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Abstract: k-means is among the most widely used classical partitioned clustering algorithms mainly because
of its quick convergence rate, adaptability nature to sparse data and simplicity of implementation. However, it
only guarantees convergence of sum of square’s objective function to a local minimum while its convergence
to global optimum appears NP-hard when mtroduced to large, noisy and non-convex structures. This in turn
maximizes its error margin. Most currently existing improvements on k-means adopt techniques which further
mtroduce additional challenges including inaccurate clustering results, high space and time complexities and
sometimes premature convergence on k-means. However, high accuracy with large datasets, robustness to
noisy data, low clustering time and low sum-of-squared error are sought-after capabilities of good clustering
algorithms. Tn this study, a hybrid Normalized Particle Swarm Optimized-Density Sensitive (NPSO-DS) k-means
algorithm 1s developed to menage the aforementioned limitations of k-means. The proposed NPSO-DS k-means
algorithm combines the global stability feature of the normalized Particle Swarm Optimization (PSO) technique
mncorporating a min-max technique and a clustering error as objective function with the stable properties of a
density-sensitive k-means to realize convergence of particles to global optimum with large and noisy real-world
datasets. Using clustering accuracy, sum-of-squared error and clustering time as performance metrics, the
experimental evaluation results obtained when the developed algorithm was tested on Educational Process
Minmng (EPM) and wine datasets mdicate that 1t 1s sigmficantly capable of consistently yielding high quality
results. Furthermore, the developed NPSO-DS k-means algorithm could identify non-convex clustering
structures and offers appreciable robustness to noisy data, thus, generalizing the application areas of the
baseline k-means algorithm.
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INTRODUCTION

Clustering is a data mining technique that involves
the grouping of a set of data objects into multiple groups
called clusters such that each object in a cluster share
very close sumilarity attributes that distinguish them from
distinct objects in the other clusters (Joshi and Kaur,
2013; Padhy et af, 2012). The attribute values of each
object are distinctive characteristics used to assess the
level of dissimilarities and similarities that uniquely
differentiate one object from the others. Clustering
algorithms have been applied to a number of scientific
problem domains meluding exploratory data analysis,
umage segmentation, recommender systems, web
handling, pattern recognition, medical imaging analysis
and mathematical programming have been developed
using Chen and Zhang (2007), Han and Kamber (2006) and

Romero and Ventura, 2007). Owing to the large volume of
data collected m databases, analysis of clusters has
recently become a major research area of interest to many
researchers. There are several applications where it is
paramount to cluster a large collection of patterns. For
example, in document retrieval, millions of instances with
high dimensionality spanning beyond 100 have to be
clustered to achieve data abstraction (Adebisi er al.,
2012). Similarly, the vagueness that characterizes the
border of region of most real-world data makes accurate
clustering very difficult. Therefore, clustering algorithms
are expected to yield high quality outputs especially with
large and noisy real world datasets.

k-means 13 among the most widely used classical
partitioned clustering algorithm because of its quick
convergence rate, adaptability nature to sparse data and
simplicity of implementation (Mahmood ef al., 2015). It 1s
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characterized by Euclidean distance, a default non-convex
objective function which often fails in an attempt to
obtain correct clusters for data points with convex
distribution (Wang ef al., 2012). Since, global consistency
of data is pertinent to accurate clustering, Fuclidean
Distance Measure (EDM) is highly undesirable especially
when clusters have such complex structure and random
distributions (Su and Chou, 2001). Consequently, the
error gap in k-means performance becomes widened as
k-means could only converge to local minima due to its
associated EDM. In addition, k-means has a strong
sensitivity to noisy data (Adigun ef af., 2014). If there 1s
a certam amount of noise associated with a dataset, the
final clustering outputs by k-means become impaired with
errors (Zhou ef al., 2004). In the same vein, potential
errors that may evolve when k-means 1s used to cluster
certain real-world critical datasets emerging from medical,
security and finance sectors can be highly expensive.
This makes k-means less suitable for clustering noisy and
large real-world datasets (Zheng et af., 2014, Vrma and
Kuma, 2014).

However, most currently existing improvements on
k-means adopt techmques mcluding genetic algorithm
(Jeong and Gautam, 2012), principal component analysis
(Sethi and Mishra, 2013), expectation maximization
(Adigun et al., 2014), MapReduce and grid (Zheng et al.,
2015) to mnprove the performance of k-means. However,
these adopted techniques often mduce some additional
performance drawbacks including longer steps before
convergence, of dimensionality
clustering results, high space and time complexities as
well as premature convergence. Most of these works were
tested only on controlled and limited dataset size.
Emphatically insensitivity to noisy data, high accuracy
obtainable from large datasets, low clustering time and
low sum-of-squared error are sought-after capabilities of
good clustering algorithms (Mathew ez al., 2013). As a
result, a modified k-means that could offer global
convergence with quality results in the face of large and
noisy real-world datasets 1s highly desirable.

Particle Swarm Optimization (PSO) is considered as a
leading and effective metaheuristic method that could
offer 1mproved precision, runtime efficiency and
robustness of results (Olugbara et al., 2015; Shinde and
Gunjal, 2012) in lieu of its robustness to noise and its
ability to efficiently find an optimal set of feature weights
in large-dimensional complex features (Ayodele et al,
2016) via. a global search. It 1s an evolutionary algorithm
that mimics the schooling and the flocking social
behaviors of fishes and birds, respectively (Kennedy and
Eberhart, 1995). Characteristically, it is fast, very quick to
unplement and understand, requires very few parameter

curse inaccurate

settings and computationally efficient. Furthermore, it has
been adopted widely to optimize the performance of other
algorithms for solving clustering problems (Chen and
Zhang, 2017; Niu and Huang, 2011; Sun et al., 2006),
scheduling problems (Weijun et al, 2004; Koay and
Srinivasan, 2003), medical imaging (Kaur and Bal, 2017;
Keshtkar and Geaieb, 2006) and anomaly detection
problems (Karami and Guerrero-Zapata, 2015;
Adigun et al, 2014) among others. In this study, a
Normalized PSO (NP3O) based on min-max technique
and an integrated clustering error as the objective
function was developed for prior pre-processing of
complex, noisy and large datasets before final clustering
by k-means. The euclidean distance measure ink-means
was replaced with a density-sensitive distance metric
to maximize the speed and improve the tendency of k-
means to attain global convergence. Finally, a hybrid
Normalized Particle Swarm Optimized-Density Sensitive
(NPSO-DS3) k-means algorithm 1s developed as a major
improvement over the baseline k-means and its existing
modifications.

