Journal of Engineering and Applied Sciences 14 (19): 7064-7068, 2019

ISSN: 1816-949X

© Medwell Journals, 2019

Synthesize of Carbonate Doped TiO₂ Nanomaterials to Enhance the Overall Performance of Dye Sensitized Solar Cells

¹Ahmed K. Al-Kamal, ¹Mohammed Ali Abdulrehman, ¹Ismail Ibrahim Marhoon and ²Jafar F. Al-Sharab

¹Department of Materials Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq

²Department of Engineering Technology, Northwestern State University, Natchitoches, LA, USA

Abstract: In this study, we synthesized carbon doped TiO₂ nanoparticles as anode electrode in Dye Sensitized Solar Cells (DSSCs). TiO₂ nanopowder was doped with different amount of carbon. Carbon atoms are easily to be couples with O atoms due to the small energy barrier between them in anatase phase. Doctor blade method is used to deposit thin paste of carbon doped TiO₂ on FTO glass. Scanning electron microscope was used to study the microstructure of the samples as well as to confirm the existence of carbon. Also, x-ray diffraction used to identify the crystallite size and phases of the samples. The results showed that the 4% of carbon-doped TiO₂ was given the best performance of DSSCs as the efficiency increased as four times as the TiO₂ without doping.

Key words: C-doped TiO₂, DSSCs, synthesized carbon, nanoparticles, electrode, nanopowder

INTRODUCTION

A Dye-Sensitized Solar Cell (DSSC) was first introduced by O'Regan and Gratzel (1991). Recently, interesting in DSSCs has increased due to their simplicity in manufacturing, low cost as compared to silicon solar cells and high efficiency (Mao and Chen, 2007). DSSCs offer an effective and simply applied technology for future energy supply (Gong *et al.*, 2017; Narayan, 2012). The working electrode of DSSCs is formed by depositing a TiO₂ film layer on conducting glass substrate.

Nanostructured TiO₂ has been used as a photo-anode in DSSC applications due to its conductive electronic structure (Gong *et al.*, 2012; Hagfeldt *et al.*, 2010). The efficiency of nano-TiO₂ is limited by its wide band gap that allows TiO₂ to absorb only UV-radiation (Khan *et al.*, 2013). In order to improve its efficiency, nano-TiO₂ has been doped with metals and non-metals. The band-gap energy of TiO₂ doped with metallic and non-metallic elements is shifted into the visible region, due to induced new energy levels above the valence band (Zaleska, 2008; Roose *et al.*, 2015).

Many techniques have been employed to dope ${\rm TiO_2}$ with different elements (Patle and Chaudhari, 2016; Sakthivel *et al.*, 2017; Ko *et al.*, 2005). Seddigi *et al.* (2016) investigated the effect of carbonate doping in ${\rm TiO_2}$ on performance of DSSCs. The results revealed that

carbonate doping of TiO2 mesoporous microspheres enhanced the density of light harvesting centre, photoinduced electron, light trapping, injection and electron transport without self-recombination parameters which accountable for the enhancement of solar cell efficiency. Lu et al. (2010) studied the performance of a DSSC in Nb-doped TiO₂ electrodes. The efficiency of a 5 mol% Nb-doped TiO2 cell was 7.8% which was better than an un-doped cell by 18.6%. This improvement in DSSC efficiency is due to the positive shift in powder conductivity and flat-band potential which improves electrons injection and charge transfer. Yang et al. (2014) and his group doped TiO, with Co ions by a sol-hydrothermal process. Their results showed significant improvement of properties of TiO₂ at 1% Co⁺² ion doping, due to induced abundant energy levels below the conduction band. Kang et al. (2010) and co-workers used a sol-gel method to prepare nitrogen-doped TiO2 for DSSC applications. They showed improvement in DSSC efficiency up to 4.87% compared to 3.73% for un-doped TiO2.

