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Abstract: The subject of our study 1s to apply the mixed finite element for solving the Navier-Lame system with
a new boundary condition. We compare between mim-element method and the ordinary fimite element by the
other side. We calculate the displacement and its divergence simultaneously by using an extra unknown. We
propose a new method of comparison, we calculate the rate ¢ that is called a speed of convergence found by
each of the both numerical methods, all this will be done by using the linear regression. An analytical example
1s used to validate the accuracy, convergence and robustness of the present mixed fimte elements method for

elasticity.
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INTRODUCTION

Elasticity theory 1s an important component of
contimuum mechamcs and has had widely spread
applications in science and engineering. This theory is
primary for isotropic, linearly elastic materials subjected to
small all governing equations in this theory are linear
partial differential equations which means that the
principle of superposition may be applied. The sum of
individual solutions to the set of equations is also a
solution to the equations. The aim of our project 1s to
compare several numerical schemes, like the ordinary
finite element and the mixed finite element to solve the
Navier-Lame system with a new boundary condition
generalizes the well known basis conditions, especially,
the Dirichlet and the Neumarmn conditions. We computed
the displacement u,_, for each methods. We program the
two methods by using MATLAB and we needed to
program again the functions to estimate the error between
the computed solution and the reference one which 1s
whether the analytical solution. When we calculate the
solution of the system -pAu-(A+p) V V.u = f on a given
mesh, we get an approximate value u,, of the solution. Of
course, the finer will be the mesh and better will be the
solution. We want to know for a schema numerical given

how evolves the quality of the solution, according to the
step of mesh. We know the theoretical relationship:

1 Q- phe (1)

ju-u

app
Where:

B = The constant

h = The step of the mesh and
¢ = The speed of convergence

For the calculation of [lu-u,,|| 1, Q we will use the the
norm ||.]| 1, Q which will be defined later. Knowing |[u-u,,||
1, ( and the mesh step h we want to calculate ¢. For this,
the simplest way to proceed is to go to the logarithm in
Eq. 1. We get:

|)1, Q =log(p)+a.log(h) (2)

log (”u U,

Note that log (|ju-u,,| |1, €2) 1s an affine function of log
{(ly) where the slope 1s &. To find ¢ we compute {|[u-u,,||
1, Q) on different meshes, then we plot the graph of
the log of (|ju-u, 1, Q), according to the log of the
step h.

We obtam the slope straight line. In practice the
points are not exactly aligned to get the value of ¢ in fact,
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we perform a linear regression in the least squares sense
that is to say that we take for « the slope of the line that
goes closer to all points.

Since, 2002, the study Alberty et al. (2002) entitled by
MATLAB mmplementation of the finite element methed in
Elasticity, thanks to the researchers of this research
T. Alberty, Kiel,

C. Carstensen, Vienna, SA Funken, Kiel and
R Klose that have a great contribution in computing the
numerical solution that is the approximation of the exact
solution which 1s the unknown m the Navier-Lame
equation using the ordnary fimte element method
programmed by MATLAB. In fact, nobody has thought
to apply the mixed fimte element method to the equation
Navier-Lame that will be the subject of our research.
This study 15 based on the calculation of the
numerical solution using the mixed finite element method
(P1-bubble, P1) and to do this, we have to create another
new unknown by setting 1 equal to the divergence of the
displacement, getting a couple of un-known (u, )
comparing the numerical results found in the stduy cited
above mentioned 1n study (Alberty et al., 2002), we will
prove that the new method 1s more accurate and
efficient. We propose the numerical Method employs
the mixed finite element (P1-bubble, P1) to calculate the
numerical solution of the displacement and its discrete
divergence to the following 2D Navier Lame problem.

MATERIALS AND METHODS

Governing equation: Linear elasticity is the mathematical
study of how solid objects deform and become internally
stressed due to prescribed loading conditions. Linear
elasticity models materials as continua. Linear elasticity 1s
a simplification of the more general nonlinear theory of
elasticity and is a branch of continuum mechanics. The
fundamental “linearizing™ assumptions of linear elasticity
are: infinitesimal strains or “small” deformations (or
strains) and linear relationships between the components
of stress and strain. In addition linear elasticity 1s valid
only for stress states that do not produce yielding. These
assumptions are reasonable for many engneering
materials and engineering design scenarios. Linear
elasticity is therefore, used extensively in structural
analysis and engineering design, often with the aid of
fimite element analysis.

