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Abstract: The development of converter techmology has made the price of renewable energy-based power
plants more affordable. The increasing number of renewable energy-based power plants has a positive impact
but also has a negative impact. One of the negative impacts that occur in renewable energy-based power plants
1s the emergence of harmonics. Harmoenics m principle cannot be removed from the electric power system but
harmonics can be controlled in order to mimmize the negative impact. This research 15 developing active filter
based on Extreme Leamning Machine (ELM) concept. ELM is used as control strategies to produces signals
opposite with harmonic signals. From the simulation results shown that the active filter based on ELM can
reduce the Total Harmonic Distortion (THD) mn microgrid systems effectively.
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INTRODUCTION

Development of digital technology m electrical
systems, making significant changes to the
characteristics of electric power systems. The most
significant influence 18 indicated by the use of
converter technology. Excessive use of the converter
can change the nature of the electrical signal from a
pure sinus to a distorted sinus (Chakir et af., 2014;
Anwar et al, 2015 Hashempowr et al, 2016;
Gonzatti et al., 2017). The development of converter
technology which 1s getting cheaper, makes the use of
renewable energy-based power plants increase. Tts use
is also combined with conventional generators which
are commonly known as micro grid systems
(Abdelsalam et al., 2011; Liet al., 2016, Cao et al., 2018,
Feng et al., 2018). This is intended to improve efficiency,
reduce environmental polluton and preserve nature
(Dudurych et al, 2012). Microgrid systems have a very
positive impact on the electric power system. However,
microgrids also cause negative impacts such as
harmonics. Harmonics can be systemically detrimental if
not well controlled (Setiawan et al., 2015).

At present, many researchers have developed filter
technology to reduce the negative effects of harmonics,

both passive and active filters. The advantage of passive
filters is the relatively cheaper price but passive filter
applications only fimetion effectively at a constant load.
While for active filters (Setiawan et al., 2015) the price is
still expensive but its use can be widely applied in various
loading conditions.

In this research, developed an active filter with
employing abe-dq transformation (Setiawan et af., 2015).
The advantage of using dq frame is the signal easier for
controlling because the wvalue in dq frame is not
influenced by time. Which is very different with value in
abc frame that changing by the time.

In this study, Extreme Learning Machine (ELM)
controller is examined to replace the PI controller for
controlling the active powwer filter. Simulation is
performed in MATLAB after training ELM and it is shown
that results are acceptable and applicable in gris system.
The ELM controller can be less complicated and less
costly to implement in industrial control applications as
compared to PT controller (Setiawan et al., 2009).

MATERIALS AND METHODS

This study is employing dq frame concept to modify
signals and implement it as main controller of an active
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filter. There are two kind of an active filter was design in
this study, the first is an active filter based on PI
(Proportional Integral) controller and the second 1s an
active filter based on ELM (Extreme Learning Machine)
controller. The detail process design can be expalin in the
the flow chart as follow (Fig. 1).

Modeling of microgrid systems: Modeling of micro grid
system in this study is employing MATLAR Simulink.
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Fig. 1: Flowchart of the filter design

The micro grid model used in this simulation has three
kinds of power plant. The first 1s diesel power plant. The
second is direct solar system power plant and the third is
battery with inverter. The models for those three kinds of
power plants are explained in Fig. 2- 4.

Diesel power plant model: Diesel Power Plant (DPP)
Model are derived from Synchronous Generator (SG)
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Fig. 4: Electrical equivalent model of the battery
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Fig. 6: Model of active harmonic filter

Model with prime mover couple to diesel engine. The
complete model of DPP mncluding controller models 1s
shown in Fig. 2.

Solar systems power plant model: Solar systems power
plant generates power by utilizing solar radiation and
ambient temperature. The equivalent electrical circuit
describing the solar cells array used in the analysis is
shown in Fig. 3.

Modeling of battery storage system: The equivalent
circuit of the batterystorage system can be represented as
i Fig. 4. In this simulation, besides power plant model, a
load model and filter model are also needed. The type of

load tested in this simulation is a type of rectifier load
which 1s mtended to determine the level of harmonics on
the micro grid. This simulation refers to TEEE 519-2014 for
measuring and justifies the harmonic level. The complete
model of simulation can be seen in Fig. 5.

