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Abstract: Tn this study, we derive a new formulation for the dynamic Teontief production model with quadratic
objective function using quantum calculus analogue. Our new formulation umifies discrete and continuous
Leontief production models. Also, the classical Leontief production model 18 obtained by choosing g = 1. In
addition, we give an introduction to quantum calculus. We formulate the primal and the dual continuous
Leontief production models with quadratic objective function as well as quantum calculus models. Furthermore,
we can get upper and lower bounds for the value of production at any production plan using the quadratic
objective functions for the primal and the dual quantum calculus models. Moreover, the duality theorem for
quantum calculus analogue are established. Finally, example is given in order to show the new results.
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INTRODUCTION

The theory of continuous-time linear programming
problems plays an important role in  modelling
various real world applications such as in operation
research, economics, finance, production planning and
transportation problem. For more details we refer to
Bellman and Dreyfus (1962), Buie and Abrham (1973), Gale
(1960), Grineld (1969), Hanson (1967), Hanson (1967),
Levinson (1966), Tyndall (1965, 1967) and Wen et al.
(2012). On the other hand, quantum calculus has been
recently used to model many applications in number
theory and physics such as conformal quantum
mechanics nuclear and high energy physics and internal
energy and specific heat. According to Adyvar and
Bohner (2006), Adyvar and Koyuncuoglu (2016),
Bohner and Chieochan (2013a, b), Bohner et al. (2007),
Bohner et al. (2013), Bohner and Mesquita (2016),
Bohner and Peterson (2001, 2003), Bohner and Wintz
(2013). In this study, we present quantum calculus
formulation for Leontief production model with quadratic
objective function.

MATERIALS AND METHODS

Quantum calculus: In this study, we briefly give some
basic concepts of the theory of quantum calculus. The
material in this section can be found in monographs
(Adyvar and Bohner, 2006; Adyvar and Koyuncuoghy,
201 6; Bohner and Mesquita, 2016; Bohner and Peterson,
2001; Kac and Chebing, 2002) in which comprehensive
details are given.

Definition 2.1: The g-derivative of a functionis f: q*-R"
15 defined as:
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The g-derivative is also called Jackson derivative.

Theorem 2.2: If f, g:q™-R" are g-differentiable then we
have the following:
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Definition 2.3: Assume £q"~R" and a, beq™ with a<b.
The definite mntegral of the function f is given by:

JEMd () =(al) ¥ (1)

[te[a,b)mq“

Definition 2.4: If £q™~R" with g>1, m, neN; and m<n,

then:
JLrwa, - Slanarie)
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Continuous-time Leontief production model: In this
study, we formulate the continuous-time Leontief
production model. First, we introduce the model with
linear objective function and then with quadratic objective
function. This model is a closed dynamic economy in
which the production of goods with capital goods 1s
limited at any time by the current accumulation of capital
goods (Gale, 1960; Hanson, 1967). Consider the following:
B: be an nxn matrix whose 1jth entries represent the
amount of the ith product consumed by the jth activity in
producing one unit of jth product. S:be an n*n matrix
whose ijth entries represent the amount of the ith product
required as capital stock in order to produce the jth
product at unit rate. The function z [0, T]-R" be a
bounded measurable function represents the activity
levels. Now, assume z(t) i3 positive then the net
production at time t is (I-B)z(t) which is also summed
positive. If there 1s an injection of external capital goods
¢(t) non negative mto the system up to time t where, ¢:[0,
T]-R* is a bounded measurable function, then, we have
the following mequality:

sz(t)<c{t)+[] (1-B)z(s)ds, te[0,1]

Assume the value of the unit goods vector at time t
18 a bounded measurable function u: [0, T]-R" then the
objective function is formulated as:

Max W(x _[ u'( z(t)dt

Since, (I-B)z represents the positive production of
goods which can be achieved by some nonnegative z iff
(I-B) has a nonnegative inverse (Gale, 1960). By E,, we
denote the space of bounded measurable function from [0,
T] into R* The Primal continuous-time Leontief
Production Model (PLPM) is formulated as:

MaxW(x) = [ a'(1)x

stA(t)x(t) <c(t )+I Mx(s)ds,te [0, T] (PLPM)
andx<E_, x(t)20,te[0,T]

where, x(t) = (I-By'Mz(t), M is an arbitrary positive
nxn matrix, A = ST-B)'M, a’(t)=v’{t)xM, acE, ccE,
and A and M are constants matrices of size m=n. The
dual continuous-time TLeontief production model is
formulated as:

T

o(t)y(t)dt
t +J‘tT My(s)ds.te[0,T] (PLPM)

t) =20, tc[0,T]

MinG (y) :I

0

s.tAy(t) Za(t)
(
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Now, if we consider the value of a umt of each
production decreases with increasing production, so that,
that the total value is a non linear function of production
then the objective function of the Leontief production
model 1s described as follows.