The three major contributions of this study are
mentioned as follows: developed a modified Particle
Swarm Optimization (PSO) algorithm leveraging on
min-max normalization technique and termed Normalized
PSO (NPSO) that uses clustering error as the objective
function. This algorithm could be used as a
dimensionality reduction technique capable of eliminating
noise, managing the inherent curse of dimensionality
associated with most real-world datasets and evaluating
particle’s fitness for optimal selection of feature sets in
classical data miming problems domain.

Developed a hybrid algorithm from NPSO and
density-sensitive k-means. This algorithm can be easily
applied to solving any feature selection and
dimensionality reduction problem characterized by large
and noisy data with complex structures. It can also be
integrated seamlessly with any classification system to
improve its quality.

The developed hybrid Normalized Particle Swarm
Optimized-Density  Sensitive (NPSO-DS)  k-means
algorithm was evaluated quantitatively on the public
Educational Process Miming (EPM) and wine datasets
using clustering accuracy sometimes referred to as
rand index, sum of squared error and clustering time
as metrics.

Literature review: Clustering 1s a common approach for
statistical machine learning-based data analytics that has
been widely employed in a number of challenging
domaims like pattern recognition, medical imaging,
bicinformatics and social media analytics among others
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(Su and Chou, 2001). Actually, clustering is an
unsupervised systematic learmng approach that attermnpts
to group a finite set of closely related samples into one
group called a cluster. Given an untagged dataset, it is
required to put like samples m a cluster such that each
cluster possesses maximum intracluster and minimum
intercluster similarities based on some indices (Joshi and
Kaur, 2013). However, finding lhigh-dimensional clusters
in spaces is computationally expensive and may reduce
the learning performance of most learning systems.

k-means clustering algorithm: k-means is a commonly
used algorithm in the field of data mining to solve various
clustering problems. k-means is a partitioning clustering
technique that allows for the formation of clusters with
centroids. With the centroids, clusters wvary with
different iterations (Zhu, 2006). Moreover, data elements
can be re-assigned to a different cluster as the due to
randomness of the initial centroids. That is the choice of
the 1mitial centroids determines how clusters are formed.
An arbitrary number of K data elements is chosen as
initial centers, then Euclidean distance measure is used to
calculate the distances of the data elements. Data
elements are mapped to the appropriate clusters based
on their proximities to the centroids iteratively until no
more changes 1s observed. The clusters generated are
non-hierarchical in nature, requires large initial size of data
elements to proceed and with the possibility of not
converging (Twinkle ef al., 2014). It 18 sumple to implement
and modify its objective function by optimizing the
intra-cluster similarity. k-means is applicable only when
the mean 1s defined and it termimates at a local optimum
because it depends on gradient descent algorithm
(Shen, etal,2010). This limited its ability to handle noise
and outliers. The pseudocode description of k-means is
presented in algorithm 1. k-means performs well with
super-sphere data distributions using euclidean distance
but often fails given data characterized by more difficult
and rare shapes indicating the inappropriateness of
euclidean distance measure for data elements with random
distributions. In thus case, there arises a need for a more
intuitive objective function for k-means, on one hand to
realize high intra-cluster (within-cluster) similarity and low
between-cluster (inter-cluster) similarity and for
robustness to noisy, complex and large datasets with
arbitrary shaped clusters.

Algorithm 1; Conventional k-means (Arthur and
Vassilvitskii, 2007):

Input: Number of initial centroids K

Output: K clusters

Let D= {d,, d;..., d,} be set of data objects

(1)  Specify the size of K for D

(2) Randomly select k centroids in the dataset, D or select first k instances
(3) Calculate the arithmetic means of all data points to the centroids in D

(4)  Distribute each data point to its nearest cluster using the closest
Euclidean distance

(5) Re-compute new centroids by taking the mean of the observations
distributed to a cluster

(6) Repeat steps 3-5 until no more change is observed or convergence
condition is satisfied

(7)  Stop

Feature selection for clustering: Feature selection
problem is pervasive in all domains of application of
machine learning and data mining including but not
limited to product image classification, robotics and
pattern recognition, text categorization and medical
applications especially for diagnosis, prognosis and drug
discovery (Temitayo et al., 2012; Guyon, 2008). Feature
subset selection 1s a probabilistic or randomized selection
of inputs with the quest to search for near-optimal or
optimal subset of features (highly discriminating features)
based on some specified criteria. In other words, features
that are capable of discriminating samples belonging to
different classes are identified and selected. This is an
important step to realizing effective utilization of
computational resources and some cost savings. Tt often
provides increased understanding of the data, the model
and prediction performance (Temitayo et al., 2012).
Feature Selection Algorithms (FSA) seek for
discriminating features that can potentially reduce the
dimensionality size of the feature space with the no or
little effect on classification accuracy. Meaning with a set
of features, D, a subset of size d<D having high
discrimination power is chosen by the algorithm. This
process 1s often tagged as a NP-hard problem. Thus with
large input spaces, the high computational load of optimal
methods necessitates the use of heuristic techmques to
find near-optimal subsets in relatively reduced
computational times.

An exploratory study of some widely used FSA
including  variants of Sequential Forward/Backward
Selection (SFS/SBS) and relaxed branch and bound was
conducted by Kudo and Sklansky. Other approaches
include Genetic algorithms (Siedlecki and Sklansky, 1988),
floating search (Pudil et al, 1994), the Tabu search
metaheuristic (Zhang and Sun, 2002), simulated annealing
(Siedlecki and Sklansky, 1988) and Particle Swarm
Optimization (PSO) (Shinde and Gunjal, 2012). However,
P30 emerged as a leading metaheuristic techmque for
feature selection and multi-thresholding because of its
ability to effectively find an optimal class of feature
weights that improve precision, runtime efficiency and
robustness of results (Olugbara et af., 2015; Shinde and
Gunjal, 2012).

By description, PSO is a stochastic, population-based
evolutionary algorithm for devising efficient solutions to
numerous general optimization problems. PSO simulates
the shared behavior happening among the flocking birds
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Fig. 1: Flow diagram depicting the behaviour of PSO
algorithm (Oludare et ai., 2014)

and schooling fishes (Pavlik et «l, 2008). Tt is
computationally cheap due to its low memory and CPU
requirements and can easily be implemented (Bai, 2010;
Eberhart et al, 1996). Additionally, it is robust to
overfitting often encountered by most evolutionary
algorithms (Kennedy and Eberhart, 1995). The search can
be conducted using the speed of the particle. It also
depends on a populaton of mdividuals to discover
favorable regions of the search boundary. Each data
element 1s referred to as a particle and the group of all
elements is known as a swarm. The goal of PSO is to
locate the particle position that produces the best
evaluation for a given objective (fitness) function. The
flow diagram of a typical PSO algorithm is shown in
Fig. 1. PSO searches the problem space via a mampulation
of the moving point trajectories within a multidimensional
space. The movement of the particles towards an optimal
solution space is managed by the velocity and position of
each individual with known previous best performance
and that of their neighbors. All particles receive the
broadcast of all best positions known to all swarm
particles. The relationship among all particles are often
conceptualized as a graph G = {V, E} where, V depicts a
swarm particle and E as an edge that comnects the
particles together. Generally, the baseline PSO algorithm
is composed of three steps which are the generation of
particle’s positions and velocities, velocity update and
position update (Oludare ef al., 2014). First, the positions

xy and Velocities V of the swarm of particles are
randomly initialized and obtained wsing the lower and
upper bounds of the search variable values, LB and UB,
expressed as:

x,, = LB+rand(UB-LB) (1)
v, = LB+randA(tUB-LB) )

