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Comparison Between the Analytical and Monte Carlo Simulation Solutions for
Two-Dimensional Ising Model of a Ferromagnet
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Abstract: The response to the temperature for atwo-Dimensional (2D) spin array of a lattice of 2x2 size
Ising-Onsager type was compared with the exact solution and sinulation i the formalism of the Monte Carlo
simulation. The functions energy, magnetization, heat capacity and susceptibility per spin determined by Monte
Carlo simulation and the Metropolis algorithm, showed dispersion of close to 1% when compared to the exact
solution and the Onsager model. The finite scaling method for 2D lattices of 2x2, 4x4, 8x8, 16x16, 32x32 and
64764 size, allowed the calculation of the critical exponents of scaling function magnetization, specific heat
capacity and susceptibility. The results show that the scaling functions are independent of lattice size but
dependent on temperature and the critical exponent (class of universality).
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INTRODUCTION

Ising model two-dimensional: onsager: Insome materials,
long-distance exchange interaction between magnetic
moments plays an important role in terms of magnetic and
charge carrier properties. The interaction 1s measured by
a constant known as the exchange constant. Many
models and formalism have been developed help reach a
understanding  of this phenomenology.
Among them, we highlight the design of a preferably
symmetric, distribution of atoms known as the spin model
m which each lattice pomt is associated to the spin
variable. The atomic arrangement may involve different
types of magnetism which converge into two large groups
cooperative and non-competitive (Binner ef al., 2006). The
first group is characterized by the fact that it presents no
interaction between the magnetic spins. For the second
group, the main type of mteraction is associated to the
interaction between spins. An example of the latter 1s the
arrangement  presented in  ferromagnetism  and
antiferromagnetism. Many proposals have been put
forward to explain ferromagnetism among them, the, so,
called Ising model. In its first version, proposed as part of
a thesis by Wilhelm TLenz (1920), Brush (1967), the model
was presented for a one-dimensional spin array. A few
vears later, the model was presented more formally in the
research of Ernst Ising in 1925 (Onsager, 1943) with one of
its most relevant results as the non-existence of phase

conclusive

transi tions in one-dimensional arrays. Subsecuently,
Onsager (1943) and (Kaufman, 1949) presented the
solution for a two-dimensional (2D) spin array. The most
contribution of  this
evidence it provided of a phase transition marked by a
transition temperature. The Ising model was conceived to

relevant research was the

explain how some materials can present a magnetic
order as a consequence of magnetic mteraction
(ferromagnetic or antiferromagnetic) even in the absence
of an external applied magnetic field. The effect can be
observed below a temperature value (Tc and Tn),
respectively. Above this temperature for both cases, the
individual spins would be thermally disordered pointing
in arbitrary directions and resulting in a net magnetization
of zero. In the fimte spin configuration for 2D (N rows and
N columns), the input hypothesis to determine an
observable through a method that involves recurrence
relations is based on the boundary conditions. That is it
involves integration with previous chams (p-th row)
(vertical dependence) and the previous spms S,
(horizontal dependence). For example, for the set of spins
inrow =15, 5, S, ..., Sy, the boundary conditions of the
spin configuration are limited by ., = W v Sy = S).
Where the energy of the interaction between rows
W oand p

il
BGiob) — 535, a
k=1
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j being the constant interaction between nearest
neighbours. In the case of the presence of an external field
h, the energy of each is given by:

N N
E(W=7Y88.,hY s
k=1 k=1

The total energy:
E, (W)= 3 (B, Mo 4B ()] @)

In these case we will only consider classical systems
and mainly focus on the cancnical ensemble where the
partition function is give as z and the summation running
over all possible state of the system:

zhT)= Y ePzh, =YY Y

allstates uloopz i

$ o T L ) 3)

Hu

When considering each exponential term as a matrix
element P. The partition function can be expressed in
terms of trace P, P being of the order 2"x2" . The matrix
trace is invariant under transformation. The partition
function in terms of eigenvalues:

= aPlEGg. bas FERL]
g | Py > = @7 b T

z(h T) =Y <p [Plu, > ¥ <w |Plu, >
wl i

)
No<py | Plu, >, <y | Py, >
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z2(h,T)= > < |P"|p >=Tp"
wl
ZN
2 Ty=Y Al (5)
=1
Eigenvalues:
Ay >y > Ay > e Ay (6)
The partition function has to be delimited:
A <zh Ty< 2"l
(7