Let’s consider QR* be a bounded Lipschitz domain
with boundary condition I' which will be presented in a
new form that generalizes the Neumann and Dirichlet
boundaries conditions. Given fel.%(Q), A, Bel™ (I*%
geH' (I and as well as the positive parameters 4 and .

When solid objects are subjected to external or
mtermnal loads, they deform and led to stress. If the
deformation of the sohd is relatively small, linear
relationships between the components of stress and

strain are maintained. Consequently, linear elasticity
theory is wvalid. In practice, linear elasticity theory is
applicable to a wide range of natural and engineering
materials and thus, extensively used in structural analysis
and engineering design. The equation of Navier Lame
below 1s governed as follows.

Solid object is deformed under the action of
forces applied. A point in the solid, originally in (%, y),
after sometime it will come into (X, Y ), the vector
u = (u, uy) = (X%, Y-y) 1s called displacement. When the
movement 1s small and the solid 1s elastic, then Hook’s
law gives a relationship between the stress tensor and the
strain tensor. The o = Atr (¢) [,+2 pe is the stress tensor,
£ = % (VuHVU)") is the strain tensor, [, is the identity
matrix, P is the shear modulus (or rigidity) where, A is
Lam’s first parameter. Navier Lame equation is given by
the law of conservation moment pa = divo with a 1s the

acceleration and p 1s the density of material on the other
hand:

dive = div(tr(e)1, )+ 2pdive (3)
Then, we have:

dive = Adiv(tr(e)l, yrudiv(gradu)+
udiv{gradu)

(4

With a simple calculation, we find that:
div(tr(e)l,) = div(gradu)’ = grad{div(u)) (5)
Then we get:
pa = pAu+(h+p)srad (diva ) (6)

If the solid is in dynamic equilibrium then we
have pat+f =0, f are the extemnal forces applied to the solid.
Finally, we find out the Eq. 7:

£ =-pAu-(h + wigrad(divu) (7

We refer the researcher to Sadd (2005), Timosheenko
and Goodier (1985) for more information of the elasticity
problems. We create a new unknown | = Vu =
9, /3, 19,9, is equal to divergence of the displacement.
The Eq. 8 of Navier-Lame become:

-pAu-(A+p ) vy = finQ
Y-V =0inQ (8)

Au+B[M?+KV.uﬂJ =gonl
1
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Owr mathematical model is the Navier-Lame system
with a new boundary condition noted C, j such as A is
called Dirichlet matrix and B is Neumann matrix we assume
the following two hypothesis on matrix functions A
and B. For all xel' the matrix B(x) is an invertible
matrix. Likewise, there are two strictly positive constants

« and P such that:
auy < B'Auy < puvvu,ve H'(Q) )]

With |||.]|| i & matrix norm that will be defined below.
If |[JA]l] « |Il B ||, then C, 5 is the Neumann boundary
condition and if ||| B || « ||| A ||| then C,, g is the Dirichlet
boundary. We need functional spaces and norms:

hl(Q){u:QeEl\u,au,aue LZ(Q)} (10)
ox dy
via)-u'(a)-[v@)] (1)
M(@)=15(@)={acti(@)f a=0} (12
|v]LQ= {J;Vu :V1L1c1£2+.|.gv.de}E (13)
vlo.@ = { [v.vio F (14)
IIA|[|max|a, [i=1.2,j=12 (15)

The varnational formulation of the Navier-Lame
problem (Eq. 8) is as follows. Find (u, e V(L)>M((2) such
that:

IQ uvu Vudg+jF B'Auvdl
‘*‘_LM‘IJ’H-VdF‘*‘_I.Q()ﬁ‘M)lUV-UdQ
:_[ f.udQ+_[ B'gvdl
[+ r

IQ (Ahtu) qV.udQ-IQ(?\HrM) Wwqd =0

(16)