Where D is a symmetric semi-definite matrix. Hence,
we can formulate the Primal Quadratic Leontief Production
Model (PQLPM) as follows:

Max W (x j (a'( )+%X’Dx(t)dt
stA(Ox(t) <ot )+j Mx(s)ds, t€[0,T]
andx€E_, x(t)20,te[0,T]

(PQLPM)
where, x(t) = (I-By'Mz(t), M is an arbitrary positive nxn
matrix, A = S(I-BY'M, a’(t) =u’(t)xM , acE,, ceE, and A
and M are constants matrices of size m=n. The Dual
Quadratic Leontief Production Model (DQLPM) as
follows:

MinG(y) = Jj[-;U'(t)DU(t)m(t)y(t)]dt

>a(t)+Do(t)+[ M'y(s)ds, te[0,T]
y(t) =0, te[0,T]

s.tAy(t)
andy=E _,

(DQLPM)
RESULTS AND DISCUSSION

Quadratic Leontief models in quantum calculus: The
researchers have been formulated the linear Leontief
production models in quantum calculus. In this study, we
present quantum calculus formulation for quadratic
Leontief production model. Throughout this study, we
use J to denote the quantum calculus interval:

T=[LT] g

and by H, we denote the space of all rd-continuous
functions from J into K The Primal Quantum
Quadratic Leontief Production Model (PQQLPM) is

formulated as:
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MaxW = {

(t)Dxm]dq(t)
stA(t)x(t)<c )+I Mx(s)d, (s}, g€ J

x€E,, x(t)20,te]

(PQQLPM)
where, acE,, ¢ccE, and A and M are matrices of size mxn.
The Dual Quantum Quadratic Leontief Production Model
(DQOQLPM) is formulated as:

1

MinG(y) = fm{-2U’(t)DU(t)+c(t)y(t)qu(t)

st Ay(t)> I My(s)d,(s), q*cJ

andyeE ., y{t)=0,te]

a(t)+Du(t)

(DQQLFM)
Duality theoremes: In this study, we establish the wealk
duality theorem and strong duality theorem for quantum
quadratic Leontief production models.

Theorem 5.1: (Weak duality theorem). If x and y are
arbitrary feasible solutions of (PQQLPM) and (DQQLPM),
respectively, then W(e)<G(y).

Theorem 5.2: (Strong duality theorem). If (PQQLPM) has
an optimal solution x* then (DQQLPM) has an optimal
solution y* such that W(x*) = G(y*).

Remark 5.3: Using definition 2.4, the proof of the wealk
duality theorem and the proof strong duality theorem are
immediate from the proof of standard duality theorems
(Dorn, 1960).

Example: In this study, example 1s given in order to
illustrate our formulation.

Example 6.1: Let T=q" and T = {1, 2, 4} withq = 2. Then
we consider the primal quadratic Leontief production
model in quantum calculus:

Max W x) —LT-%XZ('E)HOOD{(‘E)}%(‘E) =

iz“ {-%XZ (2f )+1002kx(2k)}s.t 600x(t) <
k=0

logat-1

400643 x(s)d, (5) = 40063 3 2%(2%),
k=0

teJand x(t) >0, te J

where, we have used 0 and the integral given in definition
2.4. Using MATLAB command quadprog, we have:

x*(1) =

x*(4) =

On the other hand, the dual quadratic Leontief
production model in quantum calculus is:

0.67,x*(2)=1
218, W{x *):482908

MinG (y,w) = _[123[2y2 (t)+400tz(t)}dq(t) =
22:2“ [2y7(2)+400(27) (2 ) Js 1. 6002(1) >

100t—4y(t)+3_|.c((3)z s)d, (5) =100t-4y (t)+

3 i 22(2%), teTand y(t),2(t) 20,1

k=1+loggt

where, we have used agamn defimtion 2.4. Using
MATLAB command quadprog we have:

y*(1) =067, y*(2) =134, y*(4) =2.68
z*(1)=0.18,2*(2) =0.34, z*(4) = 0.65

and the optimal value 13 G(y*,
() = O(y*, 29).