MATERIALS AND METHODS

Experimental work

C-doped TiO₂ preparation and characterization: C-doped TiO₂ was prepared by adding 2 grams of TiO₂ anatase

nanoparticles (from Sigma-Aldrich) to 60 mL of deionized water. Then, specific quantity of carbon was added to suspension of TiO₂, then, the slurry stirred for 40 min. The solution was moved into a 120 mL teflon autoclave and a stainless steel lid used to seal it. Then, the mixture was aged at 160°C for of 24 h with heating and cooling rates set at 25°C/min in order to nucleate and grow the C-doped TiO₂ nano-particles. Then, the mixture solution was slowly cooled in air. The gained solid particles were centrifuged and carefully washed by distilled water and dried at 90°C in air atmosphere.

Phase identidication of carbon doped TiO₂ was carried out using X-ray diffraction (X-ray diffractometer, model PW 3040, Cu Kα). Chemical analysis and morphology of TiO₂ anatase and C-doped TiO₂ were carried out using Energy Dispersion X-ray (EDX) and Scanning Electron Microscopy (SEM) (A Zeiss-Gemini FE-SEM). A solar simulator Xeon 300 W with incident light-power intensity 100 mW/cm² is used to perform photovoltaic measurements.

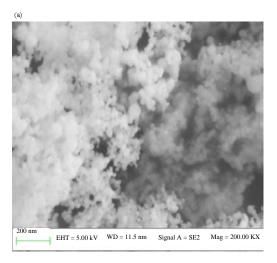
RESULTS AND DISCUSSION

Figure 1 shows the un-doped TiO₂ nanopowder of high porosity nanoparticles. The average particles size is 20 nm. Upon adding the carbon and heat treatment, the average nanoparticle size and surface area are reduced due to the presence of carbon which restrained the growing of TiO₂ particles. Typical SEM images of 2% and 4% C-doped TiO₂ samples after heat treatment at 150° are shown in Fig. 2. Also, the particles color turn into black due to the presence of carbon. The corresponding EDS spectra confirm the presence of C and small contaminations as shown in Fig. 3.

Furthermore, the XRD patterns (Fig. 1) shows that peaks intensity of anatase decreased with increasing carbon content due the carbon atoms slow down the growth of TiO₂ crystal. Scherer's equation was used to calculate the crystallite size of anatase in the catalysts. Table 1 represents the values of TiO₂ crystalline size which reveal that the crystallite size of TiO₂ decreases with the increasing content of carbon. These results have been confirmed for similar doping and it ascribed to the restrained the growing of TiO₂ crystals because of the presence of doped material (Quinones *et al.*, 2015) (Fig. 4).

Preparation and testing of a solar cell: The platinum counter electrode was prepared by depositing a 250-nm Pt film on FTO-glass substrate (fluorine-doped tin oxide, F: SnO₂) by sputtering at a rate of 34 nm/min for 6 min. The electrolyte is a solution of 0.6 m 1-butyl-3 methyleimidazolium, 0.5 m 4-tertbutyl-pyrodine, 0.03 m Iodine, 0.1 m lithium iodide, 0.1 m guanidinium-thiocyanate in a mixture of 8.5 mL acetonitrile and 1.5 mL valeronitrile.

 ${
m TiO_2}$ paste is prepared by adding 0.43 g to 3.3 mL ethanol 0.1 mL of acetyl-acetone is added to the ${
m TiO_2}$ paste as a dispersing agent and to prevent its coagulation. Two drops of surfactant (Triton X-100) is added to the solution to assist spreading of the ${
m TiO_2}$ paste on the FTO surface and the solution is stirred


Table 1: Crystallite size of TiO₂ at different amount of carbon doping

Carbon content (%)

TiO₂ crystalline size (nm)

12

10

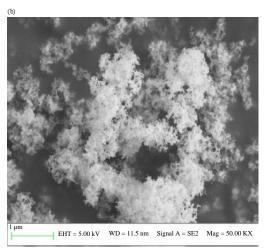


Fig. 1: SEM images of only TiO₂ nanopowder: a) High magnification and b) Low magnification

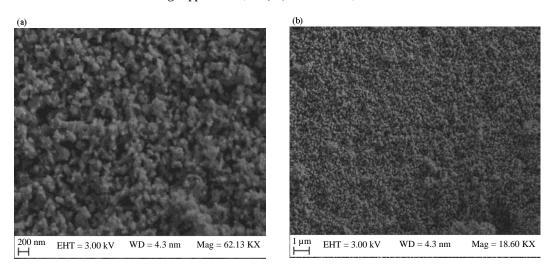


Fig. 2: SEM images C-doped TiO₂ samples after heat treatment at 150°: a) High magnification and b) Low magnification

