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Abstract: In this research, a neural network with chaos activation function has been applied as a
Pseudo-Random Number Generator (PRNG). Chaotic Neural Network (CNN) 1s used because of its noise like
behaviour which 1s important for eryptanalyst to know about the hidden mformation as it 1s hard to predict. A
suitable adaptive architecture was adopted to generate a binary number and the result was examined for
randomness using National Institute of Standard Technology (NIST) randomness tests. Although, the
applications of CNN in cryptography have less effective than traditional implementations, this 1s because these
systems need large numbers of digital logic or even a computer system. This research will focus on applications
that can use the proposed system in an efficient way that minimize the system complexity.
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INTRODUCTION

Random number generation algorithms are very
unportant 1n many practical applications of the
cryptographic. Although, all of these algorithms are
deterministic where sequences numbers are produced
which are not statistically random but the algorithm
produces sequences pass many reasonable tests of
randomness, such numbers are referred to as
pseudorandom numbers (Stallings, 2011).

Omne of the most important applications used the PRI
15 the stream cipher where cipher text output 1s created
one bit-by-one bit or one byte-by-one byte from a stream
of plaintext input where the PRNG used instead of True
Random Number Generator (TRNG) because:

¢ The sender need only to deliver the key (or the seed)
which is exemplary 54 or 128 bit, to receiver in the
secure fashion

» It able to generate much faster than the true random
number generator

The requirement compatible needs for a sequence of
random number (Stallings, 2011; Guler and Ergun, 2010) 1s:
next random bit must be forward and backward
unpredictable where in both cases we cannot determine
the next or previous bits from knowledge for any
generated values.

Random bit stream appear random even though it is
deterministic and must pass the statistical tests of
randomness (e.g., NIST 800-22 test suite Ruklin et al.
(2001)). The same random bit stream must not be able

to be reproduced chactic systems can provide those
requirements where the main characteristics of chaotic
systems are (Chatzidakis ef af., 2014, Singla et al., 2014):

¢+  Dynamical systems that highly sensitive to initial
condition, i.e., a small differences in initial conditions
cause unpredicted output

+  Nowse-like behavior, a small differences m mitial
conditions cause unpredicted output

s Unstable intermittent circles with extensive stretches

Because of these features, chaotic frameworks
systems are broadly consolidated mto encryption
frameworks system as a random generator (Guler and
Ergun, 2010; Hsiao ef al., 2014; Behma et al., 2011;
Akhshami ef al, 2014; Mansingka et al., 2012) or block
cipher application (Lian, 2009).

On the other hand, Artificial Neural Network (ANN)
represents lghly nonlinear systems able to handle noisy
data and fault tolerance and difficult decrypting by
brute-force attack (Ertugrul, 2014), malke it more suitable
choice in cryptosystem. So, we can find several
application of neural network mn cryptosystem like:

s PRNG (Yayvk and Kutlu, 2014)

+  TImage and data encryption (Toshi et al., 2012)
»  Public key generation (JThajharia et al., 2013)
»  Block cipher (Kotlarz and Kotulski, 2007)

And many other applications can be reviewed
by Zoghabi ef af. (2013) and Bafghi ef af. (2008). The aim
of this research 1s to implement the proposed PRNG based
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chaotic neural network using MATLAB and test the
executive of the proposed generator using NIST 800-22
test suite.

Literature review: The major weakness of the most
present random number generators is linearity. In other
words, if we obtained portion of a random sequence, the
successive numbers may be calculated usmng the
associated linear function (Bafghi et al., 2008). We can
find different applications of the neural network in
cryptography by Yee and De Silva (2002), this review
gives some examples of highly nonlinear PRNGs and some
applications of different neural networks architecture in
cryptography.

Singla ef al. (2014) merged the features and qualities
of chaos and neural system are consolidated to outline a
pseudo-irregular  binary succession generator. The
statistical performance was examined against the NIST
SPRO0-22 randomness tests. The consequences and
results of exammations are promising and portray its
pertinence for cryptographic applications.

The structure of artificial neural network was used as
a key as a solution of synchromzation in cryptography
(Ertugrul, 2014). The proposed method was employed for
text, audio and image data. The results were compared
with k nearest neighbor and wavelet transforms and
showed that lis algorithm faster than the others with
100% decryption accuracy.

