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Abstract: The study is devoted to modeling of bus passenger carriers. Such companies are strictly regulated
by regulatory authorities. Consequently, the financial performance of passenger carriers can change
dramatically via. decisions of the regulator. Because of thus, the adaptation of carriers to the requirements of
the regulator is very important question. In this study, quite natural assumptions about the relationship
between the main quantitative indicators of passenger carriers were formulated. This allowed us to derive a

differential equation for the dynamics of the carriers profit under the conditions of constant external economic

environment. For this equation, asymptotic estimates of the solutions and an estimate of the adaptation time

carrier were obtained.
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INTRODUCTION

The study is devoted to research and modeling of
compares, carrying out urban and subwrban bus
transportation (such companies will be called carriers).
Immediately it should be noted that the characteristic the
passenger bus market is heavily regulated by the various
state and municipal authorities (will call them the
regulator) which 1s dictated by the need to provide an
acceptable level of security, comfort and accessibility of
public transport. Satisfaction of the existing demand in the
society for the formation of a comfortable and safe living
environment leads to the emergence of numerous
requirements for the activities of carriers and as a
consequence to an increase in their costs. On the other
hand, 1t 13 important for the regulator to create a
sustainable market for passenger transport and for this it
is necessary to take steps to support carriers and create
conditions that would help them adapt to rising costs.
Carriers costs are also significantly affected by
time-varying market factors which raises a natural and
umportant question for the regulator about how the carrier
adapts to the changing conditions of the external
economic environment. The question of the relationship
between the regulator, carriers and passengers was
studied by Alexander Vasilyevich et al. (2009). In this
study, the researchers based on the concept of a system
with shared mterests. Consider set of regulators-A
(authorities) the set of Executors-E (executers) and the set
of Consumers-C (customer). The 2% is the set of all
subsets of an arbitrary set X (Boolean of X). The set of

real mumbers is traditionally denoted by R. A system with
shared interests is a collection (A, E, C, &, v, T) where &:
Ax2F-R, v Ex2°=R, 1: Ax2%R are the functions of
interaction.

A natural example of systems with shared
interests is the system of transport services for the
population where A is a set of state and municipal
authorities regulating the provision of transport
services and allocating subsidies for their provision,
E 1s a set of transport companies, C is a set of
passengers. In systems with shared interests, the
tasks of determining the necessary amount of funding
and the strictness of regulation of the ndustry are
set. That 1s the question arises concerning the
determmation of the functions of mteraction which was
studied by Say et al. (2011), Vikharev (2013a, b) and
Vikharev (2014).

The main purpose of the research is to propose a
dynamic differential model of interaction between the
executor {carrier) and the external economic environment
(largely determined by the regulator) which can be used
to quantify the reaction (adaptation) of carriers to
changes in regulation. The proposed model allows to set
the interaction & and thus, complements the results of
(Vikharev et al., 2017) which investigated the impact on
the profitability of carriers introduced by the regulator
rules and regulations for the provision of transport
SeIvices.

For further discussion, it 18 necessary to briefly
describe the main features of the activities of
carriers. Carriers in most cases are sole traders and their
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management is carried out directly by the owners. The
number of buses used by one carrier can reach several
dozen. The carrier’s revenue is generated from the cash
proceeds from the sale of tickets to passengers. At the
same time, the carrier has practically no possibility to
influence the amount of these revenues, since, the fare,
the schedule of movement along the route, the capacity of
buses and a number of other parameters are strictly
regulated by the regulator. Therefore, the increase in the
carrier’s profitability 1s possible mainly due to the
reduction of costs which is carried out by improving
existing and mtroducing new administrative mechanisms
using more high-tech (cost-effective) methods of
maintenance and repair of rolling stock, careful planning
of its own activities and forecasting the situation in the
transportation market. At the same time, we emphasize
once again that a significant part of the carrier’s costs are
costs that are directly or indirectly caused by the actions
of the regulator. In particular, the regulator directly
formulates requirements for the safety and comfort of
passengers which imposes additional requirements on
both the rolling stock and its employees. Naturally, the
implementation of such requirements is associated with
mcreased costs. Indirect influence of the regulator is
manifested, for example, in its monetary policy which
affects the costs of the carrier through taxation and the
amount of the interest rate on loans. Tt is important to note
that the actions of the regulator can lead to a reduction in
the costs of the carrier. For example, the regulator may
take actions aimed at reducing fuel prices.