z¥) = 48.2908, thus, U

CONCLUSION

In this study, a quantum calculus analogue of
non-linear dynamic production model function have been
presented. This formulation is given for primal and dual
quantum Leontief production models. Furthermore, a new
version of some fundamental duality theorems is given for
arbitrary quantum set. The new formulation provides the
exact optimal solution for the production models by
solving either the primal quadratic model or the dual
quadratic model which reduced the large computation
effort. Using the new formulation, less work has been
devoted to reach the optimal solution of Leontief
production models. Moreover, we can get upper and
lower bounds for the value of production at any
production plan using the quadratic objective functions
for the primal and the dual quantum calculus models.

REFERENCES

Adyvar, M. and H.C. Koyuncuoglu, 201 6. Floquet theory
based on new periodicity concept for hybrid systems
wmvolving g-difference equations. Appl. Math.
Comput., 273: 1208-1233.

6417



J. Eng. Applied Sci., 14 (17): 6415-6418, 2019

Adyvar, M. and M. Bohner, 2006. Spectral analysis of
g-difference equations with spectral singularities.
Math. Comput. Modell., 43: 695-703.

Bellman, RE. and SE. Dreyfus, 1962. Appled

Dynamic Programming. Princeton  University
Press, Princeton, New Jersey, USA., Pages:
363.

Bohner, M. and A Peterson, 2001. Dynamic

Equations on Time Scales: An Introduction with
Applications. Birkhauser, Boston, Massachusetts,
ISBN: 9780817642259, Pages: 358.

Bohner, M. and A.C. Petersonn, 2003. Advances in
Dynamic Equations on Time Scales. Birkhauser,
Boston, Massachusetts, ISBN:9783764342937, Pages:
348.

Bohner, M. and J.G. Mesquita, 2016. Periodic averaging
principle in quantum calculus. J. Math. Anal. Appl.,
435: 1146-1159.

Bohner, M. and N. Wintz, 2013, The Kalman filter for
linear systems on time scales. I. Math. Anal. Appl,
406: 419-436.

Bohner, M. and R. Chieochan, 2013a.
periodic higher-order
g-difference equations. J. Appl
8: 14-22.

Bohner, M. and R. Chieochan, 2013b. The
beverton-holt g-difference equation. J. Biol. Dyn., 7:
86-95.

Bohner, M., I. Heim and A. Liu, 2013. Solow models on
time scales. Cubo, 15: 13-31.

Positive
functional
Anal.,

solutions for
Funct.

Bohner, M., M. Fan and J. Zhang, 2007. Periodicity of
scalar dynamic equations and applications to
population models. . Math. Anal. Appl., 330: 1-9.

Buie, R.N. and I. Abrham, 1973. Numerical sclutions to
continuous linear programming problems. I. Oper.
Res., 17: 107-117.

Dom, W.S., 1960. Duality in quadratic programming.
Quart. Appl. Math., 18: 155-162.

Gale, D., 1960. The theory of Linear Economic Models.
McGraw-Hill Education, New York, USA., Pages: 330.

Grinold, R.C., 1969. Continuous programming part one:
Limear objectives. J. Math. Anal. Appl., 28: 32-51.

Hanson, M.A., 1967. A continuous Leontief production
model with quadratic objective function. Econ. J.
Econ. Soc., 35: 530-5336.

Kac, V.G. and P. Chebmg, 2002. Quantum Calculus.
Springer, New York.

Levinson, N., 1966. A class of continuous linear
programming problems. J. Math. Anal. Appl., 16:
73-83.

Tyndall, WF., 1965. A duality theorem for a class of
continuous linear programming problems. J. Soc. Ind.
Appl. Math., 13: 644-666.

Tyndall, W.F., 1967. An extended duality theorem for
continuous linear programming problems. STAM. T.
Appl. Math., 15: 1294-1298.

Wen, CF., Y.Y. Lur and H.C. Lai, 2012. Approximate
solutions and emror bounds for
continuous-time  linear programming problems.
Optim., 61: 163-185

a class of

6418



	6415-6418 - Copy_Page_1
	6415-6418 - Copy_Page_2
	6415-6418 - Copy_Page_3
	6415-6418 - Copy_Page_4