InEq. 1 and 2, depicts a uniformly distributed random
variable with a value between 0 and 1. This process of
initialization allows for random distribution of the swarm
particles across the search space. Afterwards, swarm
updates its best value at every cycle in other to find the

optimized solution after several iterations using
(Eberhart and Shi, 2001 ):
VL (D) € WV OV (D WV g
€1y (Pyy (1) = X, (1)), (p oy (8) = X, (1))
And:
X, (1) = x,, (D+V, (t+1) (4

where, V,, (t) is the velocity of the particle i in the time
point t in the search region along the dimension d. py(t) is
the best position that previously offered the particle a
high fitness value, pbest, x,{t) 1s the immediate position of
the particle i in the search region, r, and r, are generated
randomly with values within a [0, 1] range, p,(t) is
the all-tound best position offering a particle the best
fitness wvalue, ghbest, ¢, and ¢, are basically the
acceleration parameters while w is nertia weight whose
value linearly decreases from 0.9 to 0.4. Furthermore,
x(t+1) 18 the new position the particle is expected to move
to, 4 18 the current trajectory of the particle and V{(t+1) 1s
the new velocity of the particle that actually indicates the
new trajectory location of the particle (Pavlik et al., 2008).
Position and welocity updates as well as fitness
calculations are all repeated iteratively until the criterion
for convergence is fulfilled.

Density-Sensitive Distance Metric (DSDM): Given a
density-adjusted Length of Line Segment (LoL3) defined
as (Wang et al., 2012):

L(x, %) =p™" " 1 )

where, dist (x, x;) 1s the euclidean distance between x; and
x; whilst p>1 is the flexing factor, the LoL.S between two
points can be adjusted by re-tuning the flexing factor p.
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To define a global consistency of particles, let particles be
the nodes of graph G = (V, E) and peV' be a path of length
1 = :|p| connecting the nodes p, and p, in which (p,
Po)€B. 1<k<|p|. With P, denoting the set of all edges
connecting nodes x;and x,, the DSDM between two nodes
can be defined as (Wang et al., 2012):

D, = per ]Ellfl;llL(Pp P.») (6)

j ~ peR,

Such that, D; satisfies the four conditions for a metric,
that 1s:
Dy =D, Dy 20,0, <Dy +D,, for all 7

X. X, 5, and D, =0if f x =%,

With these conditions satisfied, the DSDM could measure
the geodesic proximity along the surface, possibly
producing any two arbitrary points with ligh density in
the same region connected by several shorter edges
whilst any two points of high density in a different region
are comnected by a longer edge through a low density
region. That 1s the proximity of a pair of pomnts is
measured by seeking for the least path in the graph, G.
This achieves the essence of increasing the distance
among data pomnts of disparate high density regions and
mstantaneously reducing that in the same hugh density
region (Wang et al., 2012). Hence, this distance metric can
help converge complex and unstructured data to global
optimum.

Min-max data normalization: Normalization is employed
to standardize the characteristics of a dataset using a
specified preferred criterion, so that, non-discriminating
and noisy objects is eliminated and only reliable and
discriminating data which can enhance the quality of
results are used. Normalization is sometimes used to
enhance specific feature measurement methods rather
than fix problems. Data normalizations techniques include
min-max, Z-score and decimal scaling (Patel and Metha,
2011). However, min-max technique is chosen for this
study because it 1s highly robust to noise (Wang and Bai,
2016). Min-max normalization performs a direct
modification of the original data. Suppose that min, and
max, are mimmum and maximum values for attribute A.
Min-max normalization assigns a value v of Av’ to within
[min,, min,] by computing:

Vv —min
Y= (8)
max, —min,
Where:
v’ = new value for variable v
v = The current value for variable

vand = The mimmum and maximum values in the

min, dataset, respectively

Trends of improvement and modifications of k-means
clustering algorithm: Over time, several significant
modifications to k-means are evident. Hung ef af. (2005)
improved k-means clustering algorithm with a simple
partitioning method. The argued that
expensive calculation of centroid distances is required, if

researchers

convergence will be achieved as characterized most
modifications to k-means. In their research, binary
splitting was used to split up the main dataset into blocks.
Each Block Unit (UB) with at least one pattern has its
centroid (CUB) determined via. a simple calculation in
other to generate
representative of the main dataset. The subset was then
applied to determine the final centroid of the main dataset.

dominant data subset as a

Each UB was examined on the perimeter of prospective
clusters to locate the closest final centroid for each
pattern in the UB. In this manner, time to estimate the final
converged centroids was dramatically reduced. Tt was
claimed that the algorithm showed better performance
with regard to total execution time, number of distance
calculations and the efficiency for clustering than
other k-means algorithms. However, the improved
k-means need more iterations to achieve the k centroids,
sometimes even spending the maximum number of
iterations do not achieve convergence.

Bolelli et al (2007) developed a K-SV Means
for multi-type mnterrelated datasets by combiung SVM
and k-means clustering. In a bid to eliminate the use of
labeled instances to make SVM learn, the cluster
assignments of k-means are used to train an online SVM
with an arbitrary secondary data while the SVM
affirms k-mean’s clustering decisions i the primary
clustering margin. This heterogeneous clustering process
effectively increases the clustering performance compared
to clustering using a single homogeneous data source.
The researchers reported results for euclidean and
spherical k-means averaged over ten runs. k-means
assigns based on the
distances between the document vectors while the
spherical k-means uses the cosme distances between
documents as the similarity metric. The hypothetical
results on analysis of newsgroup and citeseer real-world
datasets reveal the success of K-SVMeans to
discovering topical document clusters and providing
more optimal clustering solutions than the homogeneous
k-means algorithm. However, K-SVMeans suffers from

makes clusters euclidean

high computational effort and can give inaccurate result,
if the imtial dataset adopted for traiming SVM is very
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large. The computational demand for automated SVM

parameter settings and traming 18 also a great
challenge.
Mary et «l. (2010) used the Ant Colony

Optimization (ACO) to enhance k-means clustering
performance. The researchers improved the cluster quality
after grouping via. a two-phased process. The resultant
technique uses Huclidean distance and remains highly
responsive to the changes n the mitial value of k. This
makes it less applicable for clustering real world datasets.
Niu and Huang (2011) developed an enhanced k-means
algorithm using Kruskal algorithm and tested using gene
expression data. Firstly, a Minimum Spanning Tree (MST)
of the grouped objects was obtained by Kruskal
algorithm. Then in declining order, K-1 edges are deleted
depending on the weights. Finally, the mean values of the
objects contaming the K-connected graphs of the last two
steps represent the imtial clustering centers to cluster.
Results showed that this method is less affected by the
initial choice of K than the baseline k-means algorithm and
mncreased the stability and accuracy of clusters. However,
the developed k-means algorithm is only suitable for
small datasets. When tested on large, complex, vast and
real-time datasets, it suffers from high time complexity and
high program difficulty.