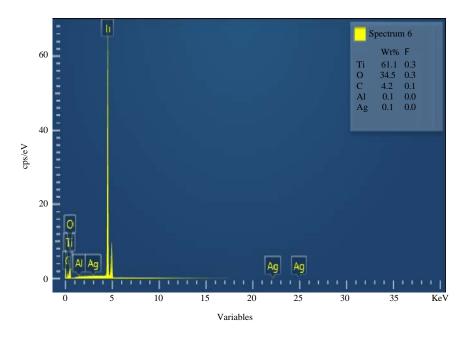


Fig. 3: EDX-SEM of C-doped TiO₂ nanopowder

for 20 min. The FTO glass is uniformly coated with a ${\rm TiO_2}$ layer using a doctor-blade method. The coating is detached from its glass substrate using scotch tape. The coating is 2 cm² in area and 3-4 μ m thick. After the electrode is dried in air for 30 min it is sintered at 500°C for 1 h with heating and cooling rates 5°C/min. Finally, the electrode is immersed in a solution of 0.045 g of ruthenium dye in 100 mL of ethyl alcohol for 12 h at room temperature.

The two electrodes are placed face-to-face with binder clips. To prevent a short circuit, a 40 μ m teflon spacer is used to separate them. Then, electrolyte is

inserted between the two electrodes by a capillary drawing action. Finally, a stainless-steel mask with a center hole 0.25 cm² area is placed on the TiO₂ electrode to expose a small area of film. Photovoltaic measurements are carried out by using a solar simulator (Xeon 300 W) under a light intensity 100 mW/cm² at room temperature. Efficiency, open voltage, short current and fill factor results for all samples tested are presented in Table 2.

As indicated, a significant increasing in the efficiency of C-doped TiO₂ samples is observed due to the doping of carbon which induced electronic states above the valence band edge. Therefore, it was considered that the

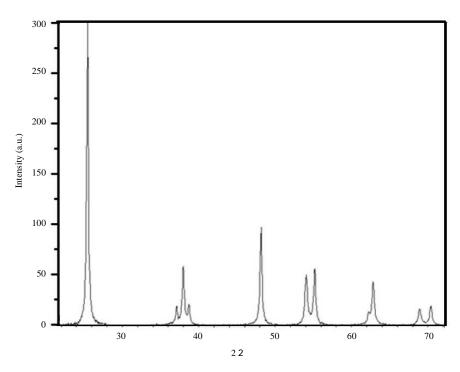


Fig. 4: XRD pattern of C-doped TiO₂

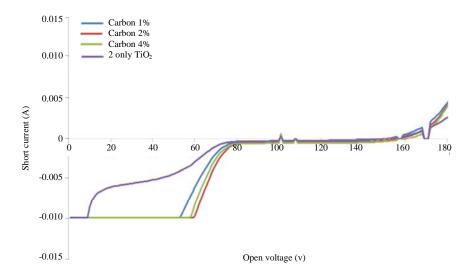


Fig. 5: Current/voltage curves for C-doped TiO₂

Table 2: DSSCs photovoltaic properties for ${\rm TiO_2}$ and C-doped ${\rm TiO_2}$ electrodes

	Short	Open	Fill	Efficiency
Sample	current (A)	voltage (V)	factor	(%)
Only TiO ₂	-0.000313	0.5	0.43015	0.26928
1% carbon-doped	-0.000352	0.5	0.541875	0.38148
TiO_2				
2% carbon-doped	-0.000545	0.5600	0.57404	0.7008
TiO_2				
4% carbon-doped	-0.000611	0.61	0.57492	0.85712
TiO_2				

doping leads to the visible light absorption of C-doped ${\rm TiO_2}$. Carbon atoms are easily to be couples with O atoms due to the small energy barrier between them in anatase phase in contrast to rutile phase (Fig. 5).

CONCLUSION

Nanostructured powders C-doped TiO_2 are prepared for dye sensitized solar cells by a chemical process.