Yayyk and Kutlu (2014), proposed a neural
network-based pseudo-random
performance of this generator was tested for randomness
using National Institute of Standard Technology (INIST)
irregularity tests. After they built two identical ANNs, one
for non-direct encryption was demonstrated utilizing
connection building usefulness. The encoded information
was decoded with the second neural system utilizing
basic leadership usefulness recurrent neural network was
used to design a symmetric cipher able to resisting
different attacks (Arvandi et al, 2008). The weight
distribution of the hidden layers was totally depends on
the original key. The proposed system supports variable
key and block length.

In this research a PRNG using the CNN as described
by Smgla et al. (2014) was mmplemented using MATLAB,
at same time several programs was built to test the
generator performance based on the NIST SPE00-22
(Rukhin et al., 2001).

numbers. The

MATERIALS AND METHODS

Basic of artificial network: The basic element of the
neural network 1s the neuron or node which gets input

b

X,

Fig. 1: An artificial neuron

from some different units or from an outer source. Each
input has a related weight w which can be adjusted or
modified based on a learning algorithm. The unit
computes some function f of the weighted sum of its
inputs and gives an output v to other nodes as shown in
Fig. 1. The output of the neuron can calculate by:

y, :f(netl,b):f(zwlxﬁ-b): )
£ (WX+b)

Where:

X = Input vector [x, x,, ..., X

W = Weigh vector [w, w,, ..., w,]

b = Bias

y = Neuron output

f = Activation function (different types of activation
function)

net = WX

Combination of several nodes together constitutes
the Artificial Neural Networks (ANN) or simply neural
networks. Neural networks are typically organized in
layers. Layers are made up of a number of interconnected
neurons. Newral networks have many topologies, the most
useful one is the feed Forward Neural Network (FINN).

In the FNN, pattern are mtroduced to the system
through the input layer which conveys to at least one
hidden layers where the genuine process 15 done by a
system of weighted connection.

The hidden layers at that point connect to a output
layer where the appropriate response is output. As shown
in Fig. 2 where in this configuration we have one hidden
layers with different number of neurons in each layer. To
calculate the output:

O =X 2

1

O, = f(WX+B,) (3)
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Fig. 2: Feed forward ANN
Y = f(VO,+B,) (4)

Where:
X = Input vector [x,, X,, ..., X,]
O, = Output of the first layers, it’s the same input for this
example
= Output of the ludden layer [0, 0, ..., 0]

0,

Y = Output vector [V, Vas s Vial
W = nxk weight matrix
A%
f

kxm weight matrix
= Activation function

The main characteristic of the ANNs 13 ability to
learn. The learning 1s done by modifying the weights of
the connection as indicated by the mput pattern that 1t is
given. There are a wide range of sorts of learning rules
utilized by neural systems network but the most famous
one is an abbreviation for the bacleward propagation of
error as shown m Fig. 3.

So, the connection weights between network layers
will modified according to this error by:

V(i+1) = V(i)+,(Y) (5)
W(it+1) = W)+, (0) (6)

where, f; and f, represent a specific learning algorithm 1.
The general performance of ANNs can be described by
the following algorithm:

Desired
\ output
Ing Multi-layers Cutput
ﬂ" artificial neural
network

N

Fig. 3: ANN training scheme

Algorithm 1; The general performance of AINNs:
1) Initialize weight matrices
Winxk) and Vikxm)
Choose the error function, the iteration and the desired output
2) On given input, compute the actual output (forward computation)

0, = F{W>X+B,) 3
Y = £{Vx0,+B,) )

3) Compare actual output to desired output
4) Update the weights (backward adaptation)

V(i) = V(i)+,(¥) (&)
W(i+1) = WM (0) )
5) Re-compute the output according to new weights and go to step 2

Chaotic system: According to business dictionary
(Anonymous, 2019) it is complex framework that shows
affectability to beginmng conditions. In such frameworks
any vulnerability (regardless of how little) at the outset
will deliver quickly raising and aggravating error in the
predication of the framework’s future behavior. In other
words, 1t 1s unpossible to predict the future behavior of
any complex (chaotic) system”. The most mmportant
feature for such system which is very useful in
cryptosystem 1s the unpredictability and uncertainty. The
next subsections describe the behavior of selected
chaotic equations and its implementation using

MATLAB.