Adigun ef al. (2014) developed a hybrid k-means
Expectation Maximization (KEM) algorithm to manage the
limitations of k-means and Expectation Maximization (EM)
algorithms. k-means converges only to local mimma after
several trials while EM converges prematurely. The hybrid
KEM algorithm was developed for both initialization and
iterative stages. In the initialization stage, the weighted
average variation of k-means was employed to partition
the data into desired number of clusters. At the iterative
stage, a large number M, of uniformly distributed random
cluster point vectors for the cluster centers were selected.
Any cluster point vectors that are too close to other
cluster pomnt vectors were eliminated and M 1s reduced
accordingly, until the clusters generated equal to the
mumber of clusters wanted This was achieved by
computing the distances between all clusters and
eliminating the clusters with distances lesser than a
presumed magnitude value. Assighing each feature vector
to the closest random cluster point vector was the next
step achieved by computing and comparing the proximity
of each feature vector with other cluster point vectors.
The feature vector was assigned to that cluster point
vector with the least proximity. The hybrid algorithm
showed computationally efficient and improved accuracy
umprovements over k-means and EM when tested on real
world educational dataset. However, the hybrid KEM still
converges

to local minima because the k-means

component used Fuclidean distance metric and as such
not suitable for clustering large real world dataset. The
hybrid KEM was not developed to handle noise which
characterizes the real world datasets.

Momin and Yelmar (2012) developed a Rough
Fuzzy Possibilistic k-means (RFPKM). An overlapping of
clusters with lower and upper estimations from rough sets
handles uncertamnty, vagueness and incompleteness via.
the membership function of the fuzzy sets. Possibilistic
membership functions generate memberships which are
compatible with the class center and not coupled with
centers of other classes. RFEPKM can group categorical
data by using probability distribution of categorical
values. The evaluation results obtained showed that
RFPKM gives reduced value of objective function for
categorical data than the baseline k-means and variants
considered.  However, it produced inaccurate
classification with noisy and large datasets. Furthermore,
Jeong and Gautam et al. (2012) developed a hybrid
technique, GAKM by combining k-means and Genetic
Algorithm (GA). The objective of GAKM is to learn the
cluster centroids and optimal weights of attributes
required to partition the dataset. An optimal solution 1s
generated by GA using reproduction, crossover and
mutation operators. In GAKM, k-means output was used
to adjust the GA parameters. If fitness value is satisfied,
the 1deal sclution 1s obtamed, otherwise, the GA
parameters are recombined and re-evaluated to generate
an optimal number of clusters. The research did not
present any evaluation result. However, it was reported
that the developed GAKM performed better than k-means
on categorical data. This improvement is at the expense of
additional computational overhead. This is because, GA
used longer execution steps to obtain optimal number of
clusters. Overfitting is also a challenge of the developed
GAKM because baseline k-means was implemented using
euclidean distance.

Shanmugapriya and Punithavalli (2012) developed
an improved projected k-means algorithm using an
Effective Distance Measure (EDM) that iteratively
enhances an exhaustive objective function. In the
objective function of this developed algorithm, the EDM
makes use of local and non-local mformation to provide
improved clustering outputs in high dimensional data.
Virtual dimensions are often incorporated into the
objective function in other to maintain the optimality of
the objective function from reducing when dimensions are
excluded. It only works efficiently in principle as the
developed algorithm was not evaluated. Elbatta and
Ashour (2013) investigated issues of prototypes with
random 1mtialization and the demand for a pre-determined
number of centroids for a dataset with the baseline k-
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means. These random initializations force prototypes to
local convergence. Based on this rationale, Efficient Data
Clustering Algonithm (EDCA) was developed. This
algorithm uses defimition of density computation of
data points by k-nearest neighbor method to calculate
the initial number of clusters. Furthermore, noise and
outliers which affect k-means strongly were detected.
Their result showed slight improvement over the baseline
k-means algorithm. EDCA could detect clusters with
different non-convex shapes, different sizes and densities.
This solution suffers from high computational resources
demand especially with highly complex data.

An incremental k-means algorithm that could
assign any random data point to the first group of a given
set of data points was developed by Gupta and Ujjwal
(2013). After selecting the next random object, the
proximity between selected object and centroids of
existing clusters was determined. This distance was
matched with the boundary limit so as to be able to group
the data pont mto any of the existing group or form a new
group for it. Computational results showed that the
developed algorithm produced lesser
computation time but only with small and noise-free
dataset. It cannot handle large and noisy dataset more
efficiently because of the rigid nature of the incremental
approach used. Zhang and Fang (2013) modified the
baseline k-means by improving on the mitial convergence
point and process of determining the value of K. The
centroid was initialized and adjusted. Euclidean distance

clusters in

of the various data points from each centroid was
calculated and the square error criterion function was
determined to ascertamn, if convergence 1s reached. The
improved clustering algorithm added weight of data point
to the centroid, so as to eliminate noise level and its
impact on the data points. The resulting clustering
output of the mproved k-means showed improved
performance over some variants when evaluated. The
developed technique was tested on small-sized dataset
with controlled noise and thus not appropriate for real-
world data clustering.

Sethi and Mishra (2013) developed a linear
Principal Component Analysis (PCA)-based hybrid
k-means P3O algorithm for large dataset partiioming.
Covariance matrix i PCA was used for dimensionality
reduction and centroid locations were estimated using
euclidean distance. However, PSO was used to generate
the final ideal solution. More generally, PSO could
conduct a global search for optimal solution but
requires a large mumber of iteration. The PSO was
assisted by k-means to start with good initial centroid
position that converge faster thereby yielding a more
compact result. k-means output was treated as the mutial

input to PSO to find an ideal solution by a globalized
search to avoid high computational time complexity.
Improved solution was achieved with PCA-based
HYBRID (K-PSO) algorithm when compared with PSO
only. The hybrid system is complex, converged to local
minima given clusters with wide variation in size and
shape incurred high computational complexity and was
not evaluated with other improved k-means variants.