The weak formulation (Eq. 16) may be restated as:
Find (u, §NeV (Q)=xM(Q):

a{u,vi+b (v,y)=L{v)vue V (Q)
b(u,q)-d(w,q)=0¥,e M(Q)

(an

With the bilinear forms:

a(u,v)= _[Q uvau VudQJr_[F BlAuvdl
b{v.q)= _[g(;\'+“) qV.udQ
bI(v,q)= b(v,q)+L;.an.vdF (18)
d(w.q) = [ (A1) ¥qd2
L{v)= IQ f.de+‘|-F B'gvdl

The bilinear forms defined in Eq. 18 check all the
assumptions of theorem 3.1 by Ciarlet et af. (2003) and all
the results that are missing to show the existence and
uniqueness of the weak solution (u, P) of the system
(Eq. 17), exist in the section 4 by EL-Mekkaoui et al.
(2013).

Mixed finite element: The term mixed method was first
used in the 1960°s to describe finite element methods in
which both and displacement
approximated as primary variables.

Innumerical analysis, the mixed finite element method
also known as the hybrid finite element method is a type
of fimte element method in which extra independent
variables are introduced as nodal variables during the
discretization of a partial differential equation problem.
The extra independent variables are constrained by using
Lagrenge multipliers. To be distinguished from the mixed
finite element method usual finite element methods that do
not introduce such extra independent variables are also
called irreducible finite element methods. The mixed finite
element method 1s efficient for some problems that would
be numerically ill-posed, if discretized by using the
irreducible finite element method, one example of such
problems 1s to compute the stress and strain fields m an
almost incompressible elastic body (Zienkiewicz et al.,
2013).

To apply the method of mixed finite element
P1- bubble/P 1 for the variational problem (Eq. 17). We
need some mathematical tools, then we us the
approximation of the Standard Galerkin method for more
explication we can see in the articles and books Girault
and Raviart, (1981), Em (2005), Boffi et al., 2013, Kellogg
and Liu (1996), Yang (2002), Gatica (2014), Brezz1 and
Fortin (1991). Let’s consider a umform triangulation T, of
the rectangular domain € where h=0 is the maximum
diameter of all elements KeT, and T, consists of triangles
1in two dimensions.

stress fields are

We assume that we have a sequence of
triangulations (T yh~0 . Let 4.5, 4,5, A,* be the barycenter
coordinates with respect to a triangle K p* is the bubble
function associated with the triangle K defined by p* = 4,°
A5 A in K and equal to O else where. We define the
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discrete domain €, = U, T, /Qand €, is closed if Q is
polygon then &, = Q and T', = 3Q, = 3Q = T" with
pk,6" € 0,VK < T, andP, (K)
defined on the triangle K of the degree lower or equal to
1. The functions of V,*M, are not globally affine in all but
only affine by piece.

On the other hand, they are generally continuous.
The functions of the space are completely determined by
their values i each of the mesh vertices. For the solution
of an elasticity problem, the displacement/div-displacemet
(u/y) fmite element discretization are effective by
Bathe (1996).

Let, V, be the element displacement
interpolation space and M, be the finite element
div-displacement interpolation space (corresponding to
the spaces V (Q) and M =1} (Q) of the continuous
problem. The functions of the space V, are completely
determined by their values i each of the mesh vertices.
Moreover, the dimension of the space V; 13 N-n, with N 1s
the overall number of vertices and n, the number of
vertices on the boundaries. Then the mixed finite elements
problem 1s like. We define the approached spaces as
follow. For all (u,, 1) €V, xM;c V<M, we have:

15 the space of polynomials

fimte

Z(Ikkk +Bk k k

(19)
v, = Eekkk VEET,
Let’s see k (uy, P,)eV,xM,;
{a(uh,vh)-&-br(vh,wh): Lh(vh) (20)
b(uh,qh)-dh(‘Ph,qh) =0
For all v,€V, and g, eM,. Where:
A%, = [ wva, Ve, dK- o
LhB'lAuh v, dT,
b(v,.q,)= IK(}“+M)th'Vth (22)

b (v,,0,) =b(v,.0, )+ [ pg,nKv,dl, - (23)
d(w,.0) = [ (A)wq, R 24
L(v,)=[ fv,dk+[ B, vdl, (25)

With I', = I'md K and n, the normal on K.