Mackey Glass chaotic: This system can be described
a first order differential equation as (Kostenko et al.,
2009):

X _ axt=n 7

dt 14+x(t-T)

Where:
x(t) The state
a, band t = Control parameters
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Fig. 4 Mackey Glass output; Mackey-Glass chaotic time series

Fig. 5: Lorenz attractor output

As an example, leta=02,b=0.1, =17 and x(0) =0
the MATLAB implementation of the system gives an
output shown in Fig. 4.

And we can gets a totally different outputs m small
changes either in mitial value x (0) or in one of the control
parameters.

Lorenz attractor: It 1s three first order equations given by
Viswanath (2004) and McEvoy (2009):

al ply-x)
E Y | =| XZ+TX-Y (8)
z Xy-bz

Where:
Y =[xy z] = The states
p.randb = Control parameters

Figure 5 shows an example forp=10,r=28,b=1 and
the initial values YO =[1 1 1]. This behavior will totally
different with small variation in one of the control
parameters as shown n Fig. 6.

Piecewise Linear Chaotic Map (PWLCM): The one
dimensional chaotic asymmetric tent map in the
algorithm 1s represented as Singla ef of. (2014) and L1 et al.
(2011
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(b)

Fig. 6: Lorenz attractor behavior with different values of p (Anonymous, 2014): a) P 14, b) P13; ¢) P15 and d) P27

M i) <q
q
k) = £{x(k).q) = ©)
X( +) (x( ),q) .
— g=x(k)<1
1q
Where:
x(k)= State of the map  O=x{k)<l
q = Control parameter O<q<1

Li et al (2011) shows the PWLCM behavior varies
and give an expected behavior with different values of ¢
and/or initial value. Figure 7 shows the MATLAB
umplementation for g = 0.2 and x(0) = 0.6 The PWLCM has
most astounding Lyapunov example at g = 0.5.

PRING based on chaotic neural network: Tn this study the
proposed PRNG architecture will discuss. Figure 8 shows
the general structure of the proposed system. The
network consists of 4 layers: input layer, the first, hidden
layer, the second, hidden layer and the output layer. The
function of each layer (or so called forward computation)
given by:

Input layer: The mput for this network 1s 64 bits represent
the seed (P = 64 bit) of the PRNG and the output of this
layer given by:

net, = W,P+B, (10)
Y, (0)=f(net,,Q,) a1
Y, (k+1)=F(Y,(k),Q,) k=1:n, (12)
Hidden layer 1:
net, = W, Y,+B, (13)
Y,(0) = f(net,,Q,) (14)
V() =F(Y, (k). Q) k=1 (9
Hidden layer 2:
net, = W, Y, +B, (16)
Y,(0) = f(net,,Q,) (7
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Fig. 7: PWLCM output
Y8x1) Y.{4x1) Y.02x1) s B,(8&x1), B,(4x1), B,2x1), B,(1x1): bias vectors <1
P o Qu(8x1),0Q,(4x1),042x1),Q4(1x1): Control parameters
P, 0.4<q<0.6
P, O s 0O<ny n,, n, n,<10: number of iteration 1<n<10
)O—»O,(lxl)
All these values are initialized using 64 bit key as
describe mn the next study.
Pru
Key generator and initial values (Singla et al., 2014): A
64 bit key with a 1-D chaotic cubic map used to generate
Input |  Hiddenl .| Hidden2 i  Output _ the 1mtial values of the CNN. As described in the

Fig. 8: Proposed PRNG architecture

Y, (k) =F(Y,(k),Q,) k=1:n, (18)
Output layer:
net, = W, Y, +B, (19)
0,(0) = f(net,,Q,) (20)
0, {k+)=F(0,(k),Q,) k=1:n, 2D
Normalize the output:
0, =(0, ¥10" Jmoed(256) =
0 i <127 (22)
1 it =127

Where:

o W (BxB), W,(4x8), W (2x4), W (1x2) Weight
matrices <1

following algorithm.