Furthermore, Zheng et al. (2014) used grid and
MapReduce to enhance the performance of k-means. In
therr method, the size of the data pomnt 13 used to
determine which data poimt will be allocated to a
corresponding grid in space. In each grid, the number of
data points is counted, then, M(M>K) grids composed of
all data pomnts are selected and the centroid calculated.
The value of K 15 determined by the number of centroids
in M based on the clustering output. Also, the maximum
value in M was included in K such that noisy data are
identified as data in the grid should the total data pomts
1n the grid be lesser than the threshold. In order to realize
robustness to large data, k-means was paralleled and
merged with MapReduce. Results obtained reflects a
significant mmprovement of the new method over the
baseline k-means with lesser iterations and good
stability.

Mahmood et al. (2015) argued that the current
minimum distance in traditional k-means might not always
be the correct mimmum distance because the proximity of
a centroid to each data point is calculated at every
iteration. The number of computations increases and the
algorithm becomes more complex. In the mmprovement
suggested by the researchers, a checkpoint value was
added to store the center point of the proximity of two
centroids and to deduce the cluster an object will be
assigned to. This checkpoint wvalue reduced the
possibility of error during the clustering process. The
researchers reported that the new method can offer
higher accuracy at fewer iterations and computational
resource demands than the baseline approaches.
However, shortage of available resources and time limited
the work. The proposed method was not tested on large,
complex, vast and real-world datasets.

Wer et al. (2015) clustered disparate data using
k-means via. Mutual Information-based Unsupervised
Feature Transformation (MI-UFT). The research
addressed the computational complexities of k-means for
large datasets and its sensitivity to outliers. The
researchers integrated the MI-UFT which could convert
non-numerical features into numerical features with the
baseline k-means to partition disparate data. Simulation
results indicated that the developed UFT-k-means
algorithm improved over other clustering algorithms with
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considerable number of clusters for a real-world dataset
and five real-world benchmark datasets. However, the
developed algorithm 18 parameter-dependent and
computationally highly inefficient. Summarily, most
existing improvements on k-means do not suffice its
ability to cluster noisy and large data accurately and in
highly efficient way while some others are characterized
by high computational overhead. Sequel to these,
clustering large and noisy dataset using k-means in a
computationally-efficient and accurate manner still
remains largely an open problem which 1s addressed in

thus study.
MATERIALS AND METHODS

The experimental architecture for the hybrid
NPSO-DS  k-means algorithm is presented in 3
developmental stages including the real-world dataset
acquisition, development, development of a Normalized
Particle Swarm Optimization and integration of NPSO mto
a density-sensitive k-means algorithm.

Real-world dataset acquisition: UCI Educational
Process Mimning (EPM) and wine datasets are the
most widely used real world datasets i literatures. These
datasets can be accessed and downloaded from
https: /archive.ics.uci.eduml/datasets. However, the
description of the datasets 13 presented in Table 1.
However, sample EPM and wine datasets are shown in
Fig. 2 and 3, respectively.

Table 1: Analvsis of the EPM and wine real world datasets

UCT datasets Tnstances Number of attributes  Type of attribute
EPM 230318 13 integer
Wine 178 13 Integer and real
mH
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UCT Educational Process Mining (EPM) dataset: This is
a publicly-available learning analytics dataset from
smartlab located in Ttaly. Tt was collected in 2015 and
containg the time series of student’s activities during 6
laboratory sessions of a course on digital electronics. The
student’s data per session are contained in 6 folders with
99 csv files each peculiar to each student log for that
session. The number of files mn each folder changes due
to the number of students present in each session.
However, the files contain 230318 mstances and 13 mteger
attributes each.

UCI wine dataset: The data contained are the outputs of
a chemical examinations of wines brewed in Ttaly from
three different varieties. The volumes of 13 components
in each of the wines is informed by the inspection.

The developed normalized PSQ algorithm: PSO
technique was introduced for dimensionality reduction of
the particles to be clustered by k-means. The
conventional PSO was modified such that it mcorporates
the Clustering Error measure (CE) as the objective
function. The Clustering Error (CE) can be defined as
(Wang ef al., 2012):

CE(A, Ay = 1 be 35 Confusioni, ) (9
n
Where the clustering produced, A is given by:
A={C,C,, .., C} (10)

The true clustering, A™ expressed as:
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Fig. 2: Sample data of EPM dataset
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Fig. 3: Sample data of wine dataset

AT = (O, O, L O (11)

And n being the total number of data points. Thus,
vIell, ..., ke je[l, ..., k] confusion (i, j) denotes the
number of same data points both in the true Cluster C™
and in the Cluster C; produced. However, there exists a
reordering/realigning problem. That 15 a cluster with true
clustering might be assigned to a different cluster when a
new cluster 1s formed. To counter that, the CE 1s
calculated for all possible reordering of new clusters
formed and the least of all those is taken. The best
clustering performance 1s such with the smallest CE. The
flowchart and use-case diagram of the
NPSO are presented m Fig. 4 and 5, respectively.
Given a group of data points as input, the normalized PSO

developed

is expected to retumn a limited number of discriminant
particles. In this study, (5) major steps were followed to
develop the NPSO technique for a given set of inputs
which are {x}",_; maximum iteration mumber t,., and stop
threshold e.

Step 1: Imtialization of particles via. random generation to
form an initial population where each particle depicts a
feasible cluster solution. The munber of particles is taken
as a product of dataset features and number of clusters to
be generated. The dataset represents a swarm and the
constituent elements represent the particles. Analytically,
swarm consists of a group of particles:

p=14p.p. P ... P} (12)

where, 1n 18 the features of the dataset.

Step 2: The position and velocity of the particles are
initialized, such that, at any time step t the particle p' has
two vectors, position, x'(t) and veloeity, Vit) associated.
Each candidate solution possesses a position which
represents the solution in search space and velocity for
the movement of particles for finding global optimal
solution. The particle’s position and velocity were
imtialized as 1 Eq. 1 and 2, respectively.