1 1 1 1
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Based on this last expression and extrapolating the
system to the thermodynamic limit, it is possible to
determine the terms In A. This term was found by Onsager
in his research and it is known as the Onsager partition
function (Newman and Barkema, 1996, Kaufman, 1949,
Majumdar, 1966):

|n A = -n(2cos(2K))

1" 1 1 (8)
- [7 do | n[— {11 sin"0)*}]

o 2

being k = 2 sinh 2K/cosh’® 2K v K = f3j. Is the Helmheltz
free energy n terms of the partition fimetion:

F= —llnz 9
B

where, the free energy per particle:

p=F (10)
N
The energy per particle in terms of the Onsager term:
E(T) = -ai\nz = —Nai\ nh
B ‘ Bdk - an
E(T) = -2jtanh 2K+ [Fa¢ sin_ 9
2o dpdt  A(+A)

where, A = [fik7sin’¢ by performing certain operations, we
can obtain the energy:

E(kT) = - coth 21<(1-2—11<1 9)
s

where, 1= 1-2 tanh’ 2K y K, (k) = J'% do K, k) 1s the
o Jiksin® g

complete elliptic integral of the first kind. The constant

field heat capacity:

2
c(kT):a_E:_ 1 E_ N o"'|mh
T kT'o9p kT° o
CkT) = 2K (B ooth 2K [2K, (k- (12)
T

2E, (k)—<1-1)<§+11<1 )]

E,(k) is the elliptic integral of second kind and is
given by Huang (1987):

E, (k) = J?,/l—kz sin’ 0do 3)

Calculating the elliptic integral must be carried out
with care and to facilitate this, it 1s camried out in the
neighborhood of k = 1. Tn these conditions, sinh 2k =1y
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cosh 2k, = fi+sinh?2K =42 which implies, lim k) =1y !

2 TT,

KL = 2 _ 2 . Theseapproximation imply
i acossy2  InW2+D) e
that:
Kl
K, (k) ~[In 4(1k*)?] =|n4| %:%,El(k):l (14

These results indicate that there is logarithmic
divergence of the specic heat capacity closetoa T

LA BT N 15
C(kT)= - (kTE) |n(l TE)Hn(l 4) (15)
2k 2) e, T 16

Ch=" (kTE) In|1 TE\ (16)

In the presence of an external magnetic field, the
temperature dependence of spontaneous magnetization
close to T, 13 obtammed based on:

The calculation 1s based on the thermodynamic limit
and for small fields. By Yang (1952), published a first
expression for the magnetization:

1
m = J{l-(sinh2Bj)*}%, T,
T

T (18)
0 T

<
=

> [

In terms of the critical point:

m(T)~[sinh (2B j)* -sinh(2, )* ]% ~A (TE_T);’ (19)
For susceptibility:
:l@:klaz nz (20)
Noh N oh?
MATERIALS AND METHODS

Ising model simulation for 2D lattice for 2x2 size: The
macroscopic properties of a materal in thermodynamic
equilibrium are usually described based on the knowledge
of macroscopic properties supported by statistical laws
that govern the particle array. For example, in the
formalism of the canonical ensemble, the probability of
finding the ensemble in a particular state with energy ()
1s given by Gibbs (1902) and Walecka (2000):

: E, BE,
- 1 T 1 e*ﬁ _ [S] (21)

S
EekT i
1

where, p = 1/kT k and T Boltzmamn’s constant and
absolute temperature, respectively. The expected value of
an observable (Q) in thermal equilibrium in the phase
space (space in which all the possible micro-states of the
system can be found) 1s given by:

B

T
<Q >T = ZQ1P1 = EQle
For the internal energy:

1
<Q»=E =f§ E.ePh (22)
z5 !