The existence and uniqueness of the solution of the
mixed formulation (Eq. 20) 18 shown by using the
continuity of the bilinear forms « on V,xV,, by on V,xM,,
b on VyxM,; and d on M, xM, 1s clear by using the komn’s
inequality. On the other hand the coercivity of the bilinear
form a on V, and d on M, is hold by using theirs
coercivity on V () and M (£2), respectively, since,
VeV (). We can see the wniform mfsup condition
uniformly of the bilnear form b by Amold et al. (1984)
with respect to the mesh-size. We will prove that the
uniform inf-sup condition for the bilinear form by on
Vi xM,, it means that we have to prove the existence of a
constant >0 independent of the meshsize as the
following theorem clarifies.

Theorem 1: There exist 3=0 such as:

Vgq,e M,Ju, e V,,u, #0 (26)
b.(u,,q,) =8 |u,

This theorem guarantee the verification of the
condition inf sup of the bilinear form bI". Tt should be
noted that for all u, € V,:

br(uh’qh):b(uh>qh)+.|.r‘h“'qhnl('vhd]‘—‘h (27)

Proof: First we prove that the biliear form b verifies
(Eq. 26) of theorem (Eq. 1). Tt is assumed that the
triangulation. Ty 1s umuformly regular. Let g, € M, be fixed
M,=M and that the bilinear form b satisfies the inf _ sup
condition in VxM, so that, there exist ueV and b(u g,)>
Blulll, Qg 0.9. With B0 independent of q, but u
depends of q,. For this u we have just show that eV,
clarified:

b.(u,,q,)=b(u,q,) (28)
o, [l @ < ¢fuf @ (29

The relations (Eq. 28 and 29) are the subject of the
lemma 2 that comes afterwards. Where, ¢>0 1s
independent of ¢, and h, indeed if (Eq. 28) are checked,
50

b{u,.q,)=b(u,q,)>pfu Q=
(30)
Just take ﬁ':E otherwise, we can easily check that:
[
J.r“.an.u|d1" <c' (3D
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Then, V,cV and M,cM we obtain:

[ Ipanudr<e|w,fllu, L@ g, l0. (32

Combining (Eq. 32 and 30) Moreover, we assume that
pghniy, adopts a negative sign, then we have:

b (u,,0,)2 (B¢ )pfa, 0.2 Ju,re (33)

E also we get ¥, = (B’-¢’ ), so,

If we suppose |«
whatever the sign of gy 1. u, we conclude that:

bp(,,q, )2 min(8,,B) || v, [| L& g, 0,2 (34

Just take O = min (¥, p7), it means that we answer the
theorem (1):

Lemma 2: There exist ueVy, ¢>0 and we suppose that u
1s fixed such as:

b(u,.q,)=blu,q,)¥q, M, (35)

[, ]l 2 < ¢ ull, @ (36)

Proof: First we define the linear operator Ryel (V, V),
which verifies ¥V, €V, 3veV | g0 that, R, v = v,. This
operator is a projector of V on V,, it is well defined. Tndeed
Lax Milgram ensures the umique existence of the
variational problem (Eq. 37) Find v in V, so as:

IQV(RhV-V).VVth =0,%v, eV, (37)
If we take v, = Ryv in (Eq. 37), we obtain:

[VR, ;.= [ v, vv,dx (38)

We use the inequality of Holder, then we get:
VR, v[}.@ < [VR,v|o,2 |v,]0, @ (39)
We conclude that:

VR, v]o,@ < |v,]0, @ (40)

We find that R, is continuous in the sense of
H@nV and by the density of Hij(@ in B (@), it

T

means that 1} () ~v"" =H' (), so, we have its continuity

in the space V then, we suppose that the operator R,
checks the next properties of estumation that 1s to say,
there exist ¢>0 independent of h and v:

R ,v-v)]o.@ < ch |V, |0, (41)