Step 3: Evaluation of particle’s fitness: the objective
criterion of each particle was calculated using the
clustering error as shown in Eq. 8 However, at each
generation, best fitness values were updated using
(Saini and Kaur, 2014):

Rty FOX () <X ()

P(t+]) = (13)
XD ECC (D=3 ()
Where:
f = Depicts the fitness criterion (clustering error)
Pi{t) = Represents the optimal fitness values and the
coordinates where the value was calculated

Xty = Represents the current position
t = Symbolizes the generation step
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Dataset input
X} b ©

1S 1=10 tmao

{

Generate initial particles
X} p= (PP’ P t=0

v

Initialize particle's position and velocity
Initial position, X, = LB+rand (UB-LB)
Initial velocity, V,, = LB+rand (UB-LB)/At
t=t+1

v

Evaluate particle's fitness using clustring error (CE)
CE (A, A-mn) =1/n T8 . Zk,:\.ﬁ
Confusion (i, ) A ™= {C™, C™ ,, C™" K}
A={C.C, ...C]

Confusion (i, j)=n {C™, A C}

v

Compute and update best fitness values at each generation
P (tt)={P (1) X (t+D))<f (X (D)
X, (1) f{IX(EH1)>T (X))}

v

Compute and update particle's position and velocity
New position, x,, (t+1)  x,, )TV, (t+1)
New velocity, V,, (t+ 1)« w*V, ()+V,, (t+1) <W*V,, (Oterr, (p (D-X(D)Fear, (P (DX, (D)

v

Normalize particles using min-max algorithm and
generate new particle's population
V' =v-min,/max,-min,

v

Yes

Ist<t, . ?

max *

No

Final global best particle's
population

Fig. 4: Flowchart of the developed NPSO

Step 4: Position and velocity update: the exploit for the velocity, the particle own best performance and the swarm
global optimal solution was carmried out through a best performance. Position update was achieved by
dynamic update of the particles n swarm. Equation 3 1is adding incremental change in position at each step using
utilized to update the velocity as a derivative of the imitial ~ Eq. 4.
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population

Initialize

E3
O ol
Ny
PSO
*

Clustring error function

Min-max
algorithm

Fig. 5: Use cases diagram for the NPSO

At this step in the conventional P3O, some
particles usually move out of search space boundary
which often lead to errors and in turn affects the overall
output accuracy. This is sometimes because of the
presence of noisy data in the dataset (Saini and Kaur,
2014).

In this study, the devastating effect of the noisy
data was addressed by forcing relevant particles to remain
within the boundary or reset to the boundary value
by using min-max normalization function defined in
Eq. 7.

Step 5: Steps 2-4 1s repeated until one of followmng
termination conditions 1s satisfied.

. The maximum number of iterations 1s reached
. The mean change in centroid vectors is less than
a predetermined value

After the completion of step 5, the expected output is m
data pomts {x}™,_,: m<<n.

Generate initial

osition and velocity

Compute and update
best fitness value at each
generation

3 ’ omalizS>
Generate final
population of

particles

Noise

The hybrid NPSO-Density sensitive k-means algorithm:
The hybrid NPSO-density sensitive k-means is the
product of integrating the NPSO algorithm mto a density
sensitive k-means algorithm.

The corresponding conceptual flow and use cases
diagrams are shown in Fig. 6 and 7, respectively. As
presented in algorithm 2 with DS-k-means, a
density-sensitive distance 1s incorporated into k-means to
replace the Euclidean distance. The justification for this
step 1s bome out of the fact that poor assignment of
particles to clusters is inevitable especially where the
particle has equal mimimum euclidean distance to a
number of clusters. Consequently, the centroids are
forced to converge to local minimal and as such would be
unable to typify data groups as desired (Olugbara et al.,
2015). However, employing a density-based objective
funetion 13 capable of converging to global optimum even
with arbitrary and non-convex shaped clusters (Joshi and
Kaur, 2013). Clusters can easily be formed by data points
located in dense regions while the low density regions
separate data points from different clusters.
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Input final particle's
population from PSO
{x}"m>m ke

!

Randomly chose k best position particles
of PSO to initialize k cluster centers

»|

Compute density-sensitive distance measure
for any two points x,, X;

L(x,x)=P-1
min [Pl
D;= PEP,_,kz:: 1 EPu P

Assign each particles to cluster to
which the density-sensitive distance
of its center to the point is minimum

Recalculate the cluster centroid after
all particles have been assigned

(... reached or
centroids no
longer move?

Output partition of the dataset C,, ..., C,

Fig. 6 The flow diagram of the HYBRID NPSO-DS
k-means algorithm

Generate

Density-sensitive measure

Choose k-best
positions randomly

Compute
density-sensitive distance

Algorithm 2; The hybrid NPSO-DS k-means algorithm:
Tnput: m data points {x;} ™ ; _ jcluster number k, maximum
iteration number, t,., stop threshold e
Output: Partition of the dataset Cy, ..., Cy

(1) randomly choose k data points using the K best position particles
of PSO to initialize k cluster centers

2) for any two data points x; and x; do

3 cormpute the density-sensitive distance using Eq. 5 and 6

@) assign each particle to the closest centroid calculated by the
minimum density-sensitive distance

(5) if all particles have not been assigned, then go to (4) else go to

(6) recalculate new centroid for each cluster

7 end for

8) if centroids move or the maximum number of iterations, t,.,, not

reached, then go to (2) else go to (9)
[} stop

Performance evaluation metrics: The developed
NPSO-DS k-means algorithm was evaluated using the
following metrics:

Clustering time: This represents the time requirement to
cluster all data points. This parameter depends on the
platform where the clustering 15 implemented and will
dictate if real-time functionality is available or not.

Sum-of-Squared Error (SSE): This is the sum of squares

of the departure from the average for each calculated
value of data (Peng and Xia, 2005):

SSE=3"7 (x,-%)° (14)

where, n denotes the number of particles and x represents
the actual value of the ith particle.

Final PSO particles

Fig. 7. Use cases Diagram of the HYBRID NPSO-DS k-means algorithm
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Clustering accuracy: This is the Rand Index (RI), a
measure that describes the actual percentage of
documents that are cormrectly mapped to their
corresponding clusters. It is depicted as Rand (1971):

TP+TN

B L — (15)
TP+TN+FP+FN

Clustering accuracy = x100%

where, TP, TN, FP and FN represent the true positive, true
negative, the false positive and the false negative values,
respectively. In this study, TP defines two close particles
that are correctly allocated to same cluster, a TNcorrectly
assigns two contrasting particles in different clusters.
Similarly, FP defines two contrasting particles that are
wrongly assigned to the same cluster while the FN
wrongly assigns two close particles in different
clusters.

RESULTS AND DISCUSSION

In this study, a hybrid NPSO-DS k-means
algorithm was developed and benchmarked with (Eq. 3)
variants which are k-means, PCA-based HYBRID (K-PSO)
and UFT-k-means. All the algorithms were inplemented in
MATLARB 7.7.0 (R2008b) environment on a Windows 7
Ultimate 32-bit operating system amD Athlon (tm) X2
DualCore QL-66 central processing unit with a speed of
2.2 GHZ, 2 GB RAM and 320 GB hard disk drive. We
tested for values of K = 2, 3, 4 and the outputs obtained
for Educational Process Mimng (EPM) and wine datasets

Table 2: Evaluation results of the NPSO-DS K-means using the EPM dataset

are shown in Table 2 and 3, respectively. In all the
evaluations, results of the (Eq. 3) effective metrics for
evaluating an optimal clustering algorithm which include
clustering accuracy clustering time and SSE were
recorded (Shen et al., 2010). ITn Fig. 8 and 9, the sample
visual outputs of NPSO-DS and PCA-based HYBRID
(K-PSO) k-means with EPM dataset are respectively ,
shown for K = 2, 3and 4.