DSSCs overall efficiency is investigated which has shown similar results as approved by previous researches in the DSSCs field. As indicated, a significant increasing in the efficiency of C-doped TiO₂ samples is observed because of the doping of carbon which induced electronic levels above the valence band edge. So, the doping leads to enhance the absorption of visible light of C-doped TiO₂. Carbon atoms are easily to be couples with O atoms due to the small energy barrier between them in anatase phase in contrast to rutile phase.

ACKNOWLEDGEMENT

We would also like to show our gratitude to the staff of Mustansiriyah University for supporting us during the course of this research.

REFERENCES

- Gong, J., J. Liang and K. Sumathy, 2012. Review on Dye-Sensitized Solar Cells (DSSCs): Fundamental concepts and novel materials. Renewable Sustainable Energy Rev., 16: 5848-5860.
- Gong, J., K. Sumathy, Q. Qiao and Z. Zhou, 2017. Review on Dye-Sensitized Solar Cells (DSSCs): Advanced techniques and research trends. Renewable Sustainable Energy Rev., 68: 234-246.
- Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo and H. Pettersson, 2010. Dye-sensitized solar cells. Chem. Rev., 110: 6595-6663.
- Kang, S.H., H.S. Kim, J.Y. Kim and Y.E. Sung, 2010. Enhanced photocurrent of nitrogen-doped ${\rm TiO_2}$ film for dye-sensitized solar cells. Mater. Chem. Phys., 124: 422-426.
- Khan, M., W. Cao, N. Chen, Z. Usman and A.M. Toufiq *et al.*, 2013. Influence of tungsten doping concentration on the electronic and optical properties of anatase TiO₂. Curr. Appl. Phys., 13: 1376-1382.
- Ko, K.H., Y.C. Lee and Y.J. Jung, 2005. Enhanced efficiency of Dye-Sensitized TiO₂ Solar Cells (DSSC) by doping of metal ions. J. Colloid Interface Sci., 283: 482-487.

- Lu, X., X. Mou, J. Wu, D. Zhang, L. Zhang and F. Huang *et al.*, 2010. Improved-performance dye-sensitized solar cells using Nb-doped TiO₂ electrodes: Efficient electron injection and transfer. Adv. Funct. Mater., 20: 509-515.
- Mao, S.S. and X. Chen, 2007. Selected nanotechnologies for renewable energy applications. Intl. J. Energy Res., 31: 619-636.
- Narayan, M.R., 2012. Review: Dye sensitized solar cells based on natural photosensitizers. Renewable Sustainable Energy Rev., 16: 208-215.
- O'Regan, B. and M. Gratzel, 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature, 353: 737-740.
- Patle, L.B. and A.L. Chaudhari, 2016. Performance of DSSC with Cu doped TiO₂ electrode prepared by dip coating technique. Intl. J. Sci. Eng. Res., 7: 1004-1009.
- Quinones, D.H., A. Rey, P.M. Alvarez, F.J. Beltran and G.L. Puma, 2015. Boron doped TiO₂ catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, O-phenylphenol, MCPA and terbuthylazine. Appl. Catal. B. Environ., 178: 74-81.
- Roose, B., S. Pathak and U. Steiner, 2015. Doping of TiO₂ for sensitized solar cells. Chem. Soc. Rev., 44: 8326-8349.
- Sakthivel, T., K.A. Kumar, R. Ramanathan, J. Senthilselvan and K. Jagannathan, 2017. Silver doped TiO₂ nano crystallites for Dye-Sensitized Solar Cell (DSSC) applications. Mater. Res. Express, 4: 126310-126310.
- Seddigi, Z.S., S.A. Ahmed, S. Sardar and S.K. Pal, 2016. Carbonate doping in TiO₂ microsphere: The key parameter influencing others for efficient dye sensitized solar cell. Sci. Rep., 6: 1-9.
- Yang, L., X. Qin, M. Gong, X. Jiang and M. Yang *et al.*, 2014. Improving surface-enhanced raman scattering properties of TiO₂ nanoparticles by metal Co doping. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc., 123: 224-229.
- Zaleska, A., 2008. Doped-TiO₂: A review. Recent Patents Eng., 2: 157-164.