The above findings are workable forall v € V . Now,
let prove that the relation (Eg. 35) inlemma (2), just
show:

[ Vua.dx=[_ Vuq,dvReT, (42)

By applymng the Green equation, we find that (Eq. 42)
is equivalent to:

Iah Vg, un,dx = J-Qh Vq, Vg, udx (43)

But Vq, 1s constant when g€ P,(K). So, just prove
that there exist u,eV,:

[Luadx = udxdke T, (44)

Indeed, by the defimition of the space V, for every
function u, of Vy, 18 determined by the relation:

3

SORACYA

X)L (x)vxe K (45)

We go to the integral on K, we have:

Jomax =3, (a) [0
Rhu(alK)J.K?Ll(x

= _[K Roudx = _[K udx

) [ W (x)dx

(46)

Mu.—

JaxHfF [ (x)ax

1

We have chosen ueV, such as u, (a, = R, u(a)
for all a* top of K who verifies (Eq. 35) of lemma (2).
Now let, prove the relation (Eq. 36) of lemma (2) we
have:

u, |, = ER u( )kJrBK K (47)

With a simple writing ul, = Ry P p° and

fuali 2 = ¥ K e Tfubf, then:

6579



J. Eng. Applied Sci., 14 (18): 6575-6586, 2019

1,1{)2

12=Q = 2 (HRhu

KeTy,
<2 ¥ {|R.u
KeT,

o2 3
KeTy

L o

||uh

SR ) e

<2|R,u

By the contimuty of the operator R;;

i@ <clulf e 2 3 5[ w5, (49
KeTy,

K

By using the relation (Eq. 35) of lemma (2) and
JKuth = J KRhudX+BKJ KuKdX we [mnd that;

_[K (u-R,u)dx

Sl (50)
Johtax

B =

Using Cauchy-Schwarz, it gives the existence of
¢,>0 independent of h and K, so as:

2
B¥ |2SCUHU'R;11HD,K (51)
The function u* is bounded in the sense of the norm
Il 1, K and by the relation (Eq. 41) we get the
relation (Eq. 36) of lemma (Eq. 2). Finally, it was also
shown that the mini-element P1-bubble/P1 satisfies the
condition inf-sup discreet.

Theorem 3: There exist strictly positive constant £ for all
1,eV, we have the:

Ay )z £, (52)

The (Eq. 52) indicates that the bilinear form a is
coercive on the space V.

Proof: we define the bilinear form a, on V,;
ag(uy.vy ) :Igth: Vv, dQ (53)

With (Eq. 53),the bilinear form can a be written in the
form afu,, v,) = a,(uy, v,,) +/:B" Au,v,dl". To show that a,
verifies this property, it suffices to show that it is definite
positive, since, the space V, is of finite dimension.

It a(u, v,) is zero, then u, is constant on each
triangle. Since, there 1s contimuty in the middle of each
edge, then u, is globally constant. As it vanisheson the
midst of the edge contaned in the boundary of Q. So, u,
is identically zero. Then we can write:

1 (0,0, )2 & [, [ G4

By using (Eq. 9), it is easy to show that there exist a
strictly positive constants v and for all u,eV, we have:

L|B'1Auh.uh|df‘ < v||uhH12’ o (55)
If B! Au, <0 with (Eq. 54 and 55), we obtain:
auyu,)z Gyl (56)
Since, £;-v=0 If not, B* Au,u,>0, we have:
a(uy,,u,)>a,(u,u)2E |u, |, (57)

Finally, we combine (Eq. 57 and 56) we result that
a(uy,u.)2 (& -v)llu, |f ¢ for all ueV,, since, ;-v>0.