For the observables heat capacity (C), magnetization
(m) and susceptibility () are also expressed in terms of
the partition function (Eq. 12, 17 and 20). Many algorithms
have been developed to determine the value of a physical
observable of a system involving long and short range
interactions (emphasis is placed on discrete models). In
the particular case where nteraction between spins 1s
involved (close neighbors), the Monte Carlo simulation in
conjunction with the Metropolis algorithm (for a more
detailed description (Sandvik, 2011, Binder, 1981, 1997,
Landau and Binder, 2000, Metropolis and Ulam, 1949) 1s
particularly relevant. The methodology has allowed us to
randomly simulate some of the thermal properties of the
system (thermal fluctuations). The method is designed to
generate a trajectory in the phase space in which each
point is a state of the system and one step at a time 1s
taken (one step is equivalent to a transition from one state
to another). The corresponding observable are calculated
and stored before taking a new step. After a certain
number of steps the system tends towards a state which
15 comsidered to be m thermal equilibrium. That is even
when another step 1s taken, the system remains in the
same state. Finally, an average is calculated of all the
stored observable to obtain mean values. In the transit
from one state to another, it is very common to use the
methodology known as the Markov chain which
conditions the system to always reach a state of thermal
equilibrium. Markov chains (Kemeny and Snell, 1983)
provide the necessary information on the probability of
passing to any state in the system in the phase space,
guaranteeing the transition from state to state and
ensuring that a state of equilibrium 1s reached. The Ising
model 15 of great utility when contextualizing the
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Metropolis algorithm in the field of spin interactions. Tt is
used to allocate a direction to the spin moment whereas
the magnetic moment 1s presented by the magnitude of
exchange interaction. For the case of 2D the lattice sites
can only take the value of S = £1 (+1 for spins pointing
upwards and -1 for spins pointing downwards). The
Metropolis algorithm (Sandvik, 2011; Binder, 1981, 1997,
Binder and Heermanmn, 1988, Metropolis and Ulam, 1949)
traces a sequence of stochastic process that will allow a
previously established configuration of spins to transit to
anew configuration (a Monte Carlo Step (MCS3)) that can
be summarized as:

*  An initial configuration of the system (for N lattice
sites) with spin configuration S,

* A lattice site m (l<m<N) 15 visited with spin
configuration S,. The spin of this site 1s inverted and
it is associated to a configuration labeled S,

¢ The energy shift per spin inversion is calculated that
18 AE = Eg-By

» If AE 15 less than or equal to zero, the inversion is
accepted (S,, = 5)) sand we go on to step 2

¢« If AE is positive, a random number r (O<r<l) is
generated, if this number 1s lower than the transition
probability, S,., 1s taken as S,. In other cases, the spin
configuration remains unchanged. We move on to
step 2 until completing the visits in all system spins

*  The desired observable are calculated

An MCS is carried out for when all of the lattice
points are visited. The probability to describe the system
behavior is the same as the transition probability and 1s
defined as:

1 s AE<0

S-8)= (23)
P -5) e—Ar]l:j,si AE >0

By calculating the observable using the MCs for the
magnitudes, energy, magnetization, specific heat capacity
and susceptibility n relation to the temperature are
obtamned based on the (Fluctuation
Dissipation Theorem ); Energy per spin:

eXPIessions

<E>=%<iHi>=%<-ij:ESlSj> 24

i jnm

Specific heat capacity:
OB <(AE) > <E'>-<E>’ (25)
aT kT’ kT’

Magnetization:
M

<m>==¥§ (26)

1

Magnetic susceptibility:

I B (27)
Naoh NkT

X

The equations infer that the specific heat capacity is

proportional to the fluctuations of the system’s energy

levels while susceptibility 1s proportional to fluctuations
1n the magnetization.

Theoretical model; The 2D lattice for 2%2 size: In order
to illustrate the theoretical calculation of the observable
of the magnetic system where spmn interaction among
immediate neighbors 1s involved, a 22 two-dimensional
array has been considered. Now, the basic principles of
statistical mechanics establish the possible number of
configurations, defigeneration, energy and magnetization
of the system, these are listed in Table 1. Arbitrary
units  (au) are used to facilitate management and
comprehension. The partition function and the
respeciitive observable for this particular case are as
follows:

4
z =¥ Deg(i)e™ =2¢*+8eF+ (28)

4e P26 = 2e*+12+2 7

From this set of equations, we can determine the
specific heat capacity and magnetic susceptibility based
on the temperature:

<E>»-= -1[2(8)e83+2(-8)e'8‘3]
Z

<E'»= —1[2(64)egﬁ+2(64)e'8ﬁ)]
Z

(29)
1
<|m > = ~[2(4)e+8(2)]
Z
o1 3p
<m” >=—[2(16)e™+8(4)]
Z
Table 1: The 2' = 16 spin configuration for 2x2 lattice
Configuration Degeneracy Energy Magnitization
spin (No.) No.) (a.u) (a.1)
17
I 2 -8 +4, -4
1l
1 8 0 +2,-2
I
Il 4 0 0
I
11 2 8 0
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RESULTS AND DISCUSSION

The interaction of the observable is compared
(energy, magnetization, heat capacity and susceptibility)
with the temperature for the models, Onsager, Ising
theoretical and simulation developed in this research.
Figure 1 shows the variation of magnetization per spin
vs. temperature for the 2x2 planar array (2D) for the
formalism’s Onsager model (Eq. 18), theory model (Eq. 29)
and Ising simulation (Eq. 26). The results for the three
models show a better fit than 1% for the entire
temperature range. For all three methodologies, they show
the presence of a phase transition in the array
(paramagnetic/ferromagnetic transition). By comparing the
value of the transition temperature for the respective
formalism, we conclude that the dispersion is close to 1%
(Figure 1). This corroborates the good fit of the sunulation
model (Ising) with the other two models in the entire
temperature range considered in this research. Figure 1
shows the vamation of the heat capacity per spin vs.
temperature for the 2x2 size for 2D lattice (Eq. 25 and
29). The maximum position of the peak 13 correlated to the
first order transition temperature (par-ferromagnetics).
Similarly, to Fig. 2 the results show a good fit for the two
models. Figure 3 shows the variation of the magnetic
susceptibility per spin vs. temperature for the 2x2 for 2D
lattice. The results show the correlation of the
fluctuations of the total magnetization in relation to the
temperature (Eq. 27 and 29). For the case of the simulation
with a small number of spins (2x2) if the position of the
spin 1s chosen randomly given that there are not many
options to choose from this causes a great diffierence
between the data obtained depending on whether the
position 1s chosen in an orderly or random fashion.
However, when the number of spins increases, the
probability of a spin being chosen more than once is
reduced. This implies that random choice 13 mereasingly
like an ordered choice where a spin 1s only chosen once.
This is further proof that in a statistical method such as
the MCS, the more random all its processes, the better the
results obtamed. When using MCs and the MCS number,
the question that emerges is whether there is such a thing
as an 1deal MCS number. According to the literature, the
“ideal” number of steps m MCS m computational
simulations of magnetic materials is around 10° MCS. Tn
most cases, this number ensures the thermal balance of
the system without wasting a colossal amount of
computational time. As a partial conclusion of this
research, 1t discerns that the Ising 2D simulation method
developed provides results of the observable that fit quite
well to the theoretical model. Comparing these results with
those reported in reference (Jacques, 2008), we can
conclude that this methodology can opti mize the model
throughout the temperature range.

Magnetization (a.u)

04 . : .
0 4 8
Temperature (T)

Fig. 1. Comparison between theoretical, Omnsager and
Ising modulation of magnetization vs. temperature
for finite for 2D lattice of 2x2 size

Specific heat per spin (a.u)

0.0

0 ' 2 ' 8

Temperature (T)

Fig. 2: Comparison between theoretical and Tsing
modulation of heat capacity per spin vs.
temperature for fimte for 2D lattice of 2%2 size

0.16 — Theory
* lsing

5
&
> ;
= 0.08 1 4
3 .
5]
)
)

0.00 . . : .