Clustering accuracy (rand index): As shown in Fig. 10,
the clustering accuracies produced by the original
k-means, PCA-based HYBRID (K-PS0), UFOT-k-means
and the developed NPSO-DS k-means for 2 clusters (K =
2) using EPM dataset are 64.8, 72.1, 77.7 and 80.2%,
respectively. For 3 clusters (K = 3) using EPM dataset, the
accuracies obtained by the original k-means, PCA-based
HYBRID (K-PSOQ), UFT-k-means and the developed
NPSO-DS k-means are 67.3, 76.4, 79.1 and 83.6%,
respectively. When cluster number was mcreased to
4 (K = 4), the original k-means, PCA-based HYBRID
(K-PSO), UFT-K-means and the developed NPSOQ-DS
k-means yielded accuracies of 69.2, 83.9, 87.3 and 92.4%,
respectively on EPM dataset. However, in Fig. 11, the
clustering accuracies produced by the original k-means,
PCA-based HYBRID (K-PSQ), UFT-k-means and the
developed NPSO-DS K-means for 2 clusters (K = 2) using
wine dataset are 88.5, 89.4, 91.1 and 93.6%, respectively.
The accuracies produced by the origmal k-means,
PCA-based HYBRID (K-PSO), UFT-K-means and the

Neo. of clusters Algorithm
2 k-means
PCA-based HYBRID (K-PSO)
UFT-k-means
Developed NPSO-DS k-means
3 K-means
PCA-based HYBRID (K-PSO)
UFT-k-means
Developed NPSO-DS k-means
4 k-means
PCA-based HYBRID (K-PSO)
UFT-k-means
Developed NPSQ-DS k-means

Clustering accuracy (%)

Clustering time (sec) Sumn of squared error

64.8 83.2 0.48
721 99.4 0.39
717 87.2 0.33
80.2 85.7 0.28
67.3 78.7 0.42
76.4 91.8 0.32
79.1 8.7 0.27
83.6 80.5 0.21
69.2 74.4 0.36
83.9 87.2 0.28
87.3 80.4 0.22
92.4 74.8 0.13

Table 3: Evaluation results of NPSO-DS K-means using the wine dataset

No. of clusters Algorithm Clustering accuracy (%6) Clustering time (sec) Sum of squared error
2 k-means 88.5 16.7 0.164
PCA-based HYBRID (K-PSO) 89.4 24.3 0.160
UFT-k-means 91.1 21.7 0.156
Developed NPSO-DS k-means 93.6 17.2 0.133
3 k-means 91.3 14.3 0.148
PCA-based HYBRID (K-PSO) 92.2 23.8 0.126
UFT-k-means 92.9 19.9 0.113
Developed NPSO-DS k-means 94.8 151 0.098
4 k-means 92.8 12.1 0.119
PCA-based HYBRID (K-PSO) 94.1 21.7 0.106
UFT-k-means 95.6 18.4 0.097
Developed NPSO-DS k-means 96.3 13.9 0.082
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Fig. 8: Sample output of NPSO-DS k-means with EPM dataset: a) (K =2); b) (K =3)and ¢) (K =4)

developed NPSO-DS k-means are 91.3, 92.2, 92.9 and
94.8%, respectively, for 3 clusters (K = 3) with wine
dataset.

When cluster number was increased to 4 (K = 4), the
original k-means, PCA-based HYBRID (K-PSO),
UFT-k-means and the developed NPSO-DS k-means
vielded accuracies of 92.8, 94.1, 95.6 and 96.3% ,
respectively, on wine dataset.

Clustering time: The execution time of the NPSO-DS
k-means obtamned on EPM dataset 1s presented in Fig. 12.
The original k-means, PCA-based HYBRID (K-PSO),
UFT-k-means and the developed NPSO-DS k-means
converged approximately in 83.2, 994, 87.2 and 85.7s,
respectively with 2 clusters. Similarly, the original
k-means, PCA-based HYBRID (K-PS0O), UFT-k-means
and the developed NPSO-DS k-means converged i,

PCA-based HYBRID (K-PSO), UFT-k-means and the
developed NPSO-DS k-means converged in approxim
approximately 78.7, 91.8, 847 and R0.5, respectively,
for 3 clusters. When cluster number was mcreased
to 4 (K 4), the original k-means, PCA-based
HYBRID (K-P30), UFT-k-means and the developed
NPSO-DS  k-means converged at approximate
clustering time of 744, §7.2, 804 and 748,
respectively Furthermore, the execution times used by
the NPSO-DS k-means on wine  dataset 1s
conceptually represented m Fig. 13.

The onginal k-means, PCA-based HYBRID (K-PSO),
UFT-k-means and the developed NPSO-DS k-means
converged approximately in 16.7, 24.3, 21.7 and 17.2s,
respectively with 2 clusters. Similarly, the orginal
k-means ately 14.3, 23.8,19.9 and 15.1s, respectively, for
3 clusters.
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Fig. 9: Sample output of PCA-based HYBRID (K-P30) with EPM dataset: a) (K = 2); b) (K =3),c) (K =4)
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Fig. 10: Accuracy of the NPSO-DS k-means on EPM
dataset; Clustering accuracy on EPM dataset of
230318 instances

When cluster number was increased to 4 (K = 4), the
original lk-means, PCA-based HYBRID (K-PSO),
UFT-k-means and the developed NPSO-DS k-means
converged at approximate clustering time of 12.1,21.7, 18.4
and 13.9, respectively.