Algorithm 2; Generate the initial values of th CNN:
) K=K KKK
Where Ki is a 16- bit component of the key K, (64 bit)

2) Calculation of initial condition:

x(1)= E%mod(l) (23)
3) Calculate the state of the cubic map:
x(eH) = Ax(k).( - (k)7 @4
Where:
A = Control parameter (A = 2.59)

x(k)= The state (0<x(k)<1)

Backward adaptation: The only adapted values are the
control parameter matrices Q, by Singla e al. (2014):

Q, = 0.2¢Y,+0.4
Q, = 0.2¢Y,+0.4
Q, =0.2<Y,+0.4
Q, = 0.2x0, +0.4

(25)
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RESULTS AND DISCUSSION

PRNG based on CNN implementation: The proposed
generator was 1mplemented and evaluated using
MATLAB programming where the general steps given by:

Algorithm 3; The proposed generator was implemented

and evaluated using MATLAB programming:
1. Input K and calculate x form (Eq 23 and 24):

Where:
2

% (kH)=2.59x(k).(1=(k))
Where:

x{1)= X mod (1)

2. Initialize matrices based on value of x

Weight matrices:
WO (8%8), W1(4#8), W2(2%4), W3(1*2)
Bias vectors:

B0 (8*1), B1(4*1), B2(2*1), B3(1*1)
Control parameters:
Q0 (8%1), Q1(4*1), Q2(2%1), Q3(1*1)

Layer iteration: n0, nl, n2, n3
Where:

0<Wi, Bi, Qi<1 and 1<ni<10

Input seed (P = 64 bit)

Operate the neural network to calculate the Op (Forward Computation)
Update the values of ((Qp-Q.)

Repeat steps 4-6 to gain the PRN succession of wanted length

O R

Performance evaluation: In this study, the execution and
performance of the system was measured which include:
the 0/1 balance test and the NIST randomness tests.

0/1 balance test: The function named (balance test.m)
based on MATLAB used to count number of ones and
compute the average as shown in Table 1. The equality
distribution measures are discovered close to 50% shown
1n that the proposed generator fulfill the correspondence
dissemination property.

Table 1: Equality distribution of the PRNG

Sequence length Count of 1 Percentage
1000 510 51.00
10000 5175 51.75
20000 10226 51.13
50000 25420 50.84
100000 50525 50.52
200000 101153 50.58
500000 252176 50.44

Table 2: Some of NIST randomness tests
Randomness test p-values (1000) p-values (10000)

Frequency test 0.5271 0.2327
Block frequency test 0.3857 0.6882
Run test 0.4786 0.2135
Longest run of ones in a block 0.7532 0.0210
Discrete fourier transform 0.5617 0.1989

NIST randomness test: Many of the statistical test
suite proposed by NIST (Arvandi ef af, 2008)
implemented using MATLAB programming language
(NIST testm). The randomness results of the proposed
generator for first 1000 and 10000 bits are listed in
Table 2. According to Singla ef af. (2014), this generator
passes all the NIST tests for 100,000 samples. But for my
simulation results the sequence of generated bits didn’t
pass all these tests for 1000 and even 10000 bits, it failed
i at least one p-value. But most of my tests output
the p-values obtained were >0.01 which guarantees the
high arbitrariness and random of the created sequences.

CONCLUSION

After implementation of the PRNG base on CNN using
MATLAB and perform several statistical tests on the
generated binary sequence, I can summarize the mam pros
of this algorithm into: this generator uses the high
sensitivity and randomness property of chaotic functions
(Piece-wise linear chaotic map). The four-layer neural
network increase the nonlinear complexity of the
generator. The key space proposed in this simulator is
(128 bit) where:

» The 64 bit key used to imtalize the network
components
»  The 64 bit seed used as an input to the network

According to Smgla et al (2014) and my
implementation of some of the NIST randomness tests,
this generator passes most of the NIST tests. The
generated sequence pass equality distribution (numbers
equals to 0’s and 17s), i.e., uniform distributed. Tt satisfy
the two necessary suitable requirements for a sequence
of random number (Randomness).

While the main cons of the proposed generator in my
point of view: this scheme is not efficient because of the
relatively large number of iteration steps involved in its
implementation. Difficult hardware implementation. The
learning rate which has critical effect of the neural network
performance didn’t adopt in this architecture. This makes
the weight adaptation relatively unstable or oscillated.
It’s difficult to estimate the period of the sequence
because the time of number iterations in each layer
depends on the mutial conditions which 15 generated by
the key. In other words, the key and seed values effect on
the performance of the generator.
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