0 4 8
Temperature (T)
Fig. 3: Comparison between theoretical and Tsing

simulate of magnetic susceptibility per spin vs.
temperature for finite for 2D lattice of 2%2 size
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This optimization result is justified by the random
number generator (ran2 developed by Numerical Recipes
(Binder, 1981). The observable can only be calculated
when the Metropolis algorithm has been full assessed.
Priority is given to calculating the observable of the states
that are part of the system trajectory and not of temporal
states that emerge during the evaluation of the Metropolis
algorithm. The accumulated variables associated to the
observable in the simulation of reference (Tacques, 2008)
have a greater amount of values and many of them do not
contribute relevant information and may even affect the
calculation of the total average of an observable. It is
obvious that the fewer the approximations made in the
calculation of a magnitude, the narrower the dispersion of
that magmtude. As such we have calculated the values of
the energy and magnetization of the lattice at the end of
each MCS. The energy of each of the nearest neighbor
spins and that of the magnetization of each spin is added.
The procedures in reference (Jaques, 2008) carry out the
calculations through a series of approximations. For
example, to calculate the energy, they use the energy
from the previous lattice and add twice the difference of
the energy between the current lattice and the previous
lattice. On the other hand, to calculate the magnetization,
they use the magnetization of the previous lattice and add
twice the value of the inverted spin. Tt is important to note
that the calculation of these observable is viable because
1t 18 carried out using the Metropolis algorithm making it
possible to momitor the spins that have been inverted
(Restrepo-Parra et al., 2011). Although, it is certain that
the approaches may diminish the computational time ina
simulation for this particular case, the form of the
approaches 1s directly related to the moment at which they
are used (within the Metropolis algorithm), bearing in
mind the arguments proposed above and the loss of
precision when using approximations, it 1s feasible to
consider the difference m the way the observable are
calculated as an in fluencing factor in the precision of the
simulations. This argument allows us to interpret the
possible discrepancy observed in the high temperature
region. On the other hand, also in the high temperature
region, the spins change direction more frequently which
is why a greater amount of unnecessary data is obtained
affecting the average of the observable. For the low
temperature region, spin ordering is almost constant,
leading to a better approximation of the results presented
by the respective formalism. Figure 4 shows the
variation of the energy per spin vs. temperature for a 2D
lattice of different sizes (L). For all cases as the
temperature tends towards zero, the energy tends towards
amaximum value (approximately -2j = -2). That is when the
temperature 1s very close to zero, all the spins tend to

0.00

-0.757

Energy per spin (a.u)

-1.504

Temperature (T)

Fig. 4: Temperature dependences of the energy per spin
for several lattice sizes

1.0 rmmssn,, =2 ]
L=8

0.5 4 u,

Absolute magnetization
per spin (a.u)
- B - - % .l..
I.'
l-. o
‘_ —
mn o n
RE

0.0 e S S A e
0 4 8
Temperature (T)
Fig. 5: Temperature dependences of the absolute

magnetization per spin for several lattice sizes

align reaching the maximum value for energy m the
system. For 2x2 and 4x4 sizes, respectively, the systems
may involve changes in the order of spins, implicitly
leading to increased energy m the region with the highest
temperature. That 15 the spin moment 13 less linked as the
temperature increases. This trend can also be seen in the
variation of the magnetization with temperature (Fig. 5).
For these lattice sizes, the transition temperature is not
well defined and as size (1) increases, the dispersion in
the value of the temperatire dimimishes. This trend 1s
further accentuated as the heat capacity n relation to the
temperature increases (Fig. 6). The trend in the
temperature for magnetization, heat capacity and
magnetic susceptibility with lattice size (L), reveals that
the effect of finite size scaling is present in these systems
involving the spm and allowing an empirical exploration
of the uiversality of the critical exponents.

Finite size scaling analysis: Of the magnetic response
of a ferromagnetic to a temperature close to a phase
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N sL=2
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& - «L=64
g *
2 i
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& 0.75- % i
8] 1%
8
I

0.00

Temperature (T)

Fig. 6: Temperature dependences specifc heat capacity
per spin for several lattice sizes

transition, it is very frequent based on isothermals m(T),
%(T) and C(T), to determine the critical exponents and B, Y,
and «, respectively. The values of the critical exponents
are indicators of the class of universality in the magnetic
response to thermal effects. All the systems that have the
same dimensionality and the same symmetry should
present the same singularities, governed by the same set
of critical exponents. An example of this universality is
represented in the set of equations in references
(Arrott and Noakes, 1967, Newman and Berkema, 1996).
Many formalism have been developed to find rigorous
relationships between the critical exponents (scaling
relations). Most of these are based on thermodynamic
analysis. It 15 very common for the methodologies that
calculate the value of the critical exponents to present
small dispersion which are correlated to the dispersion in
the precision of the value of the critical temperature. One
methodology that considerably reduces this dispersion is
the finite size scaling method. In the formalism, the
observable energy, magnetization, heat capacity and
susceptibility are known as scale functions. The scale
functions are independent from lattice size but dependent
on temperature and critical exponent. The model type
15 expressed as (Newman and Barkema, 1996,
Crokidakis et «l, 2009; Bhatacharjee et al., 1987
Rieger and Young, 1993, Canddau and Binder, 2002,
Press et al., 1986; Ogielski, 1986):