O k-means O UFT-k-means
O PCA-based O Developed
98 HYBRID (K-PSO) NPSO-DS k-means ¢ 5
g 96 94.8 o4 1R
g 94 93.6 92‘292.9 9.8 =
g 92 91.1 913
89.4
2907 885
% 88
= 86
84 + T
2 3 4

Number of clusters

Fig. 11: Accuracy of the NPSO-DS k-means on wine
dataset; Clustering accuracy on EPM dataset of
178 instances

Sum of Squared Error (SSE): The S5E mcurred by the
clustering algorithms over EPM dataset is presented
in Fig. 14. The original k-means, PCA-based HYBRID
(K-PSO), UFT-k-means and the developed NPSO-DS
k-means mcurred ermror of 0.48, 0.39, 0.33 and 0.28,

6331



J. Eng. Applied Sci., 14 (17): 6317-6333, 2019

O k-means O UFT-k-means
o PCA-based O Developed
120 7 HYBRID (K-PSO) NPSO-DS k-means
B 99.4
2 100 A 91.8
Z 87.2 84 87.2
83.2 85.7 -
2 80+ 787 fo.5 744 T4 8
2 o
j=)
2 404
20+
0

S E

3 4

Number of clusters

Fig. 12: Execution time of the NPSO-DS k-means on EPM
dataset; Clustering accuracy on EPM dataset of

230318 instances
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Fig. 13: Execution time of the NPSO-DS k-means on
Wine dataset, Clustering accuracy on HPM
dataset of 178 mstances
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Fig. 14: Error obtained from the NPSO-DS k-means on
EPM dataset; Clustering accuracy on HPM
dataset of 230318 instances

respectively with 2 clusters. Similarly, the original
k-means, PCA-based HYBRID (K-PSO), UFT-k-means and
the developed NPSO-DS k-means yielded error of 0.42,
0.32, 0.27 and 0.21, respectively, for 3 clusters. When the
cluster number was increased to 4 (K = 4), the original
k-means, PCA-based HYBRID (K-PSO), UFT-k-means and
the developed NPSO-DS k-means had errors of 0.36, 0.28,
0.22 and 0.13, respectively. In Fig. 15, the errors obtained
by NPSO-DS k-means and benchmark clustering
algorithms over wine dataset are presented.

The ongimal k-means, PCA-based HYBRID (K-PS0),
UFT-k-means and the developed NPSO-DS k-means

O k-means O UFT-k-means
O PCA-based O Developed
5 HYBRID (K-PSO) NPSO-DS k-means
5
0.2070. 164
B ols 0156133 0126 0.119
£ 010 08 106" o5
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2 0.05 |_||_||_|
© 0.00
g
n Number of clusters

Fig. 15: SSE obtamned from the algorithms on wine
dataset; Clustering accuracy on EPM dataset of
178 instances

incurred error of 0.164, 0.16, 0.156 and 0.133, respectively
with 2 clusters. In addition, the original k-means,
PCA-based HYBRID (K-PS0Q), UFT-k-means and the
developed NPSO-DS k-means yielded error of 0.148, 0.126,
0.113 and 0.098, respectively, for 3 clusters. However,
when the cluster number was increased to 4 (K = 4), the
original k-means, PCA-based HYBRID (K-PSO), UFT-k-
means and the developed NPSO-DS k-means had errors of
0.119, 0.106, 0.097 and 0.082, respectively.

The developed NPSO-DS k-mean algorithm has a
dominant performance with both the EPM and the
wine datasets compared with the baseline k-means,
UFT-k-means and PCA-based HYBRID (K-PSO)
clustering algorithms using clustering accuracy and SSE.
The least accuracies produced by k-means in all the
evaluations conducted using EPM dataset indicated
that k-means 1s not a good candidate for clustering
large real world dataset such as EPM which contains
230318 instances. However, as cluster number increases,
k-means shows more umprovements m accuracy but
nevertheless, its accuracy was the least among other
algorithms considered. With cluster numbers (2-4),
accuracies (64.8, 67.3 and 69.2%) were obtamed,
respectively, for k-means. This reveals that the higher the
number of clusters, the better the clustering accuracy of
k-means algorithm. This was also a general behaviour of
other algorithms evaluated.

k-means results obtamned in this study corroborates
with the assertion of Zheng et af. (2014) that k-means can
fail with large and noisy dataset because it only
converges to local minima and suffers the limitation
imposed on it by Euclidean distance similarity metric by
default. However, while tested with wine dataset which
containg only 178 instances, k-means drastically improved
as accuracies (88.5, 91.3 and 92.8%) were obtained for
cluster mumbers (2, 3 and 4), respectively. This implies
that k-means s a very good algorithm for small
datasets as stated by Twinkle et al (2014). Tt is
worthy of mentioning that k-means is the most efficient
algorithm as 1t produces the least clustering time
in all the evaluations conducted on EPM and wine
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datasets, followed by the developed NPSO-DS k-means,
UFT-k-means and the PCA-based HYBRID (K-PSO)
algorithm m that order. In all the
conducted on wine and EPM datasets, the developed
NPSO-DS k-means algorithm is the most accurate  and
with the least SSE followed by UFT-k-means, PCA-
based HYBRID (K-PSO) and the original k-means m that
order. This challenging performance by the developed
NPSO-DS k-means is associated with optimal data
normalization and relevant particle selection procedures
as well as a globally converging density-sensitive
distance measure mcorporated into the developed NPSO-
DS k-means algorithm. Oludare et al. (201 4) and Temitayo
et al. (2012) stated that improvements obtained for feature
selection and data normalization procedures mvariably
mnpacts on the performance of data mimng algorithms
which justifies the results obtained for the NPSO-DS k-
means algorithm.

evaluations

CONCLUSION

This study presents a NPSO-DS le-means with
relevant optimal particle selection and density-sensitive
distance measure. The results reveal that the
developed NPSO-DS k-means method has a more
dommant performance over the conventional k-means,
UFT-k-means and PCA-based HYBRID (K-PSO)
algorithms especially, whilst considering clustering
accuracy. This challenging performance by the developed
NPSO-DS k-means 1s bome out of relevant particle
selection procedure as well as the globally converging
density-sensitive distance measure incorporated into the
developed NPSO-DS k-means algorithm. Oludare et al.
(2014) and Temitayo et al (2012) stated that
umprovements obtained for efficient and effective feature
selection  procedures mvariably enhance  the
effectiveness of clustening algorithms which justifies the
results obtained for the NPSO-DS k-means algorithm. The
least accuracies produced by k-means in all the
evaluations corroborated with the assertion of Zheng et
al. (2014) that k-means is not a good candidate for
clustering large real world datasets. The developed
NPSO-DS k-means can identify non-convex clustering
structures, thus, generalizing the application area of the
conventional k-means algorithm. The hypothetical results
on EPM world dataset which contains 230318 instances
validate the effectiveness of the developed algorithm.
The developed NPSO-DS k-means algorithm can be
applied in situations where the distributions of data
points are mnot compact super-spheres. However, the
near-optimal  clustering time produced by the
developed NPSO-DS k-means can be further
investigated for possible improvements. The developed

NPSO-DS k-means clustering performs best in all the
evaluation conducted on EPM and wine datasets using
clustering accuracy and SSE as evaluation metrics.
However, it yielded higher clustering time than the
baseline k-means only. This could be as a result of the
time recuired to normalize and select relevant features at
each generation of NPSO technique before final
clustering of resultant particles by DS-K-means. Though,
1t 18 more computationally efficient than UFT-k-means and
PCA-based HYBRID (K-PSO), nevertheless, further,
research can be directed along this direction.
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