Modeling of harmonic filter: In general, there are two
stages in the design process of ELM-based active filters.
The first stage, an active filter is designed based on the PI
controller and then the results of the control action from
the PI-based active filter are used as training data by EL.M
to obtain a beta value that represents the relationship
between mput and output. The model of active filter
based on PI controller can be seen in Fig. 6 and 7.
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Fig. 7: Model of Proportional Tntegral (PT) controller for active harmonic filter
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Fig. 8: Model of extreme learmng machine controller for active harmomic filter
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Fig. 9: Model of extreme learning machine

Harmonic active filter based on PI controller:
Harmonic active filter based on extreme learning
machine: Structure of ELM used in this simulation has
four mputs and two outputs. The mputs are load
voltages/currents n d-q frame and APF (Active Power
Filter) voltages/currents in d-q frame. The general model
of ELM can be seen in Fig. 9.

After the traimng process s complete, the value
obtained 1s a beta value that represents the
relationship between input and output. The beta value
is then integrated with the Simulink Model as shown
mFig. 7.

RESULTS AND DISCUSSION

Experiment and data analysis: In this study, performance
verification of an active filter was carried out on three
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Fig. 10: The original voltage signals without controller

Selected signal: 5 cycles. FFT window (in red): 3 cycles
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Fig. 11: THD analysis of wvoltage signals without

controller: a) Signal and b) FFT analysis

stages testing for current and voltage parameters. The
testing 1.e., without controller with the PT controller and
with the ELM controller.

Voltage parameter simulation: The simulation carned out
at this stage utilizes a three phase voltage signal as
shown in Fig.10. Figure 10 it is known that the voltage
signal is distorted whichis characterized by an imperfect
sinus signal. To determine the level of distortion from
voltage harmomnics, the voltage signal is processed by
FFT (Fast Fourier Transformation). And the result can be
seen in the Fig. 11.

Figure 11 1t 1s kmown that the voltage THD 1s 20.41%
which 1s categorized as exceeding the standard. To reduce
the voltage THD, the PI controller based on active filter is
simulated, the results of which can be seen in Fig. 12 and
13. Then compared with the sumulation results using the
active filter based on ELM centroller, the results can be
seen in Fig. 14and 15.

Figure 12 and 13 it is known that the voltage THD
level has decreased. This is indicated by a signal that is
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Fig. 12: The original voltage signals with PI controller
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Fig. 13: THD analysis of voltage signals with PI
controller: &) Signal and b) FFT analysis
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Fig. 14: The original voltage signals with ELM controller

closer to the pure sme signal But the voltage
THD that occurs 1s still more than 5% which 18 6.56%
which means it 1s still more than the permitted
standard.

While the results shown in Fig. 14 and 15 which are
simulations of the use of ELM-based active filters are
known that the voltage THD level has a sigmificant
decrease of 1.05% which 1s in accordence with the allowed
standard.

Current parameter simulation: To test the effectiveness
of an active filters based on PI controllers and active
filters based on ELM controllers, the simulation results are
shown n Fig. 16-21.
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Fig. 19:THD analysis of current signals with PI
controller: a) Signal and b) FFT analysis
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Fig. 20: The original current signals with ELM controller

Figures 16 and 17 show the simulation results
without using a controller. From these results it is known
that the cwrent THD that exceeds the limit required
by the IEEE standard 15 equal to 21.45%. While the
simulation results from the active filter based on PIL
controller, the results are presented in Fig. 18 and 19. From
the two figures can be seen that the current THD has
decreased but the results still exceed the permitted
standard of 17.44%. While the simulation results from the
active filter based on ELM controller, the results are
presented in Fig. 20 and 21. From the two figures can be
seen that the current THD has decreased but the results
still exceed the permitted standard of 6.96%.
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Fig. 21: THD analysis of current signals with ELM
controller: a) Signal and b) FFT analysis

CONCLUSION

From the simulation results provided in section 3 can
be concluded that the proposed method, abe-dq frame
transformation and ELM controller of active harmonic
filter 18 having beter performance comparing to PI
controller of active harmonic filter. In the voltagee cases
the PT controller can reduce THD until 6.56% while NN
controller can reduce until 1.05%. Tn other hand in the
currents cases the PI controller can reduce THD current
until 17.44% while the ELM controller can reduce until
6.96%. According to these data, the proposed method is
recomended as method for reducing THD either THD
voltage or THD current.
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