E(T.L)~[T-T,|" > L
B
M(T,L)~| T-T F—Lr
N (30)
C(T, L)~ T.-T[*—> L

X
X(T,L)~|T,-T =L

0.0

&,

In (absolute magnet) (a.u)
<)
w
1
1

075 150 225 300 375 450
Temperature (T)
Fig. 7: Trend of the position of the maximum absolute

magnetization with the size (slope = 0.13614,
standard error = 0.00425, adj. R* = 0.99514)

5.0

N
o
1
L

Ssusceptibility (a.u)
o
o
1

-2.5

0.75 1.50 2.25 3.00 3.75 4.50

Lattic size

Fig. 8 Trend of the position of the maximum the
susceptibility whit the size (slope = 1.72994,
standard error = 0.03006, adj. R-* = 0.99583)

Exponent v is related to the divergence of the
longitudinal correlation B is related to the behavior of the
magnetization close to transition temperature T, o 1s
related to the divergence of the specific heat capacity in
T, and v refers to the divergence of the susceptibility
close to the critical pomt. Figure 7-9 show the fit that
allows the determmation of the critical exponents of the
observable M (T, L), C (T, L)and (T, L), respectively.
For the 2D Ising model, it has been established that the
value of the critical exponent for the specific heat capacity
1s zero. However, 1t 18 frequent to plot Cvs. In (L) and the
slope for this line is €, The values for the critical
exponents calculated in this research are compared to
those reported in reference (Kote, 2008; Crokidakis ef af .,
2009) (Table 2).
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> 150+
8
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1 L 1 I 1 L 1 1 L
0.75 150 2.25 3.00 3.75 450
Lattic size
Fig. 9: Trend of the position of the maximum specific heat

capacity whit the size (slope = 0.50891, standard
error = 0.01548%, adj. R* = 0.99539)

Table 2: Critical exponents of the observable M(T, L), C(T, L) and
(T, L), respectively, for the 2D Tsing model

Magnitude Exponent Ref. Simulation Theoretical
Magnetization [ 0.128+0.008 0.13614+0.00425 0.125
Susceptibility v 1.76+0.0100  1.72994+0.05006 1.750

Heat capacity  Cp 0.518+0.020 0.50891+0.01548 0.500

CONCLUSION

The 2D Ising model 1s a useful tool for revealing the
phenomenology of magnetic materials that present phase
transitions. The model provides the basic fundamentals
for the computational simulation of this type of material.
The computational results of MCs with the Metropolis
algorithm presented n this research for a 22 size for 2D
lattice showed a dispersion of close to 1% when
compared to the exact solution and with the Onsager
model. In terms of the curves for specific heat capacity in
relation to the temperature for the 2x2 for 2D lattice
simulated in the high temperature region, the data is much
closer to the exact solution thus improving the report
presented in reference (Jaques, 2008). The benefit 1s
attributed to two factors, the first relates to the way in
which the energy is calculated given that the use of
approximations may affect the preciseness of the results,
the second factor is the moment at which the system
observable are stored and updated given that in the
computational simulation proposed in the reference, this
process has been carried out within the metropolis loop,
leading to an accumulation of urmecessary data when the
spins are inverted, affecting the average for the
observable. The searguments become valid if we consider
that at high temperatures, the spins are more likely to
change direction and therefore, affect a greater amount of
data. Another contribution of this research has to do with
simulation. It can be affrmed that the choice of a suitable

random number generator 1s not the only important factor
as there are other processes involved, for example,
choosing ordered or random spins which in turn, affect
the wvalue of the data obtained to a great extent in
particular for small sized systems. Thus, it is important to
inspect each process within the simulation and to try to
implement randomness where possible. Based on the
computational results for 2x2, 4x4, 8x®, 16x16, 32x32 and
64x64 for 2D lattices, the finite size scaling method
allowed the calculation of the critical exponents of the
scale functions, magnetization, specific heat capacity and
susceptibility. The results showed that the scale
functions are independent of network size but dependent
on temperature and the critical exponent (class of
umversality).
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