Algebric problem: In this study, we mtroduce the
matrices A, By, B, D L related to the descret bilinear forms
ay, bry, by, dy, Ly, respectively in the following way and we
can express the bilinear forms according to the operations
as well defined here:

a, (u,,v,)=(Au,,v,)

brh(vhaqh) :(BFVh7qh)

by (u,.q,) :(th:qh)vqh (58)
d, (‘Uh:qh) :(waqh)
L,{v,)=Lv,

for all (u,, veV, (£)=V, () and (W, g,)eM, ()M, (Q).
With (Eq. 58),we find that the discrete formulation (Eq. 20)
can be expressed as a system of operator Eq. 59:

t —
A, tBly =L (59)
B, -Dy, =0

We find that the discrete formulation can be
expressed as a system of linear equations as well:

A Bufu | (L (60)
B D)y, | |0
With u, = (u,. u,), we can express the algebric
system (Eq. 59) as follows:

A, 0 BL ) (L,

: _ 61
0 A, BL,|u [=L, (61)
B, B, D lw]lo
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Let {@,, @, (5} be the finite element basis formed of
scalar functions ¢, I = 1 ..., n. In practice the two
compenents of (ufu’) of u, are always appreciated by
one space fimte element. Let N be the number of nodes in
the finite element mesh and n = N-n, with ns the number
of vertices on the boundries. The basis of the space V,:

By, = {q:ﬁ = ((Ppo) """ 9, = ((Pn’o) } (62)
oy = (0’ (p1)>"->¢‘2n = (0’ q)n)

Then u, =(uiu)eV, canbe gives by the relation:
U, = U0+, tui, Fulo i, (63)

For a given triangle K, the displacement field u, and

the divergence 1, are approximated by lnear
combinations of the basis functions in the form:
3
ug = Zulxcpi T, @,
1=1
3
up = Zu?(pl +u, @,
i=l (64)

3
= WO,
i=1

The linear system (Eq. 61), attached to the discrete
system (Eq. 59) 13 evaluated over each triangle K to obtain
the element of the local matrices and the global matrices
are denoted by uppercase letters and are given by direct
summing. Assuming that (B'A); = ¢ and (B'); = B for 1,
j =1, 2. The matrices elements over the domain € are
given by:

a; = IK uve Ve dK

) (65)
A= ay
KeT,
z _ .0
8 =4 +IENK Ty a“(pl(pjdrh 66)
A= D
KeTy,
aj = aiuj+IEnKCrh Oty ,dl, &7
A=Y a)
KeT,
. 99,
bu :J‘K(}“ﬂ“")a_(pde
(68)

¥
B*=Y b

KET,

o9,
b§:LJl+“T5*¢ﬂK

v (69)
B, =20
KeTy,
b}liij = bfj +IEnK cly y‘(piniJ(pjdE (7 0)
Bl% = E bl}iiJ
KeT,
bly—:iJ :bf;+>[EﬂKCF M(plnu(pjdE
W (71)
Bi=2 by
KeTy
du - -[K (}\‘+M)(p1(pldK
(72)
D=3,
KeT,
LDX :IKﬂ @.dK
I :11“X+L cop (B *Ba g9, dE
bk Cly (73)
L= Y1
KeT,
177 = [ figdk
Ir= IFY+J‘E,,KCF (812 By )gzq’n
" (74)
L= Y I'dE
KeTy

Knowmng that £ = (£, £,), g = (g, g,)'n; = 0, 1 or-1

Element matrices: In this paragraph. we calculate
elementary matrices in Eq. 65-74 in order to carry them out.
The calcula tions which have already been made in the
study (Koko, 2012) will be based. For a traingle K let
(X, ¥i)ie 1, o 5 De the vertices and the basis functions are

defined by:
¢ (%y) =1xy,9,(x,y) =x (75)

0:(%5)= ¥.0, = 2700, (76)
We need the following notations:

Xy =X XYy =Yy =L2.3 77
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And:
X‘32 X'I(K)
X =] x |=| x,® (78)
Xa1 Xz(K)
¥ v,
y® = Yio |T YZ(K) (79)
ya ) |9
The nonbubble part of the matrix A s

writeen like:

AF =(ahi,j=12,3 :ﬁ(y(mymﬁrx@x(m) (80)

With

K| %0y, x My O The bubble part of A, are A, =
2

(ay) =1 2,5 = 05 with 0, is a zero coulmn vector with 3
elements and for the diagonal:

o

Ay = 10

|K|(|V(P1 ‘2 + ‘V(Pz ‘2 Vg Ve, )

RSO

(Kyy2 (K, (K (D qr (K2
H{y, )%, 4y, Oy, )

Since, the stiffness matrix A, is symmetric then, we have:

AE Al AE 0
A, = A“t = 0“ (82)
v A Ay

The the mass matrix D 1s given by for1,7=1, 2, 3:

LA .
T'K" =]
D= (83)
B ki
12

Now, we will implement the divergence matrices, the
element matrices of nonbubble part of B, and B, are given

by:

B = %(M*M y*r (&4)

X
B = L) < (85)
6 (KD

The bubble part are given like:
B, = (W )y B, =(uh)ox (86)
B 40 4 40
Finally, we find that:

K K
B,- P |p - ¥ (87)
Bxb Byb

Element right-hand side: The nonbubble part of the
external forces 1s given by:

1 1
K K
=g | =g, (58)
1 1

where:

£ 7(fi(x1)+f1(x2)+f1(x3)) - (89
= A1=12
3
The bubble part of the right-hand side are:
9 9
Ly = 1K ol = IR ©0)

Finally, we have:

lnx lﬂy
L, =| * L= " 91)
Follxb 7|1,

Now, we will build the matrix of 11x11 corresponding
to the system:

A0 0 0 BL, ) u 12
0 a, 0 0 B;r, x| Hox L,
0 0 Al 0 B, |mw |=1x] 2
0 0 0 a, B, |u, l,,

B B, B B, -D |W¥ 0

We will classify the system Eq. 92 in such a way that
we can describe the bubble part of the unknown u as a
function of the nonbubble part of u and | in order to be
able to eliminate it thereafter:
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At 0 0 0 B, )u, 1*
k t
0 A 0 0 B. |u 1¥
0 ay, O B;F,x Uy =] Ly (93)

0
0 0 0 a, B, |u, L,
B BY¥ B, B, -D | ¥]lo

From line 3 and 4 of the system (Eq. 93), we duduces:

uhx = a’blb (lbx _Bér‘xw) (94)
u,, =a;, (1, -Bir W)

WLy

With the elimination of u,, and u,, we find the new
linear system with the matrics in:

uX
U=|u,
A
A; 0 BtnX
A=| 0 Af Bl.y (95)
BEIE B§ _BbxlB;F, xa;b _BbyB;F, ya{"l’ D
And the nght hand:
lK
F= I# (96)
-thlhxa;:lh _Bhylhya‘;l‘h
RESULTS AND DISCUSSION

Thus study 1s the fruit of the study that 13 done in the
previous sections in this stduy with its two sides:
Mathematics and programming. So, there is some
numerical results of calculations with mixed finite element
P1 bublle-P1 method and the ordinary finite element
method that is done in the study. A two-dimensional
problem with the elastic square body with a hole
schematically by Fig. 1 and 2 Q= [0, 2]=[0, 21/B(0, 1).

(E =2900 and nu = 0.25) is stretched at the top (y = 2)
with a surface load g = n where n denotes the outer
normal to 90, the rest of the boundary is traction free (12).
By reason of symmetry, since, the domain is
homogeneous, one will present the quarter of the
domain that was discretized. The Dirichlet conditions
are h=0on[l, 2] 0and O [1, 2] the forces charges are
taking as f = (0-{utA)) for all nodes with this f we
proposed the exact solution as like as u (x, y) =(xy,
xy+x).

The first objectives of the numerical experiment
is totest the stability of the divergence of the field of

Table 1: The table showing the different emrors

Variables
No. of nodes np 80 164 589
No. of element nt 130.0000 287.00000 1099
Steph 0.3000 0.2.000 0.1
e. 0.2252 0.20040 0.1699
|Ju-uz|1, €2 with MFEM 0.0342 0.02980 0.0146
[ty |©, € with MFEM 0.0567 0.03460 0.0264
lu-wlj1. © with FEM 0.4924 0.20750 0.1448

MFEM slope o = 2.082; FEM slope ¢ = 0.694

Fig. 1: Square silencing rubber glide with screw and
HDPE surface

Fig. 2: Square with hole

displacement u, numerical solution, in fact we will
caleulate the error e. = max, ; (|divu (x, y.))-¥, , for three
mesh size grows. That 13 when h~0. So, from the tabular
the error e. go to zero when h 1s too small. The example
demonstrates how the mixed fimte element P1 bubble-P1
method 1s more efficient then the ordinary one. Because,
it allows us to calculate the displacements and their
divergences simultaneously and that it gurantees the
stabilitu of these divergence on each node.

Secondly, we calculate |[u-u| 1, Q for each method then
we obtain the two slopes by using the linear
regression and Table 1 resume all the numerical
results (Fig. 1 and 2).

This example shows how to perform simple linear
regression using the errors data set. The example also
shows vou how to calculate the coefficient of
determination to evaluate the regressions (Fig. 3-8).
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20
18
16
14
12
8 g 10
g 1
§ E 0.8
0.6
0.4
0.2
0.0
10 15 20 0
FEM
Fig. 3 Deformed mesh for members with hole, case Fig. 6: Deformed mesh for members with hole, case
h=0.3 with FEM h=0.1 with MFEM
x10-4
12
1 0.06
10
9 0.05
8
8 ; 004
g 6 g
5 E 0.03
>
4
3 0.02
2
0 0.01
MFEM
Fig. 4: Deformed mesh for members with hole, case
h = 0.3 with MFEM Fig. 7. Deformed mesh formembers with hole, case h=0.1
with MFEM
x25°%

Values

Fig. 5: Deformed mesh for members with hole, case

h=0.1 with FEM _ _
Fig. 8 Deformed mesh formembers with hole, case h=0.1

Figure 9 and 10 of the linear regression for each methods. with MFEM

Below, we find Table 1 summarizes all the errors that have
been calculated and Fig. 3-8 which represent the and FEM. Figure 9 and 10 represent the linear correlation

displacements of the membrane with hole defined above  between log (|lu-uy|1, ) and log (h) with which the speed
for three steps h=0, 3,0, 2, 0, 1 for both method MFEM of convergence has been calculated.
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Log of H; errors

20 I I
26 24 22 20 18

Log of step h
Fig. 9 The slope « = 0.964 with FEM; Linear regression
relation between log of slope h and log of H,

eITOrS
1.0
8
7
" 6
g . 5
[}
£ 4
B - .3
j=2)
8 2
1
0
Ldgof st;eph l
Fig. 10: The slope ¢ = 2.082 with MFEM, Linear

regression relation between log of slope h and
log of H, errors

CONCLUSION

In this study, we have proposed a mixed finite element
P1 bubble-P1 method for solving the system of Navier
Lame. A number of reasons have been put to prefer mixed
methods over displacement or equilibrium methods in
some situations. First of all, equilibrium methods are rarely
used 1n practical computation due to the difficulty of
creating finite element spaces incorporating the necessary
constraints (the conditions of static admissability and in
particular, the equilibrium condition in the case of
elasticity). As remarked above for the elasticity problem
i which the a form 18 coercive, stability can always be
achieved by adequate enrichment of the displacement
space. There are a number of ways to enrich the space.
For our example, the unstable pair (linear displacement,
linear divergence) element may be stabilized by the
addition of a single internal displacement degree of
freedom via a bubble (Amold et ai., 1984).

It can be observed from our numerical experiments with
the calculation of the slops for each methods, we find that

the slope with P1 bubble- P1 method is more superior then
the slope with the classical methed. This numerical result
means that the numerical solution u,, obtained by the
mixed fimte element P1 bubble-P1 method converge very
speedy to the exact solution then the other solution
obtained by the classical method.

We have demonstrated that for solving the elasticity
problem in MATLAB with the mini-element P1 bubble-P1
15 much more efficient than a standard implementation
with ordinary finite element. Moreover, the advantage of
this problem with this new boundary condition 1s the
program level MATLAB. Tts enough to do a single
program MATLAB and can be reduced to ordinary
problems as Dirichlet and Neumann.

RECOMMENDATION

Further work 15 underway to derive with the
minielement for solving 3D elasticity problems.
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