After the model was input with training and checking
data sets, the result was obtamed. The relation between
pressure and height was observed as shown in Fig. 5
wherein blue dotted lines represent training data while red
indicate checking data points. The graph showed a
testing error of 0.0028852 which mndicates that the model
was able to capture the input-output mapping quite well.
A model with 40 epochs was obtained with training error
of 0.0028619 as observed n Fig. 6. This validates the
linear relation between the pressure and height that was
assumed earlier.

Table 2 presents a sample set of data, created
randomly from odometer reading. The values provided are
very abstract and are just sample readings. The length of
the highest point was taken as 1. = 7 cm and the height
found was corresponding to the values provided in
Table 1 pressure values. Figure 7 shows the sample terrain
graph for a given area (measuring in total, 1.4 m®).
The non linear terrain mapping can be observed which
necessitated model capture and analysis. The X-axis is the
distance m metres and Y-axis 1s the height m cm. The
graph obtained matches closely with the values assumed,
thus, validating the correctness of model built.
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Fig. 5: Training and checking graph for Mylar (Rred: checking data and Blue: training data, 000)
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Fig. 7: Terrain graph
CONCLUSION

In this research, a model for terramn mapping for
an automated robot was presented which utilized the
linear relation between stress and strain. Primary fuzzy
relations and ANFIS were used to validate the
relationship between input and output graphs. The
biggest advantage of the NavBot 13 its cost-efficiency and
ease of design and holds the potential for many
applications (Sanderson et al., 1987). The future scope of
such systems could be in pipelines that are too thin to
accommodate devices with bigger structures and higher
number of detectors (sonar, lidar), wherein these
mechanisms can be used as a part of pipeline damage
repair systems, since, they require mimmal space for
operation. With the mcrease i nfrastructure and

accessibility for, specially, abled citizens all over the
world, implementation of this system architecture under
canes for the blind can enable the data recognition
readings to be transmitted via. bluetooth headsets, thus,
making them navigate pathways easily as well as find
misplaced objects.
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