Basic notation and assumptions: The determimng factor
of the carrier’s activities is Managerial Work (MW) which
is carried out by the manager-entrepreneur (usually the
owner) for a small carrier or a team of managers for a larger
transport enterprise. All other factors (organizational
structure of the enterprise, remuneration, costs for the
purchase and mamtenance of rolling stock, etc.) can take
any value from a certain constant set and the optimal
choice of such a value depends on the amount of MW
spent on it.

The main idea of the approach proposed below 1s as
follows. Consider MW as a limited resource that is used
to Control the Operation (CO) and to Control the
Development (CD). At the same time, CO means the
management of the current activities of the enterprise and
CD means activities aimed at changing the enterprise itself
which allows 1t to adapt to the actions of the regulator (for
more information about CO and CD see for example
(Verhoglazenko, 2012). If the criterion of MW distribution
is known then the dynamics of the company’s financial
indicators will be determmed by the optimal MW
distribution between CO and CD.

Turning to the formalization of the carrier, we
consider the following notation: Q(t) is the intensity of
MW; 1(t) is the intensity of MW spent on CO, ¢(t) is the
intensity of MW spent on CD. Under the intensity of the
MW iz the number of MW spent per unit of time for
example per 1 working day. Tt is assumed that r(t) and q(t)
are non-negative, Q(t) = Q const:

vt20 r(t)+q(t) = Q (1
Where:
Q = The performance of MW
r(t)and gt) = The performance of CO and CD,

respectively

The carrier is considered as a system that can be in
different states from a certain set of states ). For any time
t,<t, the state of the system w(t)eQd is uniquely
determined by the state of the system w(t))eQ and the
values of q(t) for te(t,, t,). Let P(t) denote the carrier’s
profit intensity, i.e., carrier’s profit per unit of time and
suppose that at any moment of time t, the value of P(t)
depends on r(t) and w(t), i.e., P(t) = P(r(t), w(t)).

The activity of individual buses of one carrier is
carried out quite independently, therefore, it can be
assumed that while other conditions are preserved, the
carrier’s profit and MW costs on the CO will be
proportional to the number of buses. This gives grounds
for assuming that the intensity of profit P(t) is
proportional to the performance of the CO (1), i.e.

P(t) = Plr(t), o(0) = v{o())() @

Linearity will be violated for large and small values of
r(t) but at r (t) close to real values y(t) = const=0,
v(t) = p (0(t)) and p: =R, Also assume that the map p 1s
bounded and denote ¢ = sup,.q p(w). Let b be the carrier’s
revenue at any time t (it was noted above that the carrier
does not affect its size). The following symbols are
introduced: a = b-¢ and w(t) = c-v(t). Take into account
that y = Q-1 and then from Eq. 2 it follows that:

P(Q oft)) = rav(t) = v(t)

le., v(t) carrer’s profit, provided that at any time the
performance of CO is equal to Q. Accordingly, a(t) the
minimum possible costs of the carrier and w(t) lost profit
(the result of the “imperfection” of the carrier) provided
that at any time the performance of CO 1s equal to Q.

Let us now consider the activities of the carrier for a
period of time (t, t+At). By vitue of the above
assumptions, w(t+At) is unmquely determied by the state
w(t) and the values q(t) at Te(t, t+At). It 15 assumed that
v(t+At) 15 uniquely determined by the values v(t) and q(T)
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at Te(t, t+At). Regarding the nature of this dependence an
assumption is considered that with a small At:

w(t+at) = (1u(q (1)) w(t) 3

where, p(q) = gflatq), «»0. The naturalness of
assumption Eq. 3 is the result of the following heuristic
considerations. It is considered that under the action of
the CD, v changes discretely at times k =0, 1, ..., n and the
magnitude of the change at each step is proportional to
the missed profit w (the greater the unearned but possible
profit, the more opportunities there are for the
development of the enterprise in order to make it), ie.,

v(k+l)v(k) = Y(q(k))w(k) (4

where, y(q) 1s a dimensionless quantity defined at g>. It
15 obvious that y(g) must be continuous, positive
increasing and convex upward throughout its domain of
definition and the following conditions must be met for it:

v (0)=0andlim,_,_ v(g)=1

Such requirements on y(q) define a wide class of
functions. One of the simplest representatives of this
class is the one-parameter family of functions p(q). Note
that the parameter ¢ has a fairly simple interpretation.
whereas:

d ( )7 o 1
Iﬂlfﬁxaq wla)w qugﬂx(qﬁ-a)zw o

Then the value A = 1/¢ represents the maximum
possible return on the costs of MW for CD, ie A
characterizes the “ability” of a company to change
qualitatively at MW costs for CD. Given the choice of y
(q) = p (q) from Eq. 4 follows:

wi(k+l) = (1—u (q(k))w(k)

Tt follows that:

n

w(n) =[] (1-wta(k)}w(0)

k=i
And if q (k) = g does not depend on k then:
w(n) = (14(a))" w(0) <

Since, with sufficiently small At we can assum
(T) = q(t) at Te(t, t+At) then relation Eq. 5 makes the
assumption Eq. 3 natural. From Hq. 3 receive:

Av = v{t+At)-v(t) = -(W(t+At)-w(t)):

() “

Thus, MW costs for CD over tume (t, t+At) provide an
increase in profits by:

TAv = T(l-(l-u(q(t)))m)w(t) (7

for a period of time € (t+At, t+At+T). We emphasize that
the profit will increase by the value Eq. 7 only under the
condition that the CO performance will be equal to Q (see
above interpretation v(t)) those provided that ¥te (t+At,
t+At+T) done y(t) = Q.

On the other hand from the fact that with sufficiently
small At will y(t) = Q-q(t) = (t) for Te(t, t+At) and
assumptions (2) mply that MW costs on CO over
time (t, t+At) provide profit:

L”’”P(r)dfQ'E(T)L”“’v(r)dr ®)

Finally, suppose that the carmer distributes the MW
between the CO and the CD in order to maximize the
amount of profit Eq. 7 expected from the MW costs for the
CD and the profit Eq. 8 received from the MW costs for
the CO those. So that, for a given T=0 at any time t with a
sufficiently small Amaximize the value:

¢(q) = T(l—(l-u-(q (t)))m) w(t)+Qéq [ v(myar @)

The value of T, appearing m this expression 1s a
planning horizon, the time during which the carrier expects
to camry out its activities. Its value depends on the
stability of the external economic environment and the
predictability of the actions of the regulator. We assume
that the quantities Q, T, «, b, a are given and consider the
problem of finding the function v(t) provided that all the
assumptions made above are fulfilled.

Derivation of the differential equation: Find the largest
value of the function Eq. 9 on the interval (0, Q) for this
calculate the derivative:

d_(p: At'O‘!m'W(t)'T l bHAL
dq (q+a)m+1 QY

v(t)dt
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Elementary calculations show that the equation:

Has a smgle solution:

At+]

a,=a(an-| SENUTE a0

Tt 1s easy to see that the condition:

J.:wv(r)dr

1
Q) At (11)
o
—(0)>0 and q,(At)>0 (12)

Similarly, the condition:

1 pt+at

0 <E t v(T)dt (13)
(Q+0L)1+At o w(t) T
Is equivalent to each of the following 2 inequalities:
j—(p(Q)<0 and g, (At)<Q (14)
q

Note that the conditions Eq. 11 and 13 are consistent
because the inequality:

Q Q

(@™ o

performed on all Q, ¢=0. Thus, if the conditions Eq.
11 and 13 are met, obtain g€ (0, Q) and on segment (0, Q)
function ¢ (q) function takes its greatest value at the
point g

The obtained restrictions Eq. 11 and 13 are caused by
the fact that in the sense of the problem the values of the
variable ¢ must belong to the segment (0, Q). However, it
is easy to verify that regardless of the conditions Eq. 11
and 13 at the pomt g, function @(q) reaches its highest
value on the set (-a,+2). Indeed, g, the only critical pomt

of the function @(q) and it belongs to the set under
congideration (-z,+<) at the ends of which the relations
are performed:

. do _ . dﬂ _ l T
ql_lglna(Q) +oo and qlirgdq(q) -Q_L v (1)dt<0

Therefore, if CO performance can make sense in cases
where 1t 13 negative and when 1t 13 greater than Q, the
optimal distribution of MW performance between CO and
CD will continue to be achieved when q = ;. Choosing as
q the value of q,(At) from the relation (6) receive:

At At

w(eanwiy (o)™ o as

Togo to the limit at At~0 m equality Eq. 15 use relations:

At

limL tmtV(I)dr =v(t)and lim 1. In x
Ar—0 At Jt At—0 At
Then for q,(At) receive:

- wi(t)

6= lim g, (A1) = QT v(t)

-k

Moving to the limit in the ratio Eq. 15 and using the

above designation A = /o, receive the differential
equation:
t
dﬂzw(t) m ()
dt AQTw(t)

Introducing the notation = (AQT)" write the equation as:

M{c-w) (16)
W

w=wlIn

MATERIALS AND METHODS

Research equation: Tt is easy to check that for any
w € (0, ¢) there is a neighborhood in which the right side
of the Eq. 16 satisfies the Lipschitz condition. Therefore,
the Cauchy problem for the Eg. 16 with mitial
condition w(t,) = w; has the only solution when t 20 and
O<w,<c and this decision will be determined for all t 0.
Also note that the equation mn question 1s autonomous
(therefore, mtegrable in quadratures) and its stationary
solution is:

Me

M+1

*

6536



J. Eng. Applied Sci., 14 (17): 6533-6539, 2019

The properties of the solutions of the equation that
are important for further are formulated as the following
theorem.

Theorem 1: Let be wie(0, ¢) and w(t) solution of the
cauchy problem for Eg. 16 with initial condition

w(0) = w,. Then the following statements are true. If w;>w’
that w(t) strictly decreases for all t>0 and:

B 20 wr <w (t) <wr(waweye T (17)

If wy>w’ that w(t) strictly decreases for all t>0 and:

V20 wrew (t)zw*-(w,-w*)e" (18)
Where:
Wnlnil\/l(c_wn )
A= hl
WH-W

Evidence. If w;>w' then due to the uniqueness of the
solution of the Cauchy problem for any t; = 0 and O<w;<c
will be fair w (t)>w" at t=0. Then receive:

Therefore, w(t) strictly decreases for all t=0. Similarly,
at w,<w will be fair w (t)<w’ for t=0 and:

M(c-w(t))

wi(t

M (c-w*)

W*

w'(t) =w(t) In >w(t) In =0

Means, w(t) strictly decreases for all t=0. Let be neN
and k = 0,1 for arbitrary t=0 consider the sequence t,, , =
kt/n and integrate Eq. 16 over the interval (¢, ,; t, )

tx‘l k+l
B M{ew()
w(t)
(19
Let us show the validity of the estimate Eq. 17 in the
case wy>w . As with any x>0 fair mequality In x<x-1 then
from Eq.19 receive:

w(tn: kﬂ)éw(tn: k)+_|.:“’k+l (Mc—(MH) w(t))dt

0, k

Subtracting w' from both sides of this inequality and
and considering that w(t) decreases come to inequality:

w(tn’ " )-W*Sw(tn, . )-w*+(Mc—(M+1) w(tn, kﬂ))

(oot )t Jwe(M ) (w{t, o Jowe)

Consequently:

w (t )-W*S (20)

n, kt1

The consistent application of nequality Eq. 20 for
any neN gives:

n (21)

A

[H(M;l) tJ“ {H(M;rl)t}"

Hence, we obtain the estimate Eq. 17 after passing to
the limit at n-<. We now show the validity of the estimate
Eq. 18 in the case w,<w . It is easy to check that for any
A=0at xe (1, e") fair inequality:

In XZ%(XJ) (22)

Because inequality w,<w<w tantamount to inequality:

1<M(C—W) <
W
At
51 M (c-w, )
W

Then applying Eq. 22 to 19 receive:

,

n, k1 %
W(tn,1¢+1)2V"’(tn,k)Jr I =
tok

o (Me-(M+1) w(t))dt

Given that w(t) increases at w,<w’ from the last
inequality follows:

w¥-w (tn, kﬂ)Sw*-w(tn, k)-% (Mc-(Mﬁ-l)w(tn’ k+1))
(tn’ L )Sw*—w(tn’ . )—A(\.‘f\f"‘—\ﬁv(tmk+1 ))%
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Insofar as:

I’

e*1

(M+1) = A
Then:

w(tn: k)-w*

1+£

n

w(tn_ ol )—W*S

And arguing further as m Eq 21 we obtain the
estimate Eq. 18. Tn addition to the proved properties of the
solutions of Eq. 16, we note that:

th = (W IniM( C_W) lwt =

[IHM(G-W)- ¢ Jw;—f(w)w't

W C-W

And f(w) decreases at we(0, ¢). Then at w,>w" from
inequality w(t)>w" and that w, (t)<0 follows:
w, = f{w)w, = AR
c-W

Therefore, at w,>w the sclution of the Cauchy
problem is convex down for all t=0. Reasoning similarly,
it can be shown that with w,<w" and f{w,) <0 the solution
of the Cauchy problem is convex upward t=0. But if w >0
and f(w;)>0 then the solution of the cauchy problem 1s
convex downward te(0, t ) and bulging up when te( t , )
where, t- solution (only) equation f (w (t)y = 0. The
mntegral curves obtained numencally under different mitial
conditions are shown in Fig. 1.

w (t)
Cc

0

Fig. 1. Integral curves of Eq. 16. The dotted lines show
the estimates Eq. 17 and 18

RESULTS AND DISCUSSION

Interpretation and use of the results: From estinates
Eq. 17 and 18 receive:

_ ¢ _AQT(ba)
e M+l AQT+

Therefore, at t=e MV costs for CD are:

q(t) = El(t) =QT c\.Nw(Et)) _% _ AQAT+1
W(t)—w* _AQTH V*-V(t)
C_W(t) A V(t)

—0

And profit:

bty - 9y v(6)- 2 (1)) v

Thus, in the conditions of a constant external
economic environment, the carrier “goes” to the marginal
profit v' and reduces to zero the costs of MT for CD for
any initial value w;. Tt should be noted that the remaining
properties of the solution w(t) receive a meaningful
interpretation only in the most natural case v;<v’. If vy>v"
then this means that at the mitial moment of time the profit
exceeds the limit value and further it decreases due to the
fact that q(t)<0. Since, this situation is unrealistic and
requires the mterpretation of negative performance
values, we will further consider only those solutions of
Eq. 16 for which v,<v".

The estimate Eq. 17 fairly accurately characterizes the
speed with which the carrier’s profit tends to v'. The same
estimate allows us to estimate the time for which the
carrier’s profit becomes arbitrarily close to v'. Let be
w(t) = c-v (t) solution of the cauchy problem for Eq. 16
with the initial condition w(0) = w0 = ¢c-v0. We pose the
question of finding for any £>0 that moment in time T,>0
that:

Virtev*-v (t)<ev* (23)
From the estimate Eq. 17 it follows that:

v(t) = C'W(t)>V*-(V*'VD)e-(M+1)t

Hence, mequality Eq. 23 will be satisfied if the mequality:

(ML)

(v*v,)e <gy*
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Which in turn is tantamount to inequality t=t, if put:

*_
= L
M+1 eV

Similarly, we can consider the question of the speed
and tume of the carrier’s adaptation to a sharp change in
the external economic environment. Let be w,(t) = ¢,-v,(t)
solution of Eq. 16 at ¢ = ¢>0. If at some time t; costs
mcrease by d{0<d<c,) then it is natural to use the Cauchy
problem for the equation to describe the carrier’s
future activities Eq. 16 at ¢ = ¢, = ¢-d with utial
condition v(t;) = v,(t,)-d . Denoting the solution of this
problem through v, (t) from the estimate Eq. 17 receive:

v, (t)>v; —(v;-v1 (tU)er)e'(Nm)t

Consequently:
Vit v, v, (t)<ev,

Where v; =¢,/{M+1) and:

1 nVZ—Vl(tn)'i‘d
M+ &v,

CONCLUSION

The result obtained is important from the point of
view of the implementation of state regulation of the
activities of passenger carriers, since, it allows us to
estimate the time required for the carrier to financially
adapt to the requirements imposed by the